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OSCILLATION PROPERTIES OF HIGHER ORDER LINEAR

IMPULSIVE DELAY DIFFERENTIAL EQUATIONS

KUNWEN WEN AND LIJUN PAN

(Communicated by Jurang Yan)

Abstract. In this paper, we devote to investigation of higher order impulsive delay differential
equations. Some interesting results for oscillation properties of every bounded solution of equa-
tions are obtained. In addition, an example shows that impulses play an important role in the
oscillation properties of the solutions.

1. Introduction

Impulsive delay differential equations are useful mathematical machinery in mod-
elling many real processes and phenomena studied in optimal control , biology, mechan-
ics, medicine, bio-technologies, electronics, physics, etc [7]. Recently, the oscillatory
behavior of impulsive delay differential equations has attracted the attention of many
researchers [5]-[15]. For instance, in [5], K. Gopalsamy and B., Zhang investigated
oscillation of first order delay differential equations with impulses. [16] generalized the
results of [5]. In [14], J. Yan established oscillation criteria for nonlinear several delays
impulsive differential equations. In [6], G. Huang and J. Shen studied oscillation of
second-order linear IDE with damping:{

x′′ (t)+a(t)x′ (t)+ p(t)x(t) = 0, t � t0, t �= tk,
x( j) (tk)− x( j) (t−k )= dkx( j) (t−k ) , j = 0,1.

(1.1)

In [15], J. Yan considered the delay effection to (1.1),⎧⎨
⎩ x′′ (t)+a(t)x′ (t)+

n
∑
i=1

pi (t)x(gi (t)) = 0, t � t0, t �= tk,

x( j) (tk)− x( j)
(
t−k
)

= dkx( j)
(
t−k
)
, j = 0,1

(1.2)

and generalized the results in [6]. Next, oscillation and nonoscillation of even order
impulsive differential equations were studied and some interesting results are obtained
[9]-[13]. But papers devoted to the study of the oscillation and nonoscillation of higher

Mathematics subject classification (2010): 34C10, 34C15.
Keywords and phrases: oscillation properties, impulsive differential equation, delay, linear, bounded

solutions.

c© � � , Zagreb
Paper DEA-07-04

43

http://dx.doi.org/10.7153/dea-07-04


44 KUNWEN WEN AND LIJUN PAN

order impulsive delay differential equations are quite rare. As we known, only X., Li
consider the impulsive delay differential equation⎧⎨

⎩ x(m) (t)+a(t)x(m−1) (t)+
n
∑
i=1

pi (t)x(gi (t)) = 0, t � t0, t �= tk,

x( j) (tk)− x( j) (t−k )= dkx( j) (t−k ) , j = 0,1, ...,m−1.
(1.3)

Before stating the conditions on dk,a(t) , pi (t) ,gi (t) in the above equations, let
us first state what we like to present first. In this paper, we consider a kind of higher
impulsive delay differential equation⎧⎨

⎩
(
r (t)x(m−1) (t)

)′
+

n
∑
i=1

pi (t)x(gi (t)) = 0, t � t0,t �= tk,

x( j) (tk)− x( j) (t−k )= dkx( j) (t−k ) , j = 0,1, ...,m−1,
(1.4)

where

x( j) (t+k )= lim
h→0+

x( j−1) (tk +h)− x( j−1) (tk)
h

x( j) (t−k )= x( j) (tk) = lim
h→0−

x(i−1) (tk +h)− x( j−1) (tk)
h

and the delay differential problem(
r (t)y(m−1) (t)

)′
+

n

∑
i=1

pi (t) ∏
gi(t)<tk�t

(1+dk)
−1 y(gi (t)) = 0. (1.5)

We assume the following conditions hold:
(A1 ) 0 � t0 < t1 < · · ·< tk < · · · are fixed points with lim

k→∞
tk = ∞;

(A2 ) pi ∈ C [0,∞) → R, i = 1,2, · · · ,n, are Lebesgue measurable and locally es-
sentially bounded functions, r ∈C [0,∞) → R+,R is the real axis;

(A3 ) gi ∈ C [0,∞) → R, i = 1,2, · · · ,n, are Lebesgue measurable functions and
gi (t) � t satisfying lim

t→∞
gi (t) = ∞;

(A4 ) {dk} is a sequence of constants for each j and dk > −1.
For any τ0 � 0, let τ−0 = min

1�i�n
inf
t�τ0

gi (t) . Let Ψ denote the set of functions φ :[
τ−0 ,τ0

]→ R ,which are bounded and Lebesgue measurable on
[
τ−0 ,τ0

]
.

