BOUNDARY BEHAVIOR OF LARGE SOLUTIONS TO QUASILINEAR ELLIPTIC PROBLEMS WITH A NONLINEAR GRADIENT TERM

CHUNLIAN LIU AND ZUODONG YANG

(Communicated by Qihu Zhang)

Abstract. In this paper, we study the boundary behavior of solutions to boundary blow-up elliptic problems

\[
\begin{cases}
\text{div}(|\nabla u|^{m-2}\nabla u) \pm |\nabla u(x)|^{q(m-1)} = b(x)f(u), & x \in \Omega, \\
u > 0, & x \in \Omega, \\
u|_{\partial \Omega} = +\infty,
\end{cases}
\]

where \(\Omega \) is a bounded domain with smooth boundary in \(\mathbb{R}^N \), \(m > 1 \), \(q > 0 \), \(b \in C^\alpha(\overline{\Omega}) \), which is positive in \(\Omega \) and may be vanishing on the boundary and rapidly varying near the boundary, and \(f \) is rapidly varying or normalized regularly varying at infinity.

1. Introduction

In this paper, we plan to investigate the exact asymptotic behavior of solutions near the boundary for the following problems

\[
\begin{cases}
\text{div}(|\nabla u|^{m-2}\nabla u) \pm |\nabla u(x)|^{q(m-1)} = b(x)f(u), & x \in \Omega, \\
u > 0, & x \in \Omega, \\
u|_{\partial \Omega} = +\infty,
\end{cases}
\]

where the last condition means that \(u(x) \to +\infty \) as \(d(x) = \text{dist}(x, \partial \Omega) \to 0 \), and the solution is called “a large solution” or “an explosive solution”, \(\Omega \) is a bounded domain with smooth boundary in \(\mathbb{R}^N \) \((N \geq 2) \), \(q > 0 \), \(m > 1 \). The function \(b \) satisfies:

- (b1) \(b \in C^\alpha(\Omega) \) for some \(\alpha \in (0,1) \), is non-negative in \(\Omega \);
- (b2) there exists \(k \in \Lambda \) such that

\[
0 < b_1 := \liminf_{d(x) \to 0} \frac{b(x)}{k^m(d(x))K^{m-2}(d(x))} \leq b_2 := \limsup_{d(x) \to 0} \frac{b(x)}{k^m(d(x))K^{m-2}(d(x))} < \infty,
\]

or

Keywords and phrases: Large solutions, quasilinear elliptic equation, asymptotic behavior, boundary blow-up, nonlinear gradients.

Project Supported by the National Natural Science Foundation of China(No.11171092 and No.11471164); Project Supported by the Foundation of the Jiangsu Higher Education "Blue Project" of China(No.18112008019); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
(b3) there exists \(k \in \Lambda \) such that
\[
0 < b_{1q} := \liminf_{d(x) \to 0} \frac{b(x)}{kq(m-1)(d(x))} \leq b_{2q} := \limsup_{d(x) \to 0} \frac{b(x)}{kq(m-1)(d(x))} < \infty,
\]
where \(\Lambda \) denotes the set of all positive non-decreasing functions in \(C^1(0, \delta_0)(\delta_0 > 0) \) which satisfy
\[
\lim_{t \to 0^+} \frac{d}{dt} \left(\frac{K(t)}{k(t)} \right) = C_k \in [0, \infty), \quad K(t) = \int_{t}^{1} k(s)ds,
\]
and \(f \) satisfies:

(f1) \(f \in C^1[0, +\infty), f(0) = 0, f \) is increasing on \([0, +\infty)\);

(f2) \(\int_{1}^{\infty} \frac{dv}{f^{\frac{1}{m-1}}(v)} < \infty \);

(f3) there exists \(C_f > 0 \) such that
\[
\lim_{s \to +\infty} \int_{s}^{\infty} f'(s) \int_{s}^{\infty} \frac{dv}{f^{\frac{1}{m-1}}(v)} = C_f.
\]

We note that for each \(k \in \Lambda \), we have \(C_k \in [0, 1] \) and
\[
\lim_{t \to 0^+} \frac{K(t)}{k(t)} = 0, \quad \lim_{t \to 0^+} \frac{K(t)k'(t)}{k^2(t)} = 1 - \lim_{t \to 0^+} \frac{d}{dt} \frac{K(t)}{k(t)} = 1 - C_k. \tag{1.2}
\]

In fact, from (1.1), we can see \(\frac{d}{dt}(\frac{K(t)}{k(t)}) = C_k + \alpha(t) \), where \(\lim_{t \to 0^+} \alpha(t) = 0 \), so
\[
\frac{K(t)}{k(t)} = \int_{0}^{t} C_k dt + \int_{0}^{t} \alpha(t) dt = C_k t + \int_{0}^{t} \alpha(t) dt,
\]
since \(\lim_{t \to 0^+} \alpha(t) = 0 \), so \(\lim_{t \to 0^+} \frac{K(t)}{k(t)} = 0 \).

For example, \(k(t) = t^p, p > 0 \) or \(k(t) = e^{\sqrt{x}/\sqrt{x}} \) satisfies (1.1), we can conclude that they also satisfy (1.2).

The set \(\Lambda \) was first introduced by Cirstea and Rădulescu [3,4] in order to study the boundary behavior of solutions to the problem
\[
\Delta \omega = b(x)f(\omega), \quad x \in \Omega, \quad \omega|_{\partial \Omega} = \infty.
\]

Semilinear elliptic problems involving gradient term with boundary blow-up interested many authors. Namely Bandle and Giarrusso [1] developed existence and asymptotic behavior results for large solutions of
\[
\Delta u + |\nabla u(x)|^\alpha = f(u),
\]
in a bounded domain. In the case \(f(u) = p(x)u^\gamma, a > 0, \) and \(\gamma > \max(1, a) \), Lair and Wood [7-9] dealt with the above equation in bounded domain and the whole space, they
proved the existence of entire large solution under the condition \(\int_0^\infty r \max_{|x|=r} p(x) dr < \infty \) when the domain is \(\mathbb{R}^N \). Ghergu et al. [5] considered more general equation

\[
\Delta u + q(x)|\nabla u(x)|^a = p(x)f(u),
\]

where \(0 \leq a \leq 2, \ p \) and \(q \) are Hölder continuous functions on \((0, \infty) \). We note that the Keller-Osserman condition on \(f \) (see [2,16]) remains the key condition for the existence for their work. Ghergu and Radulescu [6] considered the following problem

\[
\begin{aligned}
\Delta u + |\nabla u(x)| = p(x)f(u), & \quad \text{in } \Omega, \\
|u| = 0, & \quad \text{in } \Omega,
\end{aligned}
\]

where \(\Omega \) is either a smooth bounded domain or the whole space and \(f \) is a nondecreasing function satisfying \(f \in C^0_{\text{loc}}(0, \infty), \ f(0) = 0, \ f > 0, \) on \((0, \infty), \) and \(\\wedge = \sup_{x \geq 1} \frac{f(x)}{x} < \infty \). The authors studied the existence and nonexistence of large solutions under the assumption that

\[
\int_0^\infty r (\max_{|x|=r} p(x) - \min_{|x|=r} p(x)) \Psi(r) dr < +\infty,
\]

where \(\Psi(r) = \exp(\frac{\Lambda}{2} \int_0^r \min_{|x|=r} p(x) dr) \).

