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Abstract. The existence of a non-trivial solution for a discrete non-linear Dirichlet problem in-
volving p -Laplacian is investigated. The technical approach is based on a local minimum theo-
rem for differentiable functionals due to Bonanno.

1. Introduction

There seems to be increasing interest in the existence of solutions to boundary
value problems for finite difference equations with p -Laplacian operator, because of
their applications in many fields. Results on this topic are usually achieved by using
various fixed point theorems in cone; see [4, 18, 22, 23] and references therein for de-
tails. This kind of problems play a fundamental role in different fields of research, such
as mechanical engineering, control systems, economics, computer science, physics, ar-
tificial or biological neural networks, cybernetics, ecology and many others. Important
tools in the study of nonlinear difference equations are fixed point theorems and upper
and lower solution techniques; see, for instance, [16, 19, 20] and references therein. It
is well known that critical point theory is an important tool to deal with the problems
for differential equations. More, recently, in [5, 6, 8, 9, 13, 14, 15, 17, 21] by starting
from the seminal papers [1, 2], the existence and multiplicity of solutions for nonlin-
ear discrete boundary value problems have been investigated by adopting variational
methods.

The aim of this paper is to establish the existence of at least one non-trivial solution
for the following discrete boundary-value problem{

−Δ(φp(Δu(k−1)))+qkφp(u(k)) = λ f (k,u(k)), k ∈ [1,T ],
u(0) = u(T +1) = 0,

(1.1)

where T is a fixed positive integer, [1,T ] is the discrete interval {1, ...,T} , f : [1,T ]×
R → R is a continuous function, λ > 0 is a parameter, Δu(k) = u(k + 1)− u(k) is
the forward difference operator and qk ∈ R

+
0 for all k ∈ [1,T ] , φp(s) = |s|p−2s and

1 < p < +∞ .
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More precisely, based on a local minimum theorem (Theorem 2) due to Bonanno
[7], we ensure an exact interval of the parameter λ , in which the problem (1.1) admits
at least one non-trivial solution.

As an example, here, we point out the following special case of our main results.

THEOREM 1. Let h : [1,T ] → R be a positive function and g : R → R be a non-
negative continuous function such that

lim
t→0+

g(t)
t p−1 = +∞.

Then, for each

λ ∈
]
0,

2p

p(T +1)p−1 ∑T
k=1 h(k)

sup
c>0

cp∫ c
0 g(ξ )dξ

[
,

the problem{
−Δ(φp(Δu(k−1)))+qkφp(u(k)) = λh(k)g(u(k)), k ∈ [1,T ],
u(0) = u(T +1) = 0,

admits at least one positive solution in the space {u : [0,T +1]→R : u(0) = u(T +1) =
0} .

We refer to the paper [3, 10, 11, 12] in which Theorem 2 has been successfully
employed to the existence of at least one non-trivial solution for two-point boundary
value problems.

The rest of this paper is arranged as follows. In section 2, we recall some basic
definitions and the main tool (Theorem 2) and in section 3, we provide our main results
that contains several theorems and finally, we illustrate the results by giving examples.

2. Preliminaries

Our main tool is a local minimum theorem due to Bonanno (see [7, Theorem 5.1]),
which is recalled below (see also [7, Proposition 2.1]). Such a result is more general
than [24, Theorem 2.5] since the critical point, surely, is not zero.

First, for given Φ, Ψ : X → R , we defined the following functions

β (r1,r2) = inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[) Ψ(u)−Ψ(v)

r2−Φ(v)
(2.1)

and

ρ(r1,r2) = sup
v∈Φ−1(]r1,r2[)

Ψ(v)− supu∈Φ−1(]−∞,r2[) Ψ(u)

Φ(v)− r1
(2.2)

for all r1,r2 ∈ R , with r1 < r2 .
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THEOREM 2. ([7, Theorem 5.1]) Let X be a reflexive real Banach space, Φ : X →
R a sequentially weakly semicontinuous coercive and continuously Gâteaux differen-
tiable functional whose Gâteaux derivative admits a continuous inverse on X∗ and
Ψ : X → R a continuously Gâteaux differentiable functional whose Gâteaux derivative
is compact. Put Iλ = Φ−λ Ψ and assume that there are r1,r2 ∈ R , with r1 < r2 , such
that

β (r1,r2) < ρ(r1,r2),

where β and ρ are given by (2.1) and (2.2). Then, for each λ ∈ Λ =] 1
ρ(r1,r2)

, 1
β (r1,r2)

[
there is u0,λ ∈ Φ−1(]r1,r2[) such that Iλ (u0,λ ) � Iλ (u) for all u ∈ Φ−1(]r1,r2[) and
I′λ (u0,λ ) = 0 .