DEFINITION 1. For any τ0 � 0 and φ ∈ Ψ, a function x :
[
τ−0 ,∞

)→ R is said to
be a solution of (1.4) on

[
τ−0 ,∞

)
satisfying the initial value condition

x(t) = φ (t) , φ (τ0) > 0, t ∈ [τ−0 ,τ0
]
, (1.6)

if the following conditions are satisfied:
(i) x(t) satisfies (1.6);
(ii) x( j) (t) is absolutely continuous in each interval

(
τ0,tk0

)
,(tk,tk+1) ,k � k0,k0 =

min{k |tk > τ0 } ,x( j) (t+k ) ,x( j) (t−k ) exist and x( j) (t−k ) = x( j) (tk) , the second equality
in (1.4) holds;

(iii) x(t) satisfies the first equality in (1.4) almost everywhere in
(
τ−0 ,∞

)
.
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DEFINITION 2. A solution of (1.4) is said to be non-oscillatory if it is eventually
positive or eventually negative. Otherwise, it is said to be oscillatory.

By a solution y of of (1.5) on
[
τ−0 ,∞

)
, we mean a function which has an abso-

lutely continuous derivative y′ on
[
τ−0 ,∞

)
satisfies (1.5) a.e. on

[
τ−0 ,∞

)
and satisfies

(1.6) on
[
τ−0 ,τ0

]
. In this paper, we always suppose τ−0 = t−0 ,τ0 = t0.

Our plan is the following. First, we prove the oscillation properties of (1.4) equal-
ity to (1.5) (Theorem 1-3), and obtain some sufficient conditons for ensure all bounded
solutions of (1.4) to be nonoscillatory and oscillatory. Next, applying our Theorem
4 and Theorem 5, we state two results (Theorem 6 and Theorem 7) for (1.3). When
m = 2, Theorem 6 generalizes and improves Theorem 4 in [15]; when m � 3, Theorem
7 show that the boundedness and differentiability condition on r (t) on Theorem 2.8 in
[9] can be canceled. At last, an example is provided to illustrate the use of our results.

2. Main results

In this section we will establish theorems which enable us to reduce the oscillation
and nonoscillation of (1.4) to the corresponding problem (1.5).

THEOREM 1. Assume that (A1 )-(A4 ) hold.
(i) If y is a solution of (1.5) on

[
t−0 ,∞

)
, then x(t) = ∏

t0<tk�t
(1+dk)y(t) is a solu-

tion of (1.4) on
[
t−0 ,∞

)
.

(ii) If x is a solution of (1.4) on
[
t−0 ,∞

)
, then y(t) = ∏

t0<tk�t
(1+dk)

−1 x(t) is a

solution of (1.5) on
[
t−0 ,∞

)
.

Proof. First we shall prove (i). Let y be a solution of (1.5) on
[
t−0 ,∞

)
, then x(t) =

∏
t0<tk�t

(1+dk)y(t) has an absolutely continuous derivative x′ on
(
t−0 ,t0

)
, [tk, tk+1) ,k �

0. For any t �= tk, t > t−0 , it is easy to prove that

r (t)x( j) (t) = ∏
t0<tk�t

(1+dk)r (t)y( j) (t) , j = 0,1,2, · · · ,m−1

then[
r (t)x(m−1) (t)

]′
= ∏

t0<tk�t
(1+dk)

[
r (t)y(m−1) (t)

]′

= − ∏
t0<tk�t

(1+dk)

(
n

∑
i=1

pi (t) ∏
gi(t)<tk�t

(1+dk)
−1 y(gi (t))

)

= −
(

n

∑
i=1

pi (t) ∏
t0<tk�gi(t)

(1+dk)y(gi (t))

)

= −
(

n

∑
i=1

pi (t)x(gi (t))