Faten Toumi [19] extended the above result to the following problem

\[
\begin{aligned}
\Delta u + \lambda(|x|)|\nabla u(x)| = \varphi(x,u(x)), & \quad \text{in } \mathbb{R}^N, \\
|u| = 0, & \quad u \neq 0,
\end{aligned}
\]

where \(\lambda : [0, \infty) \to [0, \infty) \) is a continuous function and \(\varphi : \mathbb{R}^N \times [0, \infty) \to [0, \infty) \) is measurable, continuous with respect to the second variable.

Quasilinear elliptic problems or such problems involving gradient terms with boundary blow-up interested many authors, see [10-12,14,20,21].

As far as the authors know, however, there are less results which contain the exact asymptotic behaviour of solutions near the boundary to problem \((P_\pm) \). In this paper, also applying Karamata regular variation theory (Karamata regular variation theory see [15–17,18]), perturbed method and constructing comparison functions, we show the asymptotic behaviour of solutions near the boundary to problem \((P_\pm) \).

Our main results are as follows:

Theorem 1.1. Let \(q > 0, \ b \) satisfies \((b_1) \ f \) satisfies \((f_1), (f_2), (f_3) \) with \(C_f \geq 1 \) and the assumption that: \((f_4) \) there exists \(\Gamma_f \in [0, \infty) \) such that

\[
\lim_{s \to +\infty} f(s) \left[\int_s^\infty \frac{dv}{f_{m-1}(v)} \right]^{m-1} = \Gamma_f.
\]

(i) If \(\Gamma_f > 0, \ q > m/(m-1) \) and \(b \) satisfies \((b_3) \), then every solution \(u_+ \) of problem \((P_\pm) \) satisfies

\[
\lim_{d(x) \to 0} \frac{u_+(x)}{\Psi_1(K^q(d(x)))} = 1,
\]

(1.4)
where K is in (1.1) with k defined in (b_3) and ψ_1 is uniquely determined by

$$\int_{\psi_1(t)}^{\infty} \frac{dv}{f^{m-1}(v)} = t, \quad t > 0; \quad (1.5)$$

(ii) if b satisfies (b_2) with $C_k > 0$ and $q \in (0, m/(m-1))$ and $\Gamma_f > 0$, then for every solution u_{\pm} of problem (P_{\pm})

$$\lim_{d(x) \to 0} \frac{u_{\pm}(x)}{\psi_1(K^2(d(x)))} = 1, \quad (1.6)$$

where K is in (1.1) with k defined in (b_2) and ψ_1 is uniquely determined by (1.5);

(iii) if $q = m/(m-1)$, b satisfies (b_2), and $2 - (m-1)C_k - 2\Gamma_f^{1/(m-1)} > 0$, then for every solution u_{-} of problem (P_-)

$$\lim_{d(x) \to 0} \frac{u_{-}(x)}{\psi_1(K^2(d(x)))} = 1, \quad (1.7)$$

where K is in (1.1) with k defined in (b_2) and ψ_1 is uniquely determined by (1.5);

(iv) if $q = m/(m-1)$, b satisfies (b_2), and $2 - (m-1)C_k + 2\Gamma_f^{1/(m-1)} > 0$, then every solution u_{+} of problem (P_+)

$$\lim_{d(x) \to 0} \frac{u_{+}(x)}{\psi_1(K^2(d(x)))} = 1, \quad (1.8)$$

where K is in (1.1) with k defined in (b_2) and ψ_1 is uniquely determined by (1.5).

2. Preliminaries

In this section, we present some bases of the theory which comes from Senta [18], Preliminaries in Resnick [17], Introductions and the appendix in Maric [15].

Definition 2.1. A positive measurable function f defined on $[a, +\infty)$, for some $a > 0$, is called regularly varying at infinity with index ρ, written as $f \in RV_\rho$, if for each $\xi > 0$ and some $\rho \in \mathbb{R}$,

$$\lim_{s \to +\infty} \frac{f(\xi s)}{f(s)} = \xi^\rho. \quad (2.1)$$

For example, $f(s) = s^\rho$ is regularly varying at infinity. In particular, when $\rho = 0$, f is called slowly varying at infinity. Clearly, if $f \in RV_\rho$, then $L(s) := f(s)/s^\rho$ is slowly varying at infinity.

Some basic examples of slowly varying functions at infinity are:

1. every measure function on $[a, \infty)$ which has a positive limit at infinity;
2. $(\ln s)^\beta$ and $(\ln(\ln s))^\beta$, $\beta \in \mathbb{R}$;
3. $e^{(\ln s)^p}$, $0 < p < 1$.
DEFINITION 2.2. A positive measurable function f defined on $[a, +\infty)$, for some $a > 0$, is called rapidly varying at infinity if for each $p > 1$,

$$\lim_{s \to \infty} \frac{f(s)}{s^p} = \infty.$$ \hfill (2.2)

Clearly, if $f \in \text{RV}_\rho$, then $L(s) := f(s)/s^\rho$ is slowly varying at infinity. Some basic examples of rapidly varying functions at infinity are:

(1) e^s and e^{es};

(2) $e^{(\ln s)^p}$, e^{s^ρ} and $e^{e^{s^\rho}}$, $p > 0$;

(3) $(\ln s)^\beta e^{s^\rho}$ and $s^\beta e^{s^\rho}$, $p > 0, \beta \in \mathbb{R}$;

(4) $s^\beta e^{(\ln s)^p}$ and $(\ln s)^\beta e^{(\ln s)^p}$, $p > 1, \beta \in \mathbb{R}$.

We also see that a positive measurable function g defined on $(0, a)$ for some $a > 0$ is regularly varying at zero with index σ (written as $g \in \text{RV}_{Z\sigma}$) if $t \to g(1/t)$ belongs to $\text{RV}_{-\sigma}$, g is called rapidly varying at zero if $t \to g(1/t)$ is rapidly varying at infinity.

PROPOSITION 2.1. (Uniform convergence theorem) If $f \in \text{RV}_\rho$, then (2.1) holds uniformly for $\xi \in [c_1, c_2]$ with $0 < c_1 < c_2$. Moreover, if $\rho < 0$, then uniform convergence holds on intervals of the form (a_1, ∞) with $a_1 > 0$; if $\rho > 0$, then uniform convergence holds on intervals $(a_1, \infty]$ provided f is bounded on $(a_1, \infty]$ for all $a_1 > 0$.

