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HILLE AND NEHARI TYPE OSCILLATION CRITERIA FOR
HIGHER ORDER DYNAMIC EQUATIONS ON TIME SCALES

Y1ZHUO WANG, ZHENLAI HAN AND CHUANXIA HOU

(Communicated by Agacik Zafer)

Abstract. In this paper, we consider the higher order dynamic equation of the form

(@) (r() () + p()x(1) =0, 1219 >0,

where n is an arbitrary positive integer with n > 3, ¢ is defined on an arbitrary time scale T
with supT = e. By Riccari transformation technique and comparison theorem, some Hille and
Nehari type oscillation criteria are established. The main results are illustrated by examples.

1. Introduction

In this paper we consider the higher order dynamic equation of the form

(a(@)(r(e)" " ()2 + p(1)x(t) =0, 1=10>0, (1.1)

where ¢ is defined on an arbitrary time scale T with supT = o, n is an arbitrary posi-
tive integer with n > 3, a() € C%(T,R*), r(-) € CL,(T,RT) and p(:) € C,y(T,R"),
where notation C7;; mains the set of nth-order delta differentiable rd-continuous func-
tions. Otherwise, assume that a(z) and r(¢) satisfy the condition

/ ﬁ:/ ﬂ:oo. (1.2)
w0 alt) o r(t)

Recent two decades, time-scale calculus theory has received a lot of attention,
which was introduced by Hilger [1], in order to unify continuous and discrete analysis.
A time scale T is an arbitrary nonempty closed subset of the reals. When T = R
or T = 7Z, it means the classical theories of differential or difference. Furthermore it
includes many other interesting time scales, e.g., when T = ¢g™0 = {4’ : € Np}, where
g > 1, it represents the so-called g-difference theory. Time-scale calculus has a plenty
of applications, e.g., the population dynamic models, and for the detailed applications,
we refer the reader to see [2].
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In continuous case, the research for the oscillation of nth order ordinary differential
equations with the research of third order differential equations, and certain results have
been known for a long time. In 1911, Birkhoff [3] pioneered the study of separation
and comparison theorems for equations of order exceeding two with his paper on third
order equations. Ten years later Reynolds [4] extended some of Birkhoff’s results to
equations of arbitrary order n, and can be seen the original work for the oscillation
theory of higher order equations.

In 1921 Reynolds [4] obtained separation and comparison theorems for the nth
order equation

u(")—l-zai(x)u(WU =0, a<x<p, (1.3)
i—2

where a; (i=2,3,...,n) is areal-valued continuous function of class I.""~"[c, B]. And
he get some oscillation criteria with comparison theorem on the interval o < x < 8 for
equation (1.3).

In 1962 Kiguradze [5] obtained the theorem below for the differential equation

u™ + c(X)u=0, n>=2 xe€l0,), (1.4)

where c¢ is continuous on [0,0). He obtained the theorem that:

THEOREM A. Let Q be an absolutely continuous function in [0, o) with the prop-
erties Q(x) >0, Q'(x) = 0 (where it exists), and

/ 0] dx < oo,
0

Then

()1f )
/ Y e(x)dx < oo,
0

equation (1.4) is nonoscillatory;
(2)1f )
/ K le(x)07 N (x)dx =0,  and c(x) >0,
0

then equation (1.4) has an oscillatory solution and every nonoscillatory solution tends
monotonically to zero as x — oo;

(3)1If .
/ X' He@) @ M x)dx =0,  and c(x) <0,
0
there exists a fundamental set of [3 + (—1)"]/2 nonosdilatory solutions and n — [3 +
(—=1)"/2 oscillatory solutions, n > 3.

Glazman gave the following conditions, any one of which is sufficient for (1.4) to
be oscillatory (when n = 2m) [0, 7]:

(1) (—=1)™ fy” e(x)dx = —eo (where no assumption is made on the sign of ¢(x));
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(2) (—1)™c(x) < 0 for large x and

lim supxz’“_l/ x(t)|dr > A2,
X

X—00

A,,,l—(z(m_1 i “(2"__11);

k=1

where

3) f(x) = (—1)"c(x) + a2x2" <0 and

lim suplog r/ X2 f(x)|dx = oo

r

Anan’eva and Balaganskii [8] under the assumptions that ¢(x) > 0 and replaced
condition (2) of Theorem A when Q(x) = x with