)
.
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So we get

[
r (t)x(m−1) (t)

]′
+

(
n

∑
i=1

pi (t)x(gi (t))

)
= 0, t � t0,t �= tk,

which implies that x is a solution of (1.4). On the other hand,

x( j) (tm) = ∏
t0<tk�tm

(1+dk)y( j) (tm)

and
x( j) (t−m )= ∏

t0<tk�tm−1

(1+dk)y( j) (tm)

that is
x( j) (tm) = (1+dk)x( j) (t−m ) ,

which implies that x solves the second condition in (1.4). So

x(t) = ∏
t0<tk�t

(1+dk)y(t)

is a solution of (1.4) on
[
t−0 ,∞

)
.

Next we prove (ii). Let x be a solution of (1.4). We shall prove that

y(t) = ∏
t0<tk�t

(1+dk)
−1 x(t)

is a solution of (1.5) on
[
t−0 ,∞

)
. For any t �= tk,t > t−0 ,[

r (t)y(m−1) (t)
]′

= ∏
t0<tk�t

(1+dk)
−1
[
r (t)x(m−1) (t)

]′

= − ∏
t0<tk�t

(1+dk)
−1

(
n

∑
i=1

pi (t)x(gi (t))

)

= −
n

∑
i=1

pi (t) ∏
t0<tk�t

(1+dk)
−1 x(gi (t))

= −
n

∑
i=1

pi (t) ∏
t0<tk�gi(t)

(1+dk)
−1 ∏

gi(t)<tk�t

(1+dk)
−1 x(gi (t))

= −
n

∑
i=1

pi (t) ∏
gi(t)<tk�t

(1+dk)
−1 y(gi (t))

and
y( j) (tm) = ∏

t0<tk�tm

(1+dk)
−1 x( j) (tm)

y( j) (t−m ) = ∏
t0<tk�tm−1

(1+dk)
−1 x( j) (t−m )
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= ∏
t0<tk�tm−1

(1+dk)
−1 (1+dm)−1 x( j) (tm)

= ∏
t0<tk�tm

(1+dk)
−1 x( j) (tm) = y( j) (tm) .

So y(t) = ∏
t0<tk�t

(1+dk)
−1 x(t) is a solution of (1.5) on

[
t−0 ,∞

)
. The proof is com-

plete. �
Applying Theorem 1, we obtain the following results.

THEOREM 2. Assume that (A1 )-(A4 ) hold. Then all solutions of (1.4) are oscil-
latory (nonoscillatory) if only if all solutions of (1.5) are oscillatory (nonoscillatory).

THEOREM 3. Assume that (A1 )-(A4 ) hold and ∏
t0<tk�t

(1+dk) is bounded. Then

all solutions of (1.4) asymptotically approach to zero if only if all solutions of (1.5)
asymptotically approach to zero.

THEOREM 4. Assume that (A1 )-(A4 ) hold. Moreover, suppose that
(A5 ) ∏

t0<tk�t
(1+dk) is bounded and liminf

t→∞
∏

t0<tk�t
(1+dk) > 0;

(A6 ) pi (t) � 0, i = 1,2, · · · ,n;

(A7 )
∫ t
t0

∫ σm−2
t0 · · ·∫ σ1

t0
1

r(s)
∫ ∞
s

n
∑
i=1

pi (u) ∏
gi(u)<tk�u

(1+dk)
−1 du · · ·dσm−3dσm−2 < ∞.

Then (1.4) has a bounded nonoscillatory solution x with liminf
t→∞

|x(t)| > 0.

Proof. We only need to prove that (1.5) has a bounded nonoscillatory solution y.
From (A7 ), there exists T > 0 such that for all t � T,gi (t) � T0 > 0, i = 1,2, · · · ,n, and
for all t � T,

∫ t

T

∫ σm−2

t0
· · ·
∫ σ1

t0

1
r (s)

×
∫ ∞

s

n

∑
i=1

pi (u) ∏
gi(u)<tk�u

(1+dk)
−1 du · · ·dσm−3dσm−2 <

1
4
. (2.1)

Let Y be denote the locally convex space of all continuous functions y ∈C ([T0,∞) ,R)
with the topology of convergence on compact subintervals of [T0,∞) . Let

Γ =
{

y ∈ Y :
γ
2

� y(t) � 2γ
3

,t � T0

}
,

where γ > 0 is an arbitrary given constant. We note that Γ is a closed and convex
subset of Y and it is nonempty.