In order to give the variational formulation of the problem (1.1), on T -dimensional
Banach space

W := {u : [0,T +1]→ R : u(0) = u(T +1) = 0} , equipped with the norm

||u|| :=
{

T+1

∑
k=1

|Δu(k−1)|p +qk|u(k)|p
}1/p

.

In the sequel, we will use the following inequality

max
k∈[1,T ]

|u(k)| � (T +1)(p−1)/p

2
||u||, (2.3)

for every u ∈W . It immediately follows, for instance, from Lemma 2.2 of [21]. More-
over, put

Φ(u) :=
||u||p

p
, Ψ(u) :=

T

∑
k=1

F(k,u(k)) and Iλ (u) := Φ(u)−λ Ψ(u) (2.4)

for every u ∈W , where F(k,t) :=
∫ t
0 f (k,ξ )dξ for every (k,t) ∈ [1,T ]×R . An easy

computation ensures that Iλ turns out to be of class C1 on W with

I′λ (u)(v) =
T+1

∑
k=1

[
φp(Δu(k−1))Δv(k−1)+qk|u(k)|p−2u(k)v(k)−λ f (k,u(k))v(k)

]

= −
T

∑
k=1

[
Δ(φp(Δu(k−1))v(k)−qk|u(k)|p−2u(k)v(k)+ λ f (k,u(k))v(k)

]
for all u,v ∈W . It is clear that the critical points of Iλ are exactly the solutions of the
problem (1.1).

3. Main Results

First, for a given non-negative constant c and a given positive constant d with

(2c)p

(T +1)p−1 �= dp(2+
T

∑
k=1

qk),
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put

ad(c) :=
∑T

k=1 max|ξ |�c F(k,ξ )−∑T
k=1 F(k,d)

(2c)p

(T+1)p−1 −dp(2+ ∑T
k=1 qk)

.

We state our main result as follows.

THEOREM 3. Assume that there exist a non-negative constant c1 and two positive

constants c2 and d with c1 < d
2 (T +1)

p−1
p (2+ ∑T

k=1 qk)
1
p < c2 such that

(A1) ad(c2) < ad(c1).

Then, for any λ ∈] 1
pad(c1)

, 1
pad(c2)

[ the problem (1.1) has at least one non-trivial so-

lution u0 ∈W such that 2c1(T +1)
1−p

p < ||u0|| < 2c2(T +1)
1−p

p .

Proof. Our aim is to apply Theorem 2 to study the problem (1.1). To this end, take
X = W , and put Φ, Ψ and Iλ as in (2.4). Put

v(t) =

{
d, k ∈ [1,T ],
0, otherwise,

and

r1 =
(2c1)p

p(T +1)p−1 and r2 =
(2c2)p

p(T +1)p−1 .

Clearly v ∈W , and Φ(v) = dp

p (2+ ∑T
k=1 qk) and

Ψ(v) =
T

∑
k=1

F(k, v(k)) =
T

∑
k=1

F(k,d).

Moreover, for all u ∈W such that Φ(u) < ri , i = 1,2, taking (2.3) into account, one
has maxk∈[1,T ] |u(k)| � ci , i = 1,2. Therefore,

sup
u∈Φ−1(−∞,ri)

Ψ(u) = sup

||u||<(pri)
1
p

T

∑
k=1

F(k,u(k)) �
T

∑
k=1

max
|ξ |�ci

F(k,u(k)), i = 1,2.

Hence,

0 � β (r1,r2) �
supu∈Φ−1(−∞,r2) Ψ(u)−Ψ(v)

r2 −Φ(v)

� p
∑T

k=1 max|ξ |�c2
F(k,u(k))−∑T

k=1 F(k,d)
(2c)p

(T+1)p−1 −dp(2+ ∑T
k=1 qk)

� pad(c2).
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On the other hand, one has

ρ(r1,r2) � p
∑T

k=1 F(k,d)−∑T
k=1 max|ξ |�c1

F(k,u(k))
(2c)p

(T+1)p−1 −dp(2+ ∑T
k=1 qk)

= pad(c1).

Hence, from Assumption (A1), we get β (r1,r2) < ρ(r1,r2) .
Therefore, owing to Theorem 2, for each λ ∈] 1

pad(c1) ,
1

pad(c2)
[ , the functional Iλ

admits one critical point u0 ∈W such that r1 < Φ(u0) < r2 , that is

2c1(T +1)
1−p

p < ||u0|| < 2c2(T +1)
1−p

p .

Hence, the proof is complete.

We now present an example to illustrate the result of Theorem 3.