/ X172 e(x)dx = oo,
0

then, for even n every nontrivial solution of (1.4) is oscillatory, and for odd n every
solution which is not oscillatory has the property that u®)(x) — 0 as x — oo (k =
0,1,...,n—1). Anan’eva and Balaganskii give an example to show that this theorem
is false under the weaker assumption

/ X' e(x)dx = oo,
0

A classical result of Kneser [9] gives the same conclusions under the stronger assump-
tion lim c(x) > 0.
In 2007, Erbe et al. [10] considered a third-order dynamic equation

A1) + p(1)x(r) = 0, (1.5)

where p is a positive real-valued rd-continuous function defined on a time scale T'.
They established Hille and Nehari type oscillation criteria for dynamic equation on
time scales like that: under the condition

/tom /Zm /ump(s)AsAqu = oo, (1.6)

every solution x of (1.5) is oscillatory or satisfies tlim x(r)=0if

.. = ho(s,to) 1
h,nlglft/, o(s) p(s)As > 7 (1.7)
or | .
liminf— [ o(s)ha(o(s),70)p(s)As > (1.8)

t—eo [ Jt 1410
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where h(¢,s) is the Taylor monomial of degree 2, [* := limsup @ And they also

[—o0

provided some continuous and discrete examples for their results.
In 2011, Saker [11] investigated a third-order functional dynamic equation

(PO(r)x>))A)2 +q(0)f(x(1(1))) =0 for 1 >10, (1.9)

on a time scale T, where y > 0 is the quotient of odd positive integers, p, r, T and g
are positive rd-continuous functions defined on the time scale T. In this paper, some
Hille and Nehari type oscillation criteria for (1.9) have been established: when p*(r) >
0, if x(¢) is a solution of (1.9) and assume that

A s 1
where
P(:,T) /t<l ars0 R(z.1) /T(t)<l)A
t,T):= — >0, R(1,1) = — ) As,
T \p(7) r \7(s)
1
pYR(t,t)P(t,T v
0() s = Kyto) =T
p'Pt,T)+o(t)—1t
and [ := litm inf % , then x(¢) is oscillatory or satisfies tlim x(t)=0.

In [12], Agarwal and Li et al. studied a third order delay dynamic equation
(a(r®)™) (1) + p()x(z(1)) =0, (L1D)

and presented new Hille and Nehari type asymptotic criteria for (1.11). For one, under
the condition

— — §)ASAUAZ = oo, 1.12
/,‘0 r(z)/z a(u)/u P(s) (1.12)
They obtained that if
A (s) Ji) (Au/a(w) |
. s [y T
liminf —/ ————p(s)As > —, (1.13)
=S als) e [0 (Auja(u)) g

then every solution x of (1.11) is oscillatory or satisfies tlim x(t)=0.

To the best of our knowledge, there are a few papers that consider the higher order
dynamic equations with Hille and Nehari type oscillation criteria. So in this paper,
we will establish Hille and Nehari type oscillation criteria for higher order dynamic
equation (1.1). The results extend Erbe et al. [10] and Agarwal et al. [12]’s work which
established for the third-order dynamic equations to a kind of higher order dynamic
equation. Using Riccari transformation technique and comparison theorem, some new
Hille and Nehari type oscillation conditions are obtained. And the new ones have many
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difference towards Erbe et al. and Agarwal et al.’s oscillation criteria which established
for the third-order dynamic equations.

The paper is organized as follows. In the next section, we give some preliminary
notations and lemmas, including the Taylor monomial and well-known Kiguradze’s
lemma about higher order derivatives on time scales. In Section 3, firstly, we give
some new Hille and Nehari type oscillation conditions for equation (1.1) under the

assumptions:
S | z ] oo
—_— — S)AsAUAZ = oo,
NI TS

/t: % /: ﬁ /wa(s)AsAqu = oo,

Secondly, using comparison theorem, we establish some other oscillation criteria for
(1.1) considering the case:

/t: % /toZ ﬁ /MwP(S)ASAqu < oo,

/t: % /Zoo ﬁ /MwP(S)ASAqu < oo,

In the last section, we present some examples to illustrate our results.

and

and

2. Some preliminary lemmas

For completeness, we recall the following concepts related to the notion of time
scales. On any time scale, we defined the forward and backward jump operators by
o(t):=inf{se€T:s>r} and p(r) :=inf{s € T : s < ¢}, where inf@ := supT and
sup® :=infT, 0 denotes the empty set. A point 7 € T is said to be left-dense if p(r) =1
and ¢ > inf T, right-dense if 6(r) =7 and r <sup T, left-scattered if p(r) < and right-
scattered if 6(z) > ¢. The graininess { of the time scale is defined by (z) := o(z) —¢.
A function g: T — R is said to be right-dense continuous (rd-continuous) provided g
is continuous at right-dense points and at left-dense points in T, left-hand limits exist
and are finite. The set of all such rd-continuous functions is denoted by C,;(T).