Now, define map F : Γ → Y by

(Fy) (t) =
{ γ

2 +(Ωy)(t) , t > T,
γ
2 , T0 � t < T,
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where

(Ωy)(t) =
∫ t

T

∫ σm−2

t0
· · ·
∫ σ1

t0

1
r (s)

×
∫ ∞

s

n

∑
i=1

pi (u) ∏
gi(u)<tk�u

(1+dk)
−1 y(gi (u))du · · ·dσm−3dσm−2. (2.2)

First we verify FΓ ⊂ Γ. For all y ∈ Γ, it is obvious that Fy ⊂ Γ for T0 � t < T.
When t > T , combining (2.1) we get

Fy =
γ
2

+(Ωy)(t)

=
γ
2

+
∫ t

T

∫ σm−2

t0
· · ·
∫ σ1

t0

1
r (s)

×
∫ ∞

s

n

∑
i=1

pi (u) ∏
gi(u)<tk�u

(1+dk)
−1 y(gi (u))du · · ·dσm−3dσm−2

� γ
2

+
2γ
3

∫ t

T

∫ σm−2

t0
· · ·
∫ σ1

t0

1
r (s)

×
∫ ∞

s

n

∑
i=1

pi (u) ∏
gi(u)<tk�u

(1+dk)
−1 du · · ·dσm−3dσm−2

� γ
2

+
2γ
3

· 1
4

=
2γ
3

.

So F maps Γ into Γ. On the other hand, {Fy} is uniformly bounded. The continuity
of FΓ → Γ is verified as follows: Let yn ∈ Γ,y ∈ Γ. For any ε > 0, there exists a
postive integer Nε such that |yn− y|< 4ε for any n > Nε . In particular

|yn (gi (t))− y(gi (t))| < 4ε, n > Nε ,t > T0.

Hence

|yn (t)− y(t)| �
∫ t

T

∫ σm−2

t0
· · ·
∫ σ1

t0

1
r (s)

∫ ∞

s

n

∑
i=1

pi (u)×

∏
gi(u)<tk�u

(
1+ α [ j]

k

)−1 |yn (gi (u))− y(gi (u))|du · · ·dσm−3dσm−2

� 4ε
∫ t

T

∫ σm−2

t0
· · ·
∫ σ1

t0

1
r (s)

×
∫ ∞

s

n

∑
i=1

pi (u) ∏
gi(u)<tk�u

(1+dk)
−1 du · · ·dσm−3dσm−2

� 4ε · 1
4

= ε.

So we know that F maps Γ continuous into a compact subset of Γ. Therefore, by
Schauder-Tychonov’s fixed point theorem, F has a fixed point y in Γ. It is easy to
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check that the fixed point y is a solution of (1.5). So (1.5) has a bounded nonoscilla-
tory solution y. By Theorem 1, x(t) = ∏

t0<tk�t
(1+dk)y(t) is a bounded nonoscillatory

solution of (1.4). Using condition (A5 ), we eventually get

liminf
t→∞

|x(t)| > 0.

The proof is complete. �
Next we shall give an oscillation criterion for (1.4). Suppose m is a given even

number and m � 4. First we give some lemmas which can be used to prove the follow-
ing main Theorems.

LEMMA 1. (Lakshmikantham et al [7]) Assume that
(H0 ) m ∈ PC′ (R+,R) and m(t) is left-continuous at tk,k = 1,2, ... ,
(H1 ) For tk,k = 1,2, ... and t � t0 ,

m′ (t) � p(t)m(t)+q(t) , t �= tk,

m
(
t+k
)

� dkm(tk)+bk,

where p,q ∈ PC (R+,R) ,dk � 0 and bk are real constants. Then for t � t0 ,

m(t) � m(t0) ∏
t0<tk<t

dk exp

(∫ t

t0
p(s)ds

)