PROPOSITION 2.2. (Representation theorem) A function L is slowly varying at infinity if and only if it may be written in the form

$$L(s) = \varphi(s) \exp\left(\int_{a_1}^s \frac{y(\tau)}{\tau} d\tau\right), \quad s \geq a_1,$$ \hfill (2.3)

for some $a_1 > a$, where the functions φ and y are measurable and for $s \to \infty, y(s) \to 0$, and $\varphi(s) \to c_0$, with $c_0 > 0$.

We call that

$$\hat{L}(s) = c_0 \exp\left(\int_{a_1}^s \frac{y(\tau)}{\tau} d\tau\right), \quad s \geq a_1,$$ \hfill (2.4)

is normalized slowly varying at infinity and

$$f(s) = c_0 s^\rho \hat{L}(s), \quad s \geq a_1,$$ \hfill (2.5)

is normalized regularly varying at infinity with index ρ (and written as $f \in \text{NRV}_\rho$).

Similarly, g is called normalized regularly varying at zero with index ρ, written as $g \in \text{NRV}_{Z\rho}$ if $t \to g(1/t)$ belongs to NRV_ρ. A function $f \in \text{RV}_\rho$ belongs to NRV_ρ if and only if

$$f \in C^1[a_1, \infty), \text{ for some } a_1 > 0, \text{ and } \lim_{s \to \infty} \frac{s f'(s)}{f(s)} = \rho.$$ \hfill (2.6)
PROPOSITION 2.3. If functions L, L_1 are slowly varying at infinity, then
(i) L^σ for every $\sigma \in \mathbb{R}$, $c_1 L + c_2 L_1$ $(c_1 \geq 0, c_2 \geq 0$ with $c_1 + c_2 > 0)$, $L \circ L_1$
(if $L_1(t) \to +\infty$ as $t \to +\infty$), are also slowly varying at infinity;
(ii) for every $\theta > 0$ and $t \to +\infty, \theta t^\theta L(t) \to +\infty$ and $t^{-\theta} L(t) \to 0$;
(iii) for $\rho \in \mathbb{R}$ and $t \to +\infty$, \(\frac{\ln(L(t))}{\ln t} \to 0 \) and \(\frac{\ln(\rho L(t))}{\ln t} \to \rho \).

PROPOSITION 2.4. (Asymptotic behavior) If a function L is slowly varying at infinity, then for $a > 0$ and $t \to \infty$,
(i) $\int_{a}^{t} s^\beta L(s)ds \simeq (\beta + 1)^{-1} t^{1+\beta} L(t)$, for $\beta > -1$;
(ii) $\int_{a}^{t} s^\beta L(s)ds \simeq (-\beta - 1)^{-1} t^{1+\beta} L(t)$, for $\beta < -1$.

PROPOSITION 2.5. (Asymptotic behavior) If a function H is slowly varying at zero, then for $a > 0$ and $t \to 0^+$,
(i) $\int_{a}^{t} s^\beta H(s)ds \simeq (\beta + 1)^{-1} t^{1+\beta} H(t)$, for $\beta > -1$;
(ii) $\int_{a}^{t} s^\beta H(s)ds \simeq (-\beta - 1)^{-1} t^{1+\beta} H(t)$, for $\beta < -1$.

LEMMA 2.1. Let $k \in \Lambda$:
(i) if $C_k \in (0, 1)$, then $k \in \text{NRVZ}_{(1-C_k)/C_k}$;
(ii) if $C_k = 1$, then k is normalized slowly varying at zero;
(iii) if $C_k = 0$, then k is rapidly varying at zero.

Proof. By l’Hospital’s rule and (1.1), we have
\[
\lim_{t \to 0} \frac{K(t)}{tk(t)} = \lim_{t \to 0} \frac{K(t)}{t} = \lim_{t \to 0} \frac{d}{dt} \left(\frac{K(t)}{k(t)} \right) = C_k; \quad (2.7)
\]
(i)(ii) when $C_k > 0$, it follows by (1.2) that
\[
\lim_{t \to 0} \frac{tk'(t)}{k(t)} = \lim_{t \to 0} \frac{K(t)k'(t)}{k^2(t)} \lim_{t \to 0} \frac{tk(t)}{K(t)} = \frac{1 - C_k}{C_k}, \quad (2.8)
\]
i.e., $k \in \text{NRVZ}_{(1-C_k)/C_k}$ for $C_k \in (0, 1)$ and k is normalized slowly varying at zero for $C_k = 1$;
(iii) when $C_k = 0$, for arbitrary $\gamma > 0$, it follows by (2.8) that $\lim_{t \to 0} \frac{tk'(t)}{k(t)} = +\infty$ and there exists $t_{0\gamma}$ such that
\[
\frac{k'(t)}{k(t)} > (\gamma + 1)t^{-1}, \quad \forall t \in (0, t_{0\gamma}]. \quad (2.9)
\]
Integrating (2.9) from t to $t_{0\gamma}$, we obtain
\[
\ln(k(t_{0\gamma})) - \ln(k(t)) > (\gamma + 1)(\ln t_{0\gamma} - \ln t), \quad \forall t \in (0, t_{0\gamma}].
\]
i.e.,
\[
0 < \frac{k(t)}{t^\gamma} < \frac{k(t_0)}{t_0^{\gamma+1}} t, \quad t \in (0, t_0].
\]

Let \(t \to 0 \), we see by Definition 2.2 that \(k \) is rapidly varying at zero.

Lemma 2.2. If \(f \) satisfies \((f_1)\), \((f_2)\) and \((f_3)\), then

(i) \(C_f \in [1, +\infty) \);

(ii) if \((f_3)\) holds for \(C_f > 1 \), then \(f \in NRVC_{(C_f-1)} \);

(iii) when \(C_f = 1 \), then \(f \) is rapidly varying at infinity.

Proof. (i) Let
\[
J(s) = f_{m-1}^1(s) f'(s) \int_s^\infty \frac{dv}{f_{m-1}^1(v)}, \quad \forall \ s > 0.
\]
Integrating \(J(s) \) from \(a (a > 0) \) to \(t \) and integrate by parts, we obtain
\[
\int_a^t J(s) ds = f_{m-1}^1(t) \int_t^\infty \frac{dv}{f_{m-1}^1(v)} - f_{m-1}^1(a) \int_a^\infty \frac{dv}{f_{m-1}^1(v)} + t - a, \quad \forall \ t > a.
\]

It follows from the l’Hospital’s rule that
\[
0 \leq \lim_{t \to \infty} \frac{f_{m-1}^1(t) \int_t^\infty \frac{dv}{f_{m-1}^1(v)}}{t} = \lim_{t \to \infty} \frac{1}{t} \int_a^t J(s) ds - 1 = \lim_{t \to \infty} J(t) - 1 = C_f - 1,
\]
i.e., \(C_f \geq 1 \).