Next, we introduce the definitions of differential and integral on time-scale calcu-
lus. For a function f: T — R, and is continuous at z. If 7 is right-scattered, the (delta)
derivative is defined by

A
1) =
If ¢ is right-dense, the derivative is defined by
A S —f(s)
t) = lim —————=.
0=

Note that if T = R, then the delta derivative is just the standard derivative, and when
T = 7Z the delta derivative is just the forward difference operator.
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We also use the following product and quotient rules for the derivative of the prod-
uct f(z)g(r) and the quotient f(¢)/g(r) of two delta-differentiable functions f and g:

(080 = P0s0) + F(0)g 1) = F1)g (1) + P D)g(o ).
NS _ P00 -0
(e0) =m0

For b,c € T and a delta-differentiable function f, the Cauchy integral of f* is defined
by

/ PO = f(0) - f(b).

The integration by parts formula reads

[ P wsoar = rxgle) — fBeb) - [ 1700,
b b

and infinite integrals are defined by

/bmf(s)As = lim /btf(s)As.

[{—o0

For more details on the calculus on time scales, see for example [2, 13].
Next, we introduce the generalization of Taylor’s formula defined on time scales:

DEFINITION 1. (see [2, Section 1.6]) The Taylor monomials on time-scale calcu-
lus recursively as follows:

1, n=0,
hu(t,s) = fors,t € T.
[ haoa(7,5)AT, 1€ No:={N\{0}},

It is clear that hy(z,s) = ¢ — s for any time scales, but simple formulas in general do not
hold for n > 2.

DEFINITION 2. (see [2, Lemma 2]) An alternative definition of &, (z,s) is:
1, n=0,
ha(t,s) = fors,t € T.
Jihy1(t,0(1))AT, neNy:={N\{0}},

LEMMA 1. (Taylor’s formula [2, Theorem 1.113]) Ifwe suppose that n € N, s,t €
T and f € C;(T,R), where T is an arbitrary time scale, then

n—1 , 1 .
1) = T elt.s)7 )+ [ a0, 020 (2)ae
k=0 s

where hy,(t,s) is defined as above.
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In the sequel, we present the dynamic generalization for well-known Kiguradze’s
lemma on time scales.

LEMMA 2. (Kiguradze’s Lemma [ 14, Theorem 5]) Let suppose that n € N, f €
c, (’]I‘J},:RJ’) and supT = oo, Suppose that f is either positive or negative on [ty, )
and f~" is not identically zero and is either nonnegative or nonpositive on [ty, )T for
some to € T. Then, there exist t| € [tg,>), m € [0,n]z with m+n even for (1) =0,
or m+n odd for f~' (1) <0 such that:

() 2 (t) > 0 holds for all t € [ty,5)1 and all j € [0,m)z;
(i) (—l)’“ﬂ'fAj (r) > 0 holds for all t € [ty,e°)1 and all j € [m,n)yz.

3. Hille and Nehari type oscillation criteria for higher order dynamic equations

First, we assume that

/; % / ﬁ | plsjasaunz=en (3.1)
/t: % /: ﬁ /uwp(s)AsAqu =0 (3.2)

hold.

LEMMA 3. If x is an eventually positive solution of equation (1.1). Then there
exists ty € [fy,o°)1 such that

(a(O)(r(e)™ " ()2 <0, (o)™ (1))* >0
fort € [t),00)1.

Proof. Suppose that x(¢) is a positive solution of (1.1) on [T,eo)r. From (1.1) we
get that

(a(t) (r()" (1))~ = =p(1)x(r) < 0,
Thus a(t)(r(t)xAni2 (t))* is strictly decreasing on [T, o) and has one sign eventually.