+ ∑
t0<tk<t

(
∏

tk<t j<t
d j exp

(∫ t

tk
p(s)ds

))
bk

+
∫ t

t0
∏

s<tk<t
dk exp

(∫ t

s
p(σ)dσ

)
q(s)ds. (2.3)

LEMMA 2. Let y be a given solution of (1.5). Assume that (A1 )-(A4 ) and (A6 )
hold and

(A8)
∫ ∞

t0

1
r (s)

ds = ∞,

Suppose that there exists T � t0 such that x(t) > 0 for t � T , then there exists T ′ � T
and N ∈ {1,3, ...,m−1} such that for t � T ′ ,

⎧⎪⎨
⎪⎩

x(i) (t) > 0, i = 0,1, ...,N;
(−1)(i−1) x(i) (t) > 0, i = N +1, ...,m−1,(
r (t)x(m−1) (t)

)′
< 0.

(2.4)

The proofs are omitted, because their proofs are similar to [11] but without impulses.

THEOREM 5. Assume that (A1 )-(A4 ) , (A6 ) and (A8 ) hold. Moreover suppose
that
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(A9 ) gi has an absolutely continuous derivable g′i on
(
t−0 ,∞

)
, and g′i � 0;

(A10 )
∫ ∞
t0

sm−3ds
∫ ∞
s

1
r(v)dv

∫ ∞
v

n
∑
i=1

pi (w)∏gi(w)<tk�w (1+dk)
−1 dw = ∞.

Then all bounded solutions of (1.4) are oscillatory.

Proof. We only need to prove that all the bounded solutions of (1.5) are oscillatory.
Suppose that the assertion is not true. Without loss of generality, we may suppose that
there exists T > 0 such that y(t) > 0 for t � T .

Firstly we consider the case when N = 1. By Lemma 2, we get

y(t) > 0, y′ (t) > 0, y′′ (t) < 0, y′′′ (t) > 0, · · · ,y(m−1) (t) > 0, t � T ′ � T.

So (y(gi (t)))
′ = y′ (gi (t))g′i (t) > 0, which implies y(gi (t)) is increasing in t for t >

T ′. Therefore, for t > T ′ ,

(
r (t)y(m−1) (t)

)′
= −

n

∑
i=1

pi (t) ∏
gi(t)<tk�t

(1+dk)
−1 y(gi (t))

� −
n

∑
i=1

pi (t) ∏
gi(t)<tk�t

(1+dk)
−1 y

(
gi
(
T ′))

� −M
n

∑
i=1

pi (t) ∏
gi(t)<tk�t

(1+dk)
−1 , (2.5)

where M = min
1�i�n

y(gi(T ′)) > 0. Let ϕ (t) = r (t)y(m−1) (t) , then u(t) � 0 for t > T ′.

From (2.5), we have

ϕ ′ (t) � −M
n

∑
i=1

pi (t) ∏
gi(t)<tk�t

(1+dk)
−1 ,

ϕ
(
t+k
)

= ϕ (tk) .

Using Lemma 1, we obtain for t > T ′

ϕ (∞) � ϕ (t)−M
∫ ∞

t

n

∑
i=1

pi (s) ∏
gi(s)<tk�s

(1+dk)
−1 ds.

That is

0 � r (∞)y(m−1) (∞) � r (t)y(m−1) (t)−M
∫ ∞

t

n

∑
i=1

pi (s) ∏
gi(s)<tk�s

(1+dk)
−1 ds.

So

y(m−1) (t) � M
r (t)

∫ ∞

t

n

∑
i=1

pi (s) ∏
gi(s)<tk�s

(1+dk)
−1 ds. (2.6)
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Let ψ (t) = −y(m−2) (t) , then ψ (t) � 0 and from (2.6), we have

ψ ′ (t) � − M
r (t)

∫ ∞

t

n

∑
i=1

pi (s) ∏
gi(s)<tk�s

(1+dk)
−1 ds,

ψ
(
t+k
)

= ψ (tk) .

Applying Lemma 1, we get

0 � ψ (∞) � ψ (t)−M
∫ ∞

t

1
r (s)

ds
∫ ∞

s

n

∑
i=1

pi (v) ∏
gi(v)<tk�v

(1+dk)
−1 dv.