(ii) By (i), we see that
\[
\lim_{s \to +\infty} \frac{f(s)}{sf'(s)} = \lim_{s \to +\infty} \frac{f_{m-1}^1(s) \int_s^\infty \frac{dv}{f_{m-1}^1(v)}}{s J(s)} = \frac{1}{C_f} \lim_{s \to +\infty} \frac{f_{m-1}^1(s) \int_s^\infty \frac{dv}{f_{m-1}^1(v)}}{s} = \frac{C_f - 1}{C_f},
\]
i.e., \(f \in NRVC_{(C_f-1)} \) for \(C_f > 1 \).

(iii) When \(C_f = 1 \), we see by the proof of (ii) that
\[
\lim_{s \to +\infty} \frac{f(s)}{sf'(s)} = 0.
\]
Consequently, for arbitrary \(p > 1 \), there exists \(S_0 > 0 \) such that
\[
\frac{f'(s)}{f(s)} > (p + 1)s^{-1}, \quad \forall \ s > S_0,
\]
Integrating the above inequality from S_0 to s, we obtain

$$\ln(f(s)) - \ln(f(S_0)) > (p + 1)(\ln s - \ln S_0), \quad \forall \ s \geq S_0,$$

Letting $s \to +\infty$, we see by Definition 2.2 that f is rapidly varying at infinity.

Lemma 2.3. Let f satisfy $(f_1), (f_2), (f_3)$ and let ψ_1 be the solution to the problem

$$\int_1^\infty \frac{ds}{f^{-\frac{1}{m-1}}(s)} = t, \quad \forall \ t > 0.$$

Then:

(i) $-\psi_1'(t) = f^{-\frac{1}{m-1}}(\psi_1(t)), \quad \psi_1(t) > 0, \ t > 0, \quad \psi_1(0) := \lim_{t \to 0^+} \psi_1(t) = +\infty$, and

$$\psi''_1(t) = \frac{1}{m-1}f^{-\frac{2}{m-1}}(\psi_1(t))f'(\psi_1(t)), \quad t > 0;$$

(ii) $\psi_1 \in NRVZ_{-(C_f - 1)}$;

(iii) $-\psi_1' = f^{-\frac{1}{m-1}} \circ \psi_1 \in NRVZ_{-C_f/(m-1)}$.

Proof. By the definition of ψ_1 and a direct calculation, we show that (i) holds. (ii) It follows from the proof of Lemma 2.1 that

$$\lim_{t \to 0^+} t\frac{t\psi_1'(t)}{\psi_1(t)} = \lim_{t \to 0^+} t\frac{tf^{-\frac{1}{m-1}}(\psi_1(t))}{\psi_1(t)} = \lim_{s \to +\infty} \frac{f^{-\frac{1}{m-1}}(s) \int_s^{\infty} \frac{dv}{f^{-\frac{1}{m-1}}(v)}}{s} = -(C_f - 1),$$

i.e., $\psi_1 \in NRVZ_{-(C_f - 1)}$.

(iii) (f_3) implies

$$\lim_{t \to 0^+} t\frac{t\psi_1''(t)}{\psi_1(t)} = \lim_{t \to 0^+} -\frac{t}{m-1}f^{-\frac{1}{m-1}}(\psi_1(t))f'(\psi_1(t))$$

$$= \lim_{s \to +\infty} \frac{1}{m-1}f^{-\frac{2}{m-1}}(s)f'(s) \int_s^{\infty} \frac{dv}{f^{-\frac{1}{m-1}}(v)} = -C_f/(m-1).$$

3. Proofs of the main results

Lemma 3.1. (Weak comparison principle) Let Ω be a bounded domain in \mathbb{R}^N ($N \geq 2$) with smooth boundary $\partial \Omega$ and $\varphi : (0, a) \to (0, a)$ be continuous and non-decreasing, let $u_1, u_2 \in W^{1,m}(\Omega)$ satisfy

$$\int_{\Omega} |\nabla u_1|^{m-2} \nabla u_1 \nabla \psi dx + \int_{\Omega} \varphi u_1 \psi dx \leq \int_{\Omega} |\nabla u_2|^{m-2} \nabla u_2 \nabla \psi dx + \int_{\Omega} \varphi u_2 \psi dx,$$
For all non-negative $\psi \in W_{0}^{1,m}(\Omega)$. Then the inequality

$$u_1 \leq u_2, \text{ on } \partial \Omega,$$

implies that

$$u_1 \leq u_2, \text{ in } \Omega.$$

For any $\delta > 0$, we define

$$\Omega_{\delta} = \{x \in \Omega : 0 < d(x) < \delta\}.$$

Since Ω is smooth, there exists $\delta_0 > 0$ such that $d \in C^2(\Omega_{\delta_0})$ and

$$|\nabla d(x)| = 1, \ \forall x \in \Omega_{\delta_0}.$$

PROOF OF THEOREM 1.1.

(i) $q > m/(m-1), m > 1$ and $\Gamma_f > 0$, let $\varepsilon \in (0,b_{1q}/4)$ and

$$\xi_{01} = \left(\frac{b_{1q}}{q^{q(m-1)}\Gamma_f^{q-1}} \right)^{\frac{1}{m-1}}, \quad \xi_{02} = \left(\frac{b_{2q}}{q^{q(m-1)}\Gamma_f^{q-1}} \right)^{\frac{1}{m-1}};$$

$$\xi_1 = \xi_{01} \left(1 - \frac{2\varepsilon}{b_{1q}} \right)^{\frac{1}{m-1}}, \quad \xi_2 = \xi_{02} \left(1 + \frac{2\varepsilon}{b_{2q}} \right)^{\frac{1}{m-1}}.$$

It follows that

$$\frac{\xi_{01}^{2/(m-1)}}{< \xi_1 < \xi_2 < 2^{1/(m-1)}\xi_{02}}.$$

By $(b_1), (b_2), (1.2), (2.11)$ and (f_4), we see that there is $\delta_{\varepsilon} \in (0,\delta_0/2)$ (which is corresponding to ε) sufficiently small that:

$$(b_{1q} - \varepsilon)k^q(d(x) - \rho) \leq (b_{1q} - \varepsilon)k^q(d(x)) < b(x), \ x \in D_{\rho}^{-} = \Omega_{2\delta_{\varepsilon}}/\bar{\Omega}_{\rho}$$

and

$$b(x) < (b_{2q} + \varepsilon)k^q(d(x)) \leq (b_{2q} + \varepsilon)k^q(d(x) + \rho), \ x \in D_{\rho}^{+} = \Omega_{2\delta_{\varepsilon}-\rho},$$

where $\rho \in (0,\delta_{\varepsilon})$.