We claim that cz(t)(r(t))cA’H(t))A > 0 eventually. Assume not, then there is a #; €
[T,e0)T such that

n—2
a(t)(r()x™" " (1))* <0, 1€ [n,)r.
Then we can choose a positive constant ¢ and for € [tp,0) C [t,°0)7 such that

a(t) ()" (1) < —c < 0.

Dividing by a(f) and integrating from 7, to ¢, we obtain

(0 () < i) (1) - C/ o)
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Letting 7 — oo, from (1.2) we have r(f)x2"

such that for 7 € [t3,00)T

(1) — —eo. Thus, we can find a #3 € [ty, )T

r(0)x 7 (1) < r(t3)" " (13) < 0.

Dividing by r(¢) and integrating from 73 to 7, we obtain

A0 ) <l ) [

3 @7

which implies that X" (t) — —oco as 1 — oo by (1.2). It means that x*'(r) — —oo as
t — oo for each i <n—3. So x(t) — —oo as r — oo, and this contradicts x(¢) > 0.
Hence we have

(r()" 7 (0))4 >0, 1€ [11,00)r. (3.3)

The proof is complete. [

LEMMA 4. Suppose that (3.1) and (3.2) hold. If x is an eventually positive so-
lution of (1.1). Then there exist only two cases for t € [ty,o)r C [ty,o0)T where 1] is
sufficiently large:

Case 1. x2(1) > 0 for each i € [0,n — 2]n;
Case 2. (—1)ix¥ (1) > 0, for each i € [0,n— 2]y.

Proof. Suppose that x(¢) is a positive solution of (1.1). From Lemma 3 we know
there exists 7 such that (r(1)x*" (1)) > 0 for ¢ € [t1,00)p. Then r(t)x™" (1) is
strictly increasing on [f{,e°)7 and thus KA (t) is eventually of one sign. We discuss
in two cases.

Case i. There exists sufficiently large 7, such that xAniz(t) >0 on [fp,°0)T. Since
x is eventually positive, by Kiguradze’s lemma there exist 3 € [f2,00)1, m € [0,n—2|z
with m +n even for f2"(t) >0, or m+n odd for f2"(¢) < 0 such that

@ £~ (1) > 0 holds for all ¢ € [t3,50)7 and all j € [0,m);

(1) (—1)™+ 2 (£) > 0 holds for all € [t3,00) and all j € [m,n —2)y.
We claim m =n—2 or m = 0. Assume not, it means m € [1,n — 3]z and each order
derivative of X satisfies: ; 1

AT >0, 32 (1) <0,.,62 (1) > 0, X2 (1) > 0,..,42(1) > 0, x(t) >0
for 7 € [r3,°). Now, integrating both sides of (1.1) from 7 to u and letting u — o we
get

U—o0

lim (i) ()" ()" = al0) (05 (1) = = [ plopx(s)as

Due to x(¢) is strictly increasing on [t3,0), setting b = x(f3), also from (3.3) the
above equation can become

a(t)(r) ()2 = b /, " p(s)As, 1€ 1,00
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Dividing by a(f) and integrating from #3 to 7, we obtain
1

FO 7 (1) = i) (13) = b / L / " p(s)AsAu.

n a(u)

Since X" (£) > 0 on [t3,00)T we get

HO (1) > b ,: ﬁ / " p(s)AsAu.

Dividing by r(¢) and integrating from 73 to 7, we obtain
n—. n— g l z 1 it
A0 = (1) > b —/ —/ p(s)AsAuhz.
iy a(u) Ju

n I (2)

From Kiguradze’s lemma, n —2+m is even, which implies m #n—3. So P (1) <0
on [t},e)T and the above inequality becomes

A7173 t l /Z l /oo
—X ) =b | — —_— s)AsAuAz.
W20 ) 7@ o ) Ju T

Letting ¢ — oo, the last inequality contradicts (3.1). So m =n—2 or m =0, which
implies Case 1 or Case 2 holds.