EXAMPLE 1. Choose c1 = 1, c2 = 104 , d = 2, T = 9, p = 4 and ∑9
k=1 qk = 14.

Clearly a2(c1) = 0.0157 and a2(c2) = 0.00359. We observe that all hypotheses of
Theorem 3 are fulfilled. Hence, Theorem 3 follows that for every λ ∈]16,69[ the
problem{

−Δ(φ4(Δu(k−1)))+qkφ4(u(k)) = 3
4 λ (u(k))2(ln k+1

k ), k ∈ [1,9],
u(0) = u(10) = 0,

has at least one non-trivial solution u0 such that 2×10−
3
4 < ||u0|| < 2×10

13
4 .

Here we point out an immediate consequence of Theorem 3 as follows.

THEOREM 4. Assume that there exist two positive constants c and d with d
2 (T +

1)
p−1
p (2+ ∑T

k=1 qk)
1
p < c such that

(A2) F(k, t) � 0 for all (k,t) ∈ [1,T ]× [0,d] ,

(A3)
∑T

k=1 max|ξ |�c F(k,ξ )
cp < 2p

(T+1)p−1(2+∑T
k=1 qk)

∑T
k=1 F(k,d)

dp .

Then, for each

λ ∈
]dp(2+ ∑T

k=1 qk)
p∑T

k=1 F(k,d)
,

(2c)p

p(T +1)p−1 ∑T
k=1 max|ξ |�c F(k,ξ )

[

the problem (1.1) has at least one non-trivial solution u0 ∈W such that ||u0||∞ � c.

Proof. Applying Theorem 3 we have the conclusion, by picking c1 = 0 and c2 =
c . Indeed, owing to our assumptions, one has

ad(c) <

(
1− (T+1)p−1dp(2+∑T

k=1 qk)
(2c)p

)
∑T

k=1 max|ξ |�c F(k,ξ )
(2c)p

(T+1)p−1 −dp(2+ ∑T
k=1 qk)
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=
(T +1)p−1 ∑T

k=1 max|ξ |�c F(k,ξ )
(2c)p

<
1

(2+ ∑T
k=1 qk)

∑T
k=1 F(k,d)

dp

= ad(0).

In particular, one has

ad(c) <
(T +1)p−1 ∑T

k=1 max|ξ |�c F(k,ξ )
(2c)p .

Hence, Theorem 3, taking (2.3) into account, ensures the conclusion.

REMARK 1. If f is non-negative, then, thanks to [8, Theorem 2.2], the ensured
solution u0 in the conclusions of Theorems 3 and 4 is positive.

As a special case of the problem (1.1), we consider the following problem{
−Δ(φp(Δu(k−1)))+qkφp(u(k)) = λ α(k)g(u(k)), k ∈ [1,T ],
u(0) = u(T +1) = 0

(3.1)

where α : [1,T ] → R and g ∈C(R,R) are nonnegative. Put G(t) =
∫ t
0 g(ξ )dξ for all

t ∈ R . For a given non-negative constant c and a given positive constant d with

(2c)p

(T +1)p−1 �= dp(2+
T

∑
k=1

qk),

put

bd(c) :=
G(c)−G(d)

(2c)p

(T+1)p−1 −dp(2+ ∑T
k=1 qk)

Then, taking into account that in this case,

max
|ξ |�c

T

∑
k=1

F(k,ξ ) = G(c)
T

∑
k=1

α(k),

Theorems 3 and 4 take the following forms, respectively.

THEOREM 5. Assume that there exist a non-negative constant c1 and two positive

constants c2 and d with c1 < d
2 (T +1)

p−1
p (2+ ∑T

k=1 qk)
1
p < c2 such that

(B1) bd(c2) < bd(c1).

Then, for any

λ ∈
] 1

p(∑T
k=1 α(k))bd(c1)

,
1

p(∑T
k=1 α(k))bd(c2)

[
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the problem (3.1) has at least one positive solution u0 ∈W such that 2c1(T +1)
1−p

p <

||u0|| < 2c2(T +1)
1−p

p .

THEOREM 6. Assume that there exist two positive constants c and d with d
2 (T +

1)
p−1
p (2+ ∑T

k=1 qk)
1
p < c such that

(B2) G(c)
cp < 2p

(T+1)p−1(2+∑T
k=1 qk)

G(d)
dp .

Then, for each

λ ∈
] dp(2+ ∑T

k=1 qk)
(p∑T

k=1 α(k))G(d)
,

(2c)p

(p(T +1)p−1 ∑T
k=1 α(k))G(c)

[

the problem (3.1) has at least one positive solution u0 ∈W such that ||u0||∞ � c.

We now prove the theorem in the introduction.