For $i = 1,2$,

$$2(\xi_{02}q)^{m-1} \left(\frac{K(t)}{k(t)} \right)^{(q-1)(m-1)-1}$$

$$\times \left[q \left| \xi_i K^q(t) f^{\frac{1}{m-1}} \left(\psi_1(\xi_i K^q(t)) \right) f' \left(\psi_1(\xi_i K^q(t)) \right) \right| \right.$$

$$\left. + \left| (q-1)(m-1) + \frac{(m-1)K(t)k'(t)}{k^2(t)} + \frac{K(t)}{k(t)}|\Delta d(x)| \right| \right]$$
\[142\] CHUNLIAN LIU AND ZUODONG YANG

and by a direct calculation, it follows that, for \(x \in D^-\)

\[
\text{div}(\nabla \overline{u}_\varepsilon) - b(x) f(\overline{u}_\varepsilon(x)) = (m-1) (\psi_1(\xi_1 K^q(d_1(x))))^{m-2} \psi''(\xi_1 K^q(d_1(x))) (\xi_1 q)^{m(q-1)}(d_1(x)) k^m(d_1(x)) \\
+ (\psi_1(\xi_1 K^q(d_1(x)))) (\xi_1 q)^{m(q-1)}(q-1)(m-1)K^{q-1}(d_1(x)) k^m(d_1(x)) \\
+ (\psi_1(\xi_1 K^q(d_1(x))))(\xi_1 q)^{m(q-1)}(d_1(x))(m-1)k^{m-2}(d_1(x)) k'(d_1(x)) \\
+ (\psi_1(\xi_1 K^q(d_1(x))))(\xi_1 q)^{m(q-1)}(d_1(x)) k^{m-1}(d_1(x)) \Delta(d_1(x)) \\
- b(x) f(\psi_1(\xi_1 K^q(d_1(x)))) + \left[\xi_1 K^q(d_1(x)) k(d_1(x)) \psi_1'(\xi_1 K^q(d_1(x))) \right]^{q(m-1)} \\
= (-1)^m f(\psi_1(\xi_1 K^q(d_1(x)))) k^{m(q-1)}(d_1(x)) \left\{ (\xi_1 q)^{m(q-1)}(d_1(x)) \frac{K(d_1(x))}{k(d_1(x))} \right\}^{(q-1)(m-1)-1} \\
\times \left[q\xi_1 K^q(d_1(x)) f^{q-1}(\psi_1(\xi_1 K^q(d_1(x)))) f'(\psi_1(\xi_1 K^q(d_1(x)))) \right]^{(q-1)(m-1)-1} \\
- (q-1)(m-1) \frac{(m-1)K(d_1(x))k'(d_1(x))}{k^2(d_1(x))} - \frac{K(d_1(x))}{k(d_1(x))} \Delta d(x) \\
- \left(\frac{b(x)}{K^{q(m-1)}(d_1(x))} - b_{1q} \right) - b_{1q} + (\xi_1 q)^{m-1} \Gamma_f^{-1} \\
+ (\xi_1 q)^{m-1} \left[(\xi_1 K^q(t))^{m-1} f(\psi_1(\xi_1 K^q(t))) \right]^{q-1} - \Gamma_f^{-1} \right] \\
\leq 0, \]

i.e., \(\overline{u}_\varepsilon\) is a supersolution of problem \((P_+)\) in \(D^-\).

In a similar way, for \(x \in D^+\), we can show that \(\underline{u}_\varepsilon\) is a subsolution of problem \((P_+)\) in \(D^+\).

Now let \(u_+\) be an arbitrary solution of problem \((P_+)\) and

\[C_1(\delta_\varepsilon) := \max_{d(x) \geq \delta_\varepsilon} u_+(x). \]

We see that

\[u_+ \leq C_1(\delta_\varepsilon) + \overline{u}_\varepsilon, \quad \text{on } \partial D^-_. \]
Since ψ_1 is decreasing, see Lemma 2.3, and $\xi_{02} < \xi_2$, we have that

$$u_\varepsilon \leq \psi_1(\xi_{02}K^q(2\delta_2\varepsilon)) := C_2(\delta_2),$$

whenever $d(x) = 2\delta_2 - \rho$ and $u_\varepsilon \leq u_+ + C_2(\delta_\varepsilon)$ on ∂D^+_ρ.

It follows by (f_1) and Lemma 3.1 that

$$u_+ \leq C_1(\delta_\varepsilon) + \bar{u}_\varepsilon \quad \text{on} \quad D^-_{\rho}, \quad u_\varepsilon \leq u_+ + C_2(\delta_\varepsilon) \quad \text{on} \quad D^+_\rho.$$

Hence by letting $\rho \to 0$, we have for $x \in D^-_{\rho} \cap D^+_\rho$,

$$1 - \frac{C_2(\delta_\varepsilon)}{\psi_1(\xi_{02}K^q(d(x)))} \leq \frac{u_+(x)}{\psi_1(\xi_{02}K^q(d(x)))}$$

and

$$\frac{u_+(x)}{\psi_1(\xi_{01}K^q(d(x)))} \leq 1 + \frac{C_1(\delta_\varepsilon)}{\psi_1(\xi_{01}K^q(d(x)))}.$$

Consequently,

$$1 \leq \liminf_{d(x) \to 0} \frac{u_+(x)}{\psi_1(\xi_{02}K^q(d(x)))}$$

and

$$\limsup_{d(x) \to 0} \frac{u_+(x)}{\psi_1(\xi_{01}K^q(d(x)))} \leq 1.$$

Thus by letting $\varepsilon \to 0$, we obtain

$$1 \leq \liminf_{d(x) \to 0} \frac{u_+(x)}{\psi_1(\xi_{02}K^q(d(x)))}$$

and

$$\limsup_{d(x) \to 0} \frac{u_+(x)}{\psi_1(\xi_{01}K^q(d(x)))} \leq 1.$$

By Lemma 2.3 (ii) and Proposition 2.1, we have

$$\limsup_{d(x) \to 0} \frac{\psi_1(\xi_{02}K^q(d(x)))}{\psi_1(K^q(d(x)))} = \limsup_{d(x) \to 0} \frac{\psi_1(\xi_{01}K^q(d(x)))}{\psi_1(K^q(d(x)))} = 1.$$

Thus

$$\limsup_{d(x) \to 0} \frac{u_+(x)}{\psi_1(K^q(d(x)))} = 1.$$

(ii) When b satisfies (b_2) with $C_k > 0$, either $q \in (0,m/(m-1)), m > 1$ and $\Gamma_f > 0$.