Case ii. There exists sufficiently large #, such that xAnfz(t) <0 on [f2,%)T. Also
from Kiguradze’s lemma can get a m € [0,n — 2]z with m+n even for f2"(t) >0, or
m+n odd for 2" (r) < 0 such that

@ £~ (t) > 0 holds for all ¢ € [t3,c0)7 and all j € [0,m):
(1) (—1)™+ 2 (£) > 0 holds for all € [t3,c0) and all j € [m,n —2)y.
If m #£0, n—2, each order derivative of x must contain the following form:

A7) <0, "7 (1) > 0, (1) >0, 2" (1) > 0,...x2() > 0, x(t) > 0
for ¢ € [t3,00)7. Integrating (1.1) from ¢ to u and letting u — o, from (3.3) we get

a0 70 > b [ ps)as, 1€ ),
Dividing by a(¢) and integrating from ¢ to v and letting v — oo we get
lim () 0) =0 2 [ ﬁ | poasu.
Since X" (t) < 0, we obtain that
—r(t)xAniz(t) > b/tw ﬁ /Moop(s)AsAu.

Dividing by r(¢) and integrating from 7, to 7, we obtain

A =) > b / L /Z B ﬁ / " p(s)AsAuz.

1 r(z)
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For x" (1) > 0 on [t1,°0) it becomes

A (h)=b L /: ﬁ /:p(s)AsAqu.

n 1(2)

Letting t — oo, the last inequality contradicts (3.2). So m =n—2 or m = 0, which
implies Case 1 or Case 2 holds.The proof is complete. [J

REMARK 1. Indeed, we have not limited the parity of n, and in Lemma 4, if we

know that x2" () > 0 and n is even, then only Case 1 occurs. Also if x2" (1) <0
and n is odd, still only Case 1 occurs.

LEMMA 5. Assume that (3.1) and (3.2) hold, and x is a positive solution of (1.1)
which satisfies Case 2 of Lemma 4. Then tlim x(r)=0.

Proof. Since x satisfies Case 2 of Lemma 4, obviously x*(¢) < 0. So x(¢) is
strictly decreasing and has finite limit on # € [t;,0)y. We claim that limx(r) = 0.

[—o0

Assume not, there exists a positive constant ¢ such that for 7 € [¢],e0)T,

limx(t) =c > 0.

f—o0

Hence there exits #; € [f], )T such that for ¢ € [ty,0), x(¢) > ¢/2. Since we do not

. -2 . -2
know the sign of x*" " (¢). First we assume x*"

can also get that

(1) > 0, as the proof of Lemma 4, we

n-3 c [T 1 | *°
A (tz)ZE ’ @/ﬂ m/u p(s)AsAulAz

for ¢ € [ty,00)7. Letting 7 — oo, this contradicts (3.1). If A (t) < 0, using a similar
method we can get a contradiction to (3.2). The proof is complete. [J

LEMMA 6. Assume that x satisfies Case 1 of Lemma 4. Then

(0 (0) / hoat o) it , G4

x(t) =
=", )

for t € [t1,00)1 and r(t)xAni2 (t)/ffl % is nonincreasing eventually.

Proof. Since x satisfies Case 1 of Lemma 4. There exists #; such that

n—2

@) (r(O)" ()M <0, (r(O)2 (1) >0, 2 >0, i€[0,n—2, 1€ [11,0)r.
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So a(r) (r(t)xAnf2 (t))2 is strictly decreasing and positive on [t} )T, and we can deduce
that

O (1) = r(0) (1) = / ()7 (5)) s

_ (1A @)
o o

> alt)(rp )" [

n als)

Thus

A0 0 2 a0 [ t % 3.5)

By rules for derivative of quotient on time scales, we know that

<r<z>xw (0) )A RGO O % - ﬁr@xw (1)
1 As t AS '
1 u s \[;1 a s)

tlm

Substituting (3.5) in this equality we have

n—2 A
G@¢E@)<0 (3.6)
n m
So r(r)x® ( )/f,«t1 aA—S‘ is nonincreasing on [y, oo)r.

Next we expand x(7) by Taylor’s formula from Lemma 1 and since x2" > 0 for

IA\

€ [0,n — 2]y and the nonincreasing property of 7(¢)x* ( )/ f,l an - We get

n—3 ; 2
x(t) = 3 hele,n) (s) + / T (t,0(7)" (1)AT
k=0 n
2 /l hp—3(t, cr(T))xAH (1)AT

‘ r(7) [T A (1)
:/ I3 (t,0(T)) —— ) At
n

r(7) tf %
o As
e 1) i n-a(t,0 (%)) Jy aty
> ' '
z 1 As f r(7) A 7

1 als)
This completes the proof. [l

Now we give some oscillation criteria for (1.1) based on the previous lemmas.
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THEOREM 1. Suppose that (3.1) and (3.2) hold and let x be a solution of (1.1).