It follows that

y(m−2) (t) � −M
∫ ∞

t

1
r (s)

ds
∫ ∞

s

n

∑
i=1

pi (v) ∏
gi(v)<tk�v

(1+dk)
−1 dv. (2.7)

Multiplying (2.7) by tm−3 and integrate on [T ∗,t) ,T ∗ > T ′ to find

∫ t

T ∗
sm−3y(m−2) (s)ds

� −M
∫ t

T ∗
sm−3ds

∫ ∞

s

1
r (v)

dv
∫ ∞

v

n

∑
i=1

pi (w) ∏
gi(w)<tk�w

(1+dk)
−1 dw. (2.8)

On the other hand,∫ t

T ∗
sm−3y(m−2) (s)ds =

∫ t

T ∗
sm−3dy(m−3) (s)

� sm−3y(m−3) (s)
∣∣t
T ∗ − (m−3)

∫ t

T ∗
sm−4y(m−3) (s)ds

= sm−3y(m−3) (s)
∣∣t
T ∗ − (m−3)

∫ t

T ∗
sm−4dy(m−4) (s)

= sm−3y(m−3) (s)
∣∣t
T ∗ − (m−3)×{

sm−4y(m−4) (s)
∣∣t
T ∗ − (m−4)

∫ t

T ∗
sm−5dy(m−5) (s)

}

= sm−3y(m−3) (s)
∣∣t
T ∗ −

{
(m−3)sm−4y(m−4) (s)

∣∣t
T ∗ −

(m−3)(m−4)sm−5y(m−5) (s)
∣∣t
T ∗ +

(m−3)(m−4)(m−5)
∫ t

T ∗
sm−6dy(m−6) (s)

}
= · · · · · ·
= sm−3y(m−3) (s)

∣∣t
T ∗ +

m−4

∑
i=0

tiyi (t)(−1)m+i+1 (m−3)!
i!

+

m−4

∑
i=0

(T ∗)i yi (T ∗)(−1)m+i (m−3)!
i!
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= tm−3y(m−3) (t)− (T ∗)m−3 y(m−3) (T ∗)− y(t)(m−3)!+
m−4

∑
i=1

tiyi (t)(−1)m+i+1 (m−3)!
i!

+

m−4

∑
i=0

(T ∗)i yi (T ∗)(−1)m+i (m−3)!
i!

� −(T ∗)m−3 y(m−3) (T ∗)− y(t)(m−3)!+
m−4

∑
i=0

(T ∗)i yi (T ∗)(−1)m+i (m−3)!
i!

. (2.9)

In view of (2.8), (2.9), we obtain

− (T ∗)m−3 y(m−3) (T ∗)− y(t)(m−3)!

+
m−4

∑
i=0

(T ∗)i yi (T ∗)(−1)m+i (m−3)!
i!

� −M
∫ t

T ∗
sm−3ds

∫ ∞

s

1
r (v)

dv
∫ ∞

v

n

∑
i=1

pi (w) ∏
gi(w)<tk�w

(1+dk)
−1 dw. (2.10)

Using (A10 ), we obtain y(t) → ∞ as t → ∞, which is a contradiction.
Next we consider the case when N > 1. By Lemma 2, we get y′(t) > 0, y′′(t) > 0,

t > T ′, so y′ is increasing in t for t ∈ [T ′,∞). We note

y(t) = y(T ′)+
∫ t

T ′
y′(s)ds � y(T ′)+ y′(T ′)(t−T ′).

So y(t) → ∞, as t → ∞, which is a contradiction. The proof is complete. �
As appplication of the previous results, first of all, we point out that main results

in [8] are valid even if the differentiability and boundness of r (t) is removed. Indeed,

multiplying exp
(∫ t

t0
a(s)ds

)
on the first equality of (1.3), then (1.3) can be rewritten

as ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
exp
(∫ t

t0
a(s)ds

)
x(m−1) (t)

]′
+exp

(∫ t
t0

a(s)ds
) n

∑
i=1

pi (t)x(gi (t)) = 0, t � t0,t �= tk,

x( j) (tk)− x( j) (t−k )= dkx( j) (t−k ) , j = 0,1, ...,m−1.