Let $\varepsilon \in (0,b_1/4)$ and

$$\xi_{03} = \frac{1}{2} \left(\frac{b_1}{2 - (m-1)(2-C_k)} \right)^{1/m-1},$$
\[
\xi_{04} = \frac{1}{2} \left(\frac{b_2}{2 - (m - 1)(2 - C_k)} \right)^{\frac{1}{m-1}},
\]
\[
(\xi_3)^{m-1} = (\xi_{03})^{m-1} - \frac{\varepsilon}{2 - (m - 1)(2 - C_k)},
\]
\[
(\xi_4)^{m-1} = (\xi_{04})^{m-1} + \frac{\varepsilon}{2 - (m - 1)(2 - C_k)}.
\]

It follows that

\[
\xi_{03}/\sqrt{2} < \xi_3 < \xi_4 < \sqrt{2}\xi_{04}.
\]

By \((b_1), (b_2), (1.2), (2.11)\) and \((f_4)\), we see that there is \(\delta_\varepsilon \in (0, \delta_0/2)\) (which is corresponding to \(\varepsilon\)) sufficiently small that:

\[
(b_1 - \varepsilon)k^m(d(x) - \rho)K^{m-2}(d(x) - \rho)
\]

\[
\leq (b_1 - \varepsilon)k^m(d(x))K^{m-2}(d(x)) < b(x), \quad x \in D_\rho^- = \Omega_2\delta_\varepsilon/\tilde{\Omega}_\rho,
\]

and

\[
b(x) < (b_2 + \varepsilon)k^m(d(x))K^{m-2}(d(x) - \rho)
\]

\[
\leq (b_2 + \varepsilon)k^m(d(x) + \rho)K^{m-2}(d(x) + \rho), \quad x \in D_\rho^+ = \Omega_2\delta_\varepsilon - \rho,
\]

where \(\rho \in (0, \delta_\varepsilon)\).

For \(i = 3, 4,\)

\[
4(2\xi_{04})^{m-1} |\xi_iK^2(t)f_{\frac{1}{m-1}}(\psi_1(\xi_iK^2(t)))f'(\psi_1(\xi_iK^2(t))) - 1|
\]

\[
+ (m - 1)(2\xi_{04})^{m-1} \left| \frac{K(t)k'(t)}{k^2(t)} - (1 - C_k) \right| + (2\xi_{04})^{m-1} \left| K(t) - \Delta d(x) \right|
\]

\[
+ 2(2\xi_{04})^{m-1} \left| \frac{K(t)}{k(t)} - 1 \right|^{(q-1)(m-1)} < \varepsilon, \quad \forall (x, t) \in \Omega_2\delta_\varepsilon \times (0, 2\delta_\varepsilon).
\]

Let

\[
d_1(x) = d(x) - \rho, \quad d_2(x) = d(x) + \rho,
\]

\[
\tilde{u}_\varepsilon = \psi_1(\xi_3K^2(d_1(x))), \quad x \in D_\rho^- \quad \text{and} \quad \bar{u}_\varepsilon = \psi_1(\xi_4K^2(d_2(x))) \quad x \in D_\rho^+.
\]

By using

\[
(2\xi_3)^{m-1}(2 - (m - 1)(2 - C_k)) = b_1,
\]

and by a direct calculation, it follows that, for \(x \in D_\rho^-\),

\[
\text{div}(|\nabla \bar{u}_\varepsilon|^{m-2}\nabla \bar{u}_\varepsilon) - b(x)f(\bar{u}_\varepsilon(x)) \pm |\bar{u}_\varepsilon(x)|^{q(m-1)}
\]

\[
= (m - 1) \left(\psi_1'(\xi_3K^2(d_1(x))) \right)^{m-2} \psi_1''(\xi_3K^2(d_1(x))) (2\xi_3)^{m}K^m(d_1(x))k^m(d_1(x))
\]

\[
+ 2(2\xi_{04})^{m-1} \left| \frac{K(t)}{k(t)} - 1 \right|^{(q-1)(m-1)} < \varepsilon, \quad \forall (x, t) \in \Omega_2\delta_\varepsilon \times (0, 2\delta_\varepsilon).
\]
\[+ \left(\psi'_{1}(\xi_{3}K^{2}(d_{1}(x))) \right)^{m-1} (2\xi_{3})^{m-1}(m-1)K^{m-2}(d_{1}(x))k^{m}(d_{1}(x))
\]
\[+ \left(\psi'_{1}(\xi_{3}K^{2}(d_{1}(x))) \right)^{m-1} (2\xi_{3})^{m-1}K^{m-1}(d_{1}(x))(m-1)K^{m-2}(d_{1}(x))k'(d_{1}(x))
\]
\[+ \left(\psi'_{1}(\xi_{3}K^{2}(d_{1}(x))) \right)^{m-1} (2\xi_{3})^{m-1}K^{m-1}(d_{1}(x))k^{m-1}(d_{1}(x))\Delta(d_{1}(x))
\]
\[- b(x)f(\psi_{1}(\xi_{3}K^{2}(d_{1}(x)))) \pm \left[2\xi_{3}K(d_{1}(x))k(d_{1}(x))\psi'_{1}(\xi_{3}K^{2}(d_{1}(x))) \right]^{q(m-1)}
\]
\[= (-1)^{m}f(\psi_{1}(\xi_{3}K^{2}(d_{1}(x))))k^{m}(d_{1}(x))K^{m-2}(d_{1}(x))
\]
\[\times \left\{ 2(2\xi_{3})^{m-1}\left(\xi_{3}K^{2}(d_{1}(x))f_{m-1}^{x}(\psi_{1}(\xi_{3}K^{2}(d_{1}(x))))f'(\psi_{1}(\xi_{3}K^{2}(d_{1}(x)))) - 1 \right) + 2(2\xi_{3})^{m-1} - (m-1)(2\xi_{3})^{m-1}
\]
\[- (m-1)(2\xi_{3})^{m-1}\left(k'(d_{1}(x))K(d_{1}(x)) \right) - (1 - C_{k})
\]
\[- (m-1)(2\xi_{3})^{m-1}(1 - C_{k}) - (2\xi_{3})^{m-1}\left(K(d_{1}(x)) \right) k'(d_{1}(x))\Delta d_{1}(x)
\]
\[- \left(\frac{(-1)^{m}b(x)}{k^{m}(d_{1}(x))K^{m-2}(d_{1}(x))} - b_{1} \right) - b_{1}
\]
\[\pm (2^{2}\xi_{3})^{m-1}\left((\xi_{3}K^{2}(d_{1}(x)))^{m-1}f(\psi_{1}(\xi_{3}K^{2}(d_{1}(x)))) \right)^{q-1}
\]
\[\times \left(K(d_{1}(x)) \right)^{1-(q-1)(m-1)} \right\}
\]
\[\leq 0,
\]
i.e., \(\bar{u}_{e} \) is a supersolution of problem \((P_{\pm})\) in \(D_{\tilde{r}} \).

In a similar way, for \(x \in D_{\tilde{r}}^{+} \), we can show that \(u_{e} \) is a subsolution of the problem \((P_{\pm})\) in \(D_{\tilde{r}}^{-} \).

The last part of the proof is the same as that of (i).

(iii) When \(q = m/(m-1) \), \(b \) satisfies \((b_{2})\) and \(2 - (m-1)C_{k} - 2\Gamma_{f}^{1/(m-1)} > 0 \) for problem \((P_{-})\).