If
3(s.0(1) 7 2%
:=liminf [ —— / f” G — (s)As>1 (3.8)
Pe= 0, a(s) , FEET 4 '

51 alu)

then x is oscillatory or satisfies lim x(1) = 0.
t—o0

Proof. For the contrary, suppose that x is a nonoscillatory solution of (1.1). With-
out loss of generality, we may assume that x(¢) > 0 for ¢ € [T, o). From Lemma 4, x
satisfies Case 1 or Case 2. If x satisfies Case 2, by Lemma 5, tlim x(t)=0.

Otherwise, x satisfies Case 1 of Lemma 4, which means there exists a sufficiently
large #; € T such that for ¢ € [f],0)p

A1) >0 for i€[0,n—2]x.

Define the Riccati transformation by

(3.9)

Taking the derivative of w(r) we get that

A _ (DO 1) )
(r)—( = )
(@() (r()x 7 ()M () (1) = a(t) (r()x" " (0))2 ()2 (1)

- P (0)re ()X (0 (1))

I () B ({0 i )il
= rc(t)xAn—z(G(t))P(t) o0 A,,2(G(t))w(t). (3.10)
Since a(r)(r(t )XNHZ (1)) is decreasing, we have that
O @)Y a@[r) T @0)Y @@ 0" (o) wo)

(O (o) aln)ro (03 (0(0))]

Thus we obtain

x(t) w(t)we (1)
wA(t)g—Wp(I)—T (3.11)

for ¢ € [t],°)T. Then from Lemma 6, we have

x(1) X () (1)

oA (o(n)  r()xA (1) 1o (02 (o (1))
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)13t0 )[[la(

J}l G L A;
fl f(—f 102y
I 0 —
And (3.11) becomes
f tGr(T)) il At w(t)wO (t
0+ A <o

Next we claim that lim w(r) = 0 and w(t) "< fort € [ty,00)T

11 a(s)
we can get that

for 7 € [t;,°0)1, and so

That is

Since w(r) > 0, we have that

0

From the condition (1.2), it is easy to see tlim w(t) =0 and w(r)

[t1,0)T -
Then we define r, by
A
r. = liminfw(7) / ey

n al(s)

It is clear to see 0 < r, < 1. Now we claim that

Ty >P*+”Za

t As

289

(3.12)

. From (3.12)

tlmglonté

(3.13)
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where p. is defined as in (3.8). Integrating (3.12) from ¢ to e, and from lim w(z) =0

[—o0

we have that

s Tn-3(s,0(1) aA]) . % (s)w(s)

R (R A “we(s)wis
§ A W W) A 3.14
W(Z) [ j;?' s) Au) S) s /t a(S) ’ ( :

Multiplying (3.14) by [/ A‘ , we obtain

151 a S
s ns(so(0) 7 A5
' As N G-
wo) [ 2z [ ‘ pejss
noals) = Ju a(s) Ji ft?(‘s) atu]

+f1@

_ fﬂ/“ nTm
iy als) i 7

+/t:£/t w(s) [ B <>fn “A& 15

a(s) a(s) ti f: s

Now for any € > 0, from the definition of r,, there exists #, € [fj,o)r such that for all

t € [ta,0)T -
w(t)/tlxj) re — E.

Taking this into (3.15) we get

w(t)/t:%

Cas el - Lac
> [ A | T A
/,1 a(s)/, ftflf(s) Au p(s)As

© As /t"" w"(s)w(s;A

WV

a(u)
tAs [ 1
—|—(r*—8)2/ —S/ S Au o
tla(s) ! a()tlau j;l “”
s hno3(s.0(0) 7 2%
" As /°° I GG ATP(S)AS
noa(s) Ji ft(ly(S) %
A o0 1 .
+ (rv — )2/—S/<SA”)AS
noa(s) Ji 1 a(u)
s hnoa(s,0(2)) 7 2%
G AT

p(s)As+ (r, —€)? (3.16)

N e
Jy als) Ji ft‘f(s)ﬂ
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for ¢ € [fp,o0)7. Therefore, taking the limit inferior of both sides of (3.16) gives
Ty 2 P*"‘(”*_S)z'

Since € > 0 is arbitrary, we have

Fe 2 Pst7y
Then we obtain that
<r—2—1—(r l)2 !
Px X T« * 4 % ) Sy

This contradicts (3.8). The proofis complete. [

REMARK 2. If n = 3, this result becomes Theorem 2.8 in [12]. If n =3 and
a=1, r =1, this result is Theorem 2 in [10]. So our research extends Erbe et al. [10]
and Agarwal et al. [12]’s work.