POOF OF THEOREM 1: For fixed λ as in the conclusion, there exists positive
constant c such that

λ <
2p

p(T +1)p−1 ∑T
k=1 h(k)

cp∫ c
0 g(ξ )dξ

.

Moreover,

the condition lim
t→0+

g(t)
t p−1 = +∞ implies lim

t→0+

∫ t
0 g(ξ )dξ

t p = +∞.

Therefore, a positive constant d satisfying d < 2(T +1)−
p−1
p (2+ ∑T

k=1 qk)
− 1

p c can be
chosen such that

(2+ ∑T
k=1 qk)

pλ ∑T
k=1 h(k)

<

∫ d
0 g(ξ )dξ

dp .

Hence, the conclusion follows from Theorem 3 with c1 = 0, c2 = c and f (k, t) =
h(k)g(t) for every (k,t) ∈ [1,T ]×R . �

REMARK 2. For fixed γ put

λγ :=
2p

p(T +1)p−1 ∑T
k=1 h(k)

sup
c∈]0,γ[

cp∫ c
0 g(ξ )dξ

.

The result of Theorem 1 for every λ ∈]0,λγ [ holds with ||u0||∞ < γ where u0 is the
ensured positive solution in W (see [10, Remark 4.3]).

Finally, we present the following example to illustrate the result of Theorem 1.
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EXAMPLE 2. Consider the problem{−Δ(φ3(Δu(k−1)))+ φ3(u(k)) = λek(1+ e−u+
(u+)2(3−u+)) k ∈ [1,5],

u(0) = u(6) = 0,
(3.2)

where u+ := max{u,0} . Let h(k) = ek and g(t) = 1+ e−t+(t+)2(3− t+) for all k ∈
[0,5] and t ∈ R , where t+ := max{t,0} . It is clear that limt→0+

g(t)
t2

= +∞ . Pick
γ = 1. Hence, taking Remark 2 into account, by using Theorem 1, for every λ ∈]
0, 2

27(∑5
k=1 ek)

e
e+1

[
, the problem (3.2) has at least one positive solution u0 ∈ {u : [0,6]→

R : u(0) = u(6) = 0} such that ||u0||∞ < 1.

Acknowledgements. The authors express their gratitude to professor Gabriele Bo-
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[14] P. CANDITO AND G. D’AGUÌ, Three solutions to a perturbed nonlinear discrete Dirichlet problem,
J. Math. Anal. Appl., 375 (2011), 594–601.

[15] P. CANDITO AND N. GIOVANNELLI,Multiple solutions for a discrete boundary value problem, Com-
put. Math. Appl., 56 (2008), 959–964.

[16] J. CHU AND D. JIANG, Eigenvalues and discrete boundary value problems for the one-dimensional
p -Laplacian, J. Math. Anal. Appl., 305 (2005), 452–465.

[17] F. FARACI AND A. IANNIZZOTTO, Multiplicity theorems for discrete boundary problems, Aequa-
tiones Math., 74 (2007), 111–118.



Differ. Equ. Appl. 6, No. 4 (2014), 517–525. 525

[18] Z. HE, On the existence of positive solutions of p -Laplacian difference equations, J. Comput. Appl.
Math., 161 (2003), 193–201.

[19] J. HENDERSON AND H.B. THOMPSON, Existence of multiple solutions for second order discrete
boundary value problems, Comput. Math. Appl., 43 (2002), 1239–1248.

[20] D. JIANG, J. CHU, D. O’REGAN AND R.P. AGARWAL, Positive solutions for continuous and discrete
boundary value problems to the one-dimensional p -Laplacian, Math. Inequal. Appl., 7 (2004), 523–
534.

[21] L. JIANG AND Z. ZHOU, Three solutions to Dirichlet boundary value problems for p-Laplacian
difference equations, Adv. Diff. Equ., 2008 (2008), 1–10.

[22] Y. LI AND L. LU, Existence of positive solutions of p -Laplacian difference equations, Appl. Math.
Lett., 19 (2006), 1019–1023.

[23] Y. LIU AND W. GE, Twin positive solutions of boundary value problems for finite difference equations
with p-Laplacian operator, J. Math. Anal. Appl., 278 (2003), 551–561.

[24] B. RICCERI, A general variational principle and some of its applications, J. Comput. Appl. Math.,
113 (2000), 401–410.

(Received April 16, 2014) Mohsen Khaleghi Moghadam
Department of Basic Science

Agricultural and Natural Source University
Sari, Iran

e-mail: m.khaleghi@sanru.ac.ir

Shapour Heidarkhani
Department of Mathematics

Faculty of Sciences
Razi University

67149 Kermanshah, Iran
e-mail: s.heidarkhani@razi.ac.ir

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