Let \(\varepsilon \in (0,b_{1}/4) \) and

\[\xi_{05} = \frac{1}{2} m^{-1} \frac{b_{1}}{2 - (m-1)C_{k} - 2\Gamma_{f}^{1/(m-1)}},\]
\[\xi_{06} = \frac{1}{2} m^{-1} \frac{b_{2}}{2 - (m-1)C_{k} - 2\Gamma_{f}^{1/(m-1)}},\]
\[\xi_{5} = \xi_{05} - \frac{2\varepsilon}{2 - (m-1)C_{k} - 2\Gamma_{f}^{1/(m-1)}},\]
\[\xi_6 = \xi_{06} + \frac{2\epsilon}{2 - (m-1)C_k - 2\Gamma_f^{1/(m-1)}}, \]

It follows that
\[\frac{m-1}{\sqrt{2}} < \xi_5 < \xi_6 < \frac{m-1}{\sqrt{2}}\xi_{06}. \]

By \((b_1), (b_2), (1.2), (2.11)\) and \((f_4)\), we see that there is \(\delta_\epsilon \in (0, \delta_0/2)\) (which is corresponding to \(\epsilon\)) sufficiently small that:
\[(b_1 - \epsilon)k^m(d(x) - \rho)K^{m-2}(d(x) - \rho) \leq (b_1 - \epsilon)k^m(d(x))K^{m-2}(d(x)) < b(x), \ x \in D_\rho^- = \Omega_{2\delta_\epsilon}/\overline{\xi_\rho} \]

and
\[b(x) < (b_2 + \epsilon)k^m(d(x))K^{m-2}(d(x) - \rho) \leq (b_2 + \epsilon)k^m(d(x) + \rho)K^{m-2}(d(x) + \rho), \ x \in D_\rho^+ = \Omega_{2\delta_\epsilon-\rho}, \]

where \(\rho \in (0, \delta_\epsilon)\).

And for \(i = 5, 6,\)
\[
4(2\xi_{06})^{m-1} \left| \xi_iK^2(t)f^{\frac{1}{m-1}}(\psi_1(\xi_iK^2(t)))f'(\psi_1(\xi_iK^2(t))) - 1 \right|
\]
\[
+ (m-1)(2\xi_{06})^{m-1} \left| \frac{K(t)k'(t)}{k^2(t)} - (1 - C_k) \right| + (2\xi_{06})^{m-1} \left| \frac{K(t)}{k(t)}|\Delta d(x)| \right|
\]
\[
+ 2(2\xi_{06})^{m-1} \left| \xi_iK^2(t)f^{\frac{1}{m-1}}(\psi_1(\xi_iK^2(t))) - \Gamma_f^{m-1} \right|
\]
\[< \epsilon, \ \forall (x,t) \in \Omega_{2\delta_\epsilon} \times (0, 2\delta_\epsilon). \]

Let
\[d_1(x) = d(x) - \rho, \quad d_2(x) = d(x) + \rho, \]
\[\overline{u}_\epsilon = \psi_1(\xi_5K^2(d_1(x))), \ x \in D_\rho^- \quad \text{and} \quad \underline{u}_\epsilon = \psi_1(\xi_6K^2(d_2(x))) \ x \in D_\rho^+. \]

By using
\[(2\xi_5)^{m-1}(2 - (m-1)C_k - 2\Gamma_f^{1/m-1}) = b_1, \]

and by a direct calculation, it follows that, for \(x \in D_\rho^-\),
\[
\text{div}(|\nabla \overline{u}_\epsilon|^{m-2} \nabla \overline{u}_\epsilon) - b(x)f(\overline{u}_\epsilon(x)) - |\overline{u}_\epsilon(x)|^m
\]
\[= (m-1) \left(\psi'_1(\xi_5K^2(d_1(x))) \right)^{m-2} \psi''_1 \left(\xi_5K^2(d_1(x)) \right) (2\xi_5)^m \left(2\xi_5 \right)^m (d_1(x)) K^m(d_1(x))
\]
\[+ \left(\psi'_1(\xi_5K^2(d_1(x))) \right)^{m-1} (2\xi_5)^{m-1} (m-1)K^{m-2}(d_1(x)) K^m(d_1(x))
\]
\[+ \left(\psi'_1(\xi_5K^2(d_1(x))) \right)^{m-1} (2\xi_5)^{m-1} (m-1)K^{m-2}(d_1(x)) K'(d_1(x))
\]
It follows that
\[
\psi_1'(\xi_5 K^2(d_1(x)))^{m-1} (2\xi_5)^{m-1} K^{m-1}(d_1(x)) k^{m-1}(d_1(x)) \Delta(d_1(x))
\]
\[
- b(x)f(\psi_1(\xi_5 K^2(d_1(x)))) - 2\xi_5 K(d_1(x)) k(d_1(x)) \psi_1'(\xi_5 K^2(d_1(x)))\]
\[
= (-1)^m f(\psi_1(\xi_5 K^{m-2}(d_1(x)))) k^m(d_1(x)) K^{m-2}(d_1(x))
\times \left\{ 2(2\xi_5)^{m-1} \left(\xi_5 K^2(d_1(x)) f_{m-1}^{-1}(\psi_1(\xi_5 K^2(d_1(x))) f'(\psi_1(\xi_5 K^{d_1(x)})) - 1 \right)
+ 2(2\xi_5)^{m-1} - (m-1)(2\xi_5)^{m-1}
- (m-1)(2\xi_5)^{m-1} \left(\frac{k'(d_1(x)) K(d_1(x))}{k^2(d_1(x))} - 1 - C_k \right)
- (m-1)(2\xi_5)^{m-1} (1 - C_k) - (2\xi_5)^{m-1} \frac{K(d_1(x))}{k(d_1(x))} \Delta d_1(x)
- \left(\frac{(-1)^m b(x)}{k^m(d_1(x)) K^{m-2}(d_1(x))} - b_1 \right)
- b_1 - 2(2\xi_5)^{m-1} \left(\xi_5 K^2(d_1(x)) f_{m-1}^{-1} \psi_1(\xi_5 K^2(d_1(x))) - \Gamma_{m-1} \right)
- 2(2\xi_5)^{m-1} \Gamma_{m-1} \right\}
\leq 0,
\]

i.e., \(\bar{u}_\varepsilon \) is a supersolution of problem \((P_-) \) in \(D^-_\rho \).

In a similar way, for \(x \in D^+_\rho \), we can show that \(u_\varepsilon \) is a subsolution of problem \((P_-) \) in \(D^+_\rho \). The last part of the proof is the same as that of (i).

(iv) When \(q = m/(m-1) \) \(b \) satisfies \((b_2) \) and \(2 - (m-1)C_k + 2\Gamma_{m-1}^{1/(m-1)} > 0 \) for problem \((P_+) \).