THEOREM 2. Assume that (3.1) and (3.2) hold and let x be a solution of (1.1).
Define w(t) as in Theorem 3.1, and

(1) As
A o
R. :zlimsupw(t)/ —S, rr :zlimsup”tiz(s).
t—o0 151 a(s) {—so0 tl Wf)
If
s u hp— 3 50- ))[ a(v)
R Y s Tatp(as 3.17
g+ = limin A > T (3.17)

11 a(s)
then x is oscillatory or satisfies lim x(t) = 0.
t—o0

Proof. For the contrary, suppose that x is a nonoscillatory solution of (1.1). With-
out loss of generality, we may assume that x(¢) > 0 for ¢ € [fg,e)7. Then if x satisfies
Case 2 of Lemma 4, by Lemma 5, tlim x(t) = 0. Next we consider the nonoscillatory

positive solution x which satisfies Case 1 of Lemma 4, then from the proof of Theorem
3.1 we get that (3.10) holds. Since

GO )N
oo o) =
(
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We get another Ricatti inequality of the form

7)) f[fﬁ

o 1 als) AT o)
= __w)
I B o p(t)+ POESTON0)

[O'
r

wA(r) +

<0. (3.18)

2
Multiplying (3.18) by ( ff(’) %) and integrating the resulting inequality from #, €

N
(t1,°0)T to 1, we see that

/t:(/tlo(x) A( AH’/Q/ ) Au /‘s n—3(8, r((;)))ft‘f%ATp(S)AS
+f ( /tlc (5 aA(:)) m As <0, (3.19)

Integrating by part for (3.19) yields

1 As 1 As 4 S Au A
L] —>/ (U Yo

(T

Since

S Au A 5 Au o) Au o) Au s
(L5031l 35280

taking this into the above inequality, after rearranging we get

(f ' f(—j))zwm <(/ . %)%(m

1 ro(s) Au Shnf3(s76(r))ftf% 1
_ /tz / A / D Atp(e)As-+ | Hisw(s)as, (320

1 o(s) Au _ p(s) o(s) au \>  wA(s)
where H(S,W(S)) = m [2];1 M — m:| W(S) — <ﬁl W) W. In [12,
Lemma 2.7], the author proved that H(s,w(s)) < 1/a(s), when w(s) > 0 for ¢ €
[t1,°°)T, and we do not repeat here. So we get

/st ))AS</@aA(j)'

Substituting this inequality into (3.20) and dividing by |, o

lla\

, we have
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2
t tzaA—f w(t)
wie) [ < () vie)
5l

= As
a(s) ttl e
Ky j; a A
S S0 e | #')m (s)As  Ji A5
_ & A (3.21)
11 a(s) 11 a(s)
If we take the superior limits of both sides of (3.21), we get
R, <1—gq.. (3.22)
Next we give another Ricatti inequality. Using Lemma 6 we get that
n—2 n—2
rex" () _ (@ T 0)r r()x ()
renx () (O () o) (a(1)
w0 A w) ity
- n—2 =
a(t) ro (1) (o (1)) ~ alt) ft?(t)aA—fq
Thus from (3.10) we obtain
3(t,0(1)) f,fﬁ
I —“”AT 2 ¢ As
A 1 (1) w (t) 11 a(s)
< 0. .
wo(t) + I O oo p(t)+ a(t) fo(t)g <0 (3.23)
1 als) 1 als)

If € > 0 is given arbitrary, then there exists 7, € (¢,°0) such that

N

€ (t)/t as <R.+e for 1€ [t,o)
Iy — w —— <R, or ,00
n als) o

where r, is defined as in Theorem 3.1. And

‘f[l a
t As
11 as)

<I"+e for t€fp,oo)T.