(2.11)

It has the form of (1.4) by setting

r (t) = exp

(∫ t

t0
a(s)ds

)
, Pi (t) = exp

(∫ t

t0
a(s)ds

)
pi (t) .

Our Theorems 4 and 5 directly lead us to the following results.

THEOREM 6. Assume that (A1 )-(A6 ) hold. Moreover, suppose that
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(A′
7)
∫ t

t0

∫ σm−2

t0
· · ·
∫ σ1

t0

1
r (s)

∫ ∞

s
r (u)

n

∑
i=1

pi (u)×

∏
gi(u)<tk�u

(1+dk)
−1 du · · ·dσm−3dσm−2 < ∞.

Then (1.3) has a bounded nonoscillatory solution x with liminf
t→∞

|x(t)| > 0.

REMARK 1. When m = 2, (1.3) deduces to (1.2), so Theorem 6 generalizes and
improves Theorem 4 in [15].

THEOREM 7. When m is even and m � 4 , assume that (A1 )-(A4 ) , (A6 ), (A8 )
and (A9 ) hold. Moreover, suppose that

(A′
10)

∫ ∞

t0
sm−3ds

∫ ∞

s

1
r (v)

∫ ∞

v
r (w)

n

∑
i=1

pi (w) ∏
gi(w)<tk�w

(1+dk)
−1 dw = ∞.

Then all bounded solutions of (1.3) are oscillatory.

It can easy to see that let

r (t) = exp

(∫ t

t0
a(s)ds

)
, P(t) = r (t) p(t) , Pi (t) = r (t) pi (t) .

Multiplying r (t) on the first equality of (1.1), then (1.1) reduces to the problem{
[r (t)x′ (t)]′ +P(t)x(t) = 0, t � t0,t �= tk,
x( j) (tk)− x( j) (t−k )= dkx( j) (t−k ) , j = 0,1.

(2.12)

Multiplying r (t) on the first equality of (1.2), then (1.2) reduces to the problem⎧⎨
⎩ [r (t)x′ (t)]′ +

n
∑
i=1

Pi (t)x(gi (t)) = 0, t � t0,t �= tk,

x( j) (tk)− x( j) (t−k )= dkx( j) (t−k ) , j = 0,1.
(2.13)

REMARK 2. The above equations (2.12) and (2.13) are special form of (1.4), so
our Theorems generalize and improve the relative results in [6, 15].

EXAMPLE 1. Consider the equation⎧⎨
⎩
( 1

t x
′′′ (t)

)′ + 21
16 t−

9
2
(
t − 1

3

)− 1
2 x
(
t− 1

3

)
= 0, t � 1

2 ,t �= k,

x( j) (tk)− x( j) (t−k )=
(

k j

(k+1) j+2 −1
)

x( j) (t−k ) , j = 0,1,2,
(2.14)

where m = 4, n = 1,

p1 (t) =
21
16

t−
9
2

(
t− 1

3

)− 1
2

, g1 (t) = t− 1
3
, tk = k, dk =

k j

(k+1) j+2 −1.
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It is easy to see that (A1 )-(A4 ), (A6 ), (A8 ) and (A9 ) satisfied, and

∫ t

1
2

sds
∫ ∞

s

1
r (v)

dv
∫ ∞

v

n

∑
i=1

p1 (w) ∏
g1(w)<tk�w

(1+dk)
−1 dw

=
∫ t

1
2

sds
∫ ∞

s
vdv

∫ ∞

v

21
16

w− 9
2

(
w− 1

3

)− 1
2

∏
g1(w)<k�w

(k+1) j+2

k j dw

�
∫ t

1
2

sds
∫ ∞

s
vdv

∫ ∞

v

21
16

w− 9
2

(
w− 1

3

)− 1
2

w2dw

= ∞.

By Theorem 5, every bounded solution of (2.14) is oscillatory. But the delay differential
equation (

1
t
x′′′ (t)

)′
+

21
16

t−
9
2

(
t − 1

3

)− 1
2
x
(
t− 1

3

)
= 0, t � 1

2

has a nonnegative solution x =
√

t. This example shows that impulses play an important
role in the oscillatory properties of equations under perturbing impulses.
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