Let \(\varepsilon \in (0, b_1/4) \) and
\[
\xi_{07} = \frac{1}{2} m^{-1} \sqrt{\frac{b_1}{2 - (m-1)C_k + 2\Gamma_{m-1}^{1/(m-1)}},
\]
\[
\xi_{08} = \frac{1}{2} m^{-1} \sqrt{\frac{b_2}{2 - (m-1)C_k + 2\Gamma_{m-1}^{1/(m-1)}},
\]
\[
\xi_7 = \xi_{07} - \frac{2\varepsilon}{2 - (m-1)C_k + 2\Gamma_{m-1}^{1/(m-1)}},
\]
\[
\xi_8 = \xi_{08} + \frac{2\varepsilon}{2 - (m-1)C_k + 2\Gamma_{m-1}^{1/(m-1)}},
\]

It follows that
\[
\xi_{07} / \sqrt{2} < \xi_7 < \xi_8 < \sqrt{2} \xi_{08}.
\]
By \((b_1), (b_2), (1.2), (2.11)\) and \((f_4)\), we see that there is \(\delta_\varepsilon \in (0, \delta_0/2)\) (which is corresponding to \(\varepsilon\)) sufficiently small that:

\[
(b_1 - \varepsilon)k^m(d(x) - \rho)K^{m-2}(d(x) - \rho) \\
\leq (b_1 - \varepsilon)k^m(d(x))K^{m-2}(d(x)) < b(x), \ x \in D^-_\rho,
\]

and

\[
b(x) < (b_2 + \varepsilon)k^m(d(x))K^{m-2}(d(x) - \rho) \\
\leq (b_2 + \varepsilon)k^m(d(x) + \rho)K^{m-2}(d(x) + \rho), \ x \in D^+_\rho,
\]

where \(D^-_\rho = \Omega_{2\delta_\varepsilon}/\tilde{\Omega}_\rho, \ D^+_\rho = \Omega_2\delta_\varepsilon - \rho\) and \(\rho \in (0, \delta_\varepsilon)\).

And for \(i = 7, 8\),

\[
4(2\xi_{08})^{-m-1}\left|\xi_iK^2(t)f^{-\frac{1}{m-1}}(\psi_1(\xi_iK^2(t)))f'(\psi_1(\xi_iK^2(t))) - 1\right|
\]

\[
+ (m-1)(2\xi_{08})^{-m-1}\left|\frac{K(t)k'(t)}{k^2(t)} - (1 - C_k)\right| + (2\xi_{08})^{-m-1}\frac{K(t)}{k(t)}|\Delta d(x)|
\]

\[
+ 2(2\xi_{08})^{-m-1}\left|\xi_iK^2(t)f^{-\frac{1}{m-1}}(\psi_1(\xi_iK^2(t))) - \frac{1}{\mu_f}\right|
\]

\[
< \varepsilon, \ \forall (x, t) \in \Omega_2\delta_\varepsilon \times (0, 2\delta_\varepsilon).
\]

Let \(d_1(x) = d(x) - \rho, \ d_2(x) = d(x) + \rho\) and

\[
\bar{u}_e = \psi_1(\xi_7K^2(d_1(x))), \ x \in D^-_\rho \ \text{and} \ u_e = \psi_1(\xi_8K^2(d_2(x))) \ x \in D^+_\rho.
\]

By using

\[
(2\xi_7)^{-m-1}(2 - (m-1)C_k + 2\frac{1}{\mu_f}) = b_1,
\]

and by a direct calculation, it follows that, for \(x \in D^-_\rho\),

\[
\text{div}(|\nabla \bar{u}_e|^{m-2}\nabla \bar{u}_e) - b(x)f(\bar{u}_e(x)) + |\bar{u}_e(x)|^m
\]

\[
= (m-1)\left(\psi'_1(\xi_7K^2(d_1(x)))\right)^{m-2}\psi''_1\left(\xi_7K^2(d_1(x))\right)(2\xi_7)^{m-1}(d_1(x))K^m(d_1(x))
\]

\[
+ \left(\psi'_1(\xi_7K^2(d_1(x)))\right)^{m-1}\left(2\xi_7\right)^{m-1}(m-1)K^{m-2}(d_1(x))K^m(d_1(x))
\]

\[
+ \left(\psi'_1(\xi_7K^2(d_1(x)))\right)^{m-1}\left(2\xi_7\right)^{m-1}K^{m-1}(d_1(x))(m-1)K^{m-2}(d_1(x))k'(d_1(x))
\]

\[
+ \left(\psi'_1(\xi_7K^2(d_1(x)))\right)^{m-1}\left(2\xi_7\right)^{m-1}K^{m-1}(d_1(x))K^{m-1}(d_1(x))\Delta(d_1(x))
\]

\[
- b(x)f(\psi_1(\xi_7K^2(d_1(x)))) \left[2\xi_7K(d_1(x))k(d_1(x))\psi'_1(\xi_7K^2(d_1(x)))\right]^m
\]
\[\begin{align*}
&= (-1)^{m} f(\psi_1(\xi_7 K^{m-2}(d_1(x)))) k^m(d_1(x)) K^{m-2}(d_1(x)) \\
&\times \left\{ 2(2 \xi_7)^{m-1} \left(\xi_7 K^2(d_1(x)) f \frac{1}{m-1} (\psi_1(\xi_7 K^2(d_1(x)))) f'(\psi_1(\xi_7 K^2(d_1(x)))) - 1 \right) \\
&+ 2(2 \xi_7)^{m-1} - (m-1)(2 \xi_7)^{m-1} \\
&- (m-1)(2 \xi_7)^{m-1} \left(\frac{k'(d_1(x)) K(d_1(x))}{k^2(d_1(x))} - (1 - C_k) \right) \\
&- (m-1)(2 \xi_7)^{m-1} \left(1 - C_k \right) - (2 \xi_7)^{m-1} \frac{K(d_1(x))}{k(d_1(x))} \Delta d_1(x) \\
&- \left(\frac{(-1)^{m} b(x)}{k^m(d_1(x)) K^{m-2}(d_1(x))} - b_1 \right) \\
&- b_1 + 2(2 \xi_7)^{m-1} \left(\xi_7 K^2(d_1(x)) f \frac{1}{m-1} (\psi_1(\xi_7 K^2(d_1(x)))) - \Gamma_f^1 \right) \\
&+ 2(2 \xi_7)^{m-1} \Gamma_f^1 \right\}
\leq 0,
\end{align*} \]

i.e., \(\tilde{\pi}_e \) is a supersolution of problem \((P_+) \) in \(D_{\tilde{\rho}}^- \).

In a similar way, for \(x \in D^+ \), we can show that \(\tilde{u}_e \) is a subsolution of problem \((P_+) \) in \(D_{\tilde{\rho}}^- \). The last part of the proof is the same as that of (i).

The existence of solutions of Problem \((P_{\pm}) \) is similar as that in references [12, 13].

REFERENCES

(Received July 27, 2014)
(Revised December 5, 2014)