Using (3.23) and a similar proceeding operating on (3.18), we have

(/t:%>2w(t)<(/Q%)zw(mﬂ/ Lty f’g) ol
L e s

Ay it s
/rz</;l a(u)) a(s) ft?-(S) aA(:)
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Then
2
s (R St Lt I v
W([)/ — < 1 As T =
n a(s) 1 a(s) o)
(O
ﬁtz ft?'( Au_ ftl %ATP( )A
_ 7 As
11 a(s)
Au 2w (s
R ) s
t As ’
1 a(s)
That is
1 s _Au_ s s
2 aty L g+ ] o) 3 ]
1 As ( ltlz %) w(t2) ftz [’Al“A_j ”
w([)/ — < 1 As + >
0 a(s) 1 a(s) "t als)
s " n—3(s,0(t )// a
f,;ff( Au le #HAT ($)As
— t As
11 a(s)
2
A
t As
1 als)
b as 2 t As
o] W(tz) f a(s)
<%+(k*+e>(l+l*+e> 2 A(;)
o) 11 als)
1 As
_q*_(r*_£)2ttz—a£i).
1 a(s)

Taking the superior limits of both sides of this inequality, since € > 0 is arbitrary, we
get
R.<R(1+1) =rf =g,

that is
gs <RI =12

Now substituting (3.22) into this inequality we have that

g« <" =1"qx,
l*
141’

which contradicts condition (3.17). The proof is complete. [J

qs <
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REMARK 3. Whenn=3 and a =1, r =1, this result is Theorem 3 in [10]. So
this result also extends Erbe et al. [10]’s work.

REMARK 4. Assertions of Theorems 3.1 and 3.2 are that any non-trivial solution
of given equation is either oscillatory or vanishes at infinity. This properties for ODE
are usually called “Property A” and “Property B” and were introduced in earlier 60s
of 20th century by Kondratiev and Kiguradze. More detail about “Property A” and
“Property B” can be found in the book [15].

Next, we consider the case:

=1 g1 e
/to @/m w/u P(s)AsAuAz < o, (3.24)
=1 e e

/to @/z m/u P(8)AsAulAz < oo (3.25)

hold. For convenience we define that

L @),
qm“/, r(u)[, a) ) mnn) ArAsw

" e 1 u h1 S l‘] / p ho "L' l‘]
1) = ATAsAu,
q°(1) /t r(u)hy (w,11) / ul

and

Qm / / o 6] )Au Aty 6Nty —5;
Up—m—5 uj

= / / / q*(u)Au...Aun_m_6Aun_m_57
t Un—m—5 uj

where h,,(7,71) is the Taylor monomial defined in preliminary section, especially for
hi(t,01) =7—1.

LEMMA 7. (see [16, Lemma 2.2]) If the inequality
»A40(nx <0, (3.26)

where Q is a positive real-valued, rd-continuous function on T, has an eventually
positive solution, then the equation

P L0 x=0 (3.27)
also has an eventually positive solution.

THEOREM 3. Suppose that there is a positive integer k € [0,n —2) such that

I
10 Jup_ji Uy r(u3) u3

Ay g =e0,  (3.28)
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and

Ay i =o0  (3.29)

IR T A
to Juy_gi1 Uy r(ug) 1 alup

hold. If the second order dynamic equations

Y1) + Oum(1)y(t) =0, (3.30)

and

AE) + 0 (0)y() =0 (3.31)
are oscillatory for every m € {k,k+1,...,n—3}. Then every solution x of (1.1) is
oscillatory or satisfies tlim x(r)=0.

Proof. For the contrary, we assume that x is an eventually positive solution of
(1.1), and without loss of generality let x(#) > 0 on ¢ € [T,e). By Lemma 3 we have

(@) (r(e)™ 7 ()2 <0, (HO) ()2 > 0,

for ¢t € [T,eo)r and r(t)wa2 (¢) is strictly increasing and has eventually one sign, then
xAnfz(t) has eventually one sign and satisfies Kiguradze’s lemma. By Kiguradze’s
lemma there exist #; > T and m € [0,n — 2]y with n— 2+ m even for xAniz(t) >0,or
n—2+m odd for 2" (¢) < 0 such that for ¢ € [t1,0)T
(=1)7A >0 for j € [mn—2)y,
A>0  for je[0,m)y.
First we prove that if tlim x(t) #0, then m > k. Assume not, m < k, which implies

(—=1)7+mxY > 0 for j € [k —1,n—2)y, t € [t;, ). Due to we cannot ensure wether
n—2 . .. . .
x4 (1) is eventually positive or eventually negative, we also discuss from two cases.

Case 1. xAniz(t) < 0 for 7 € [t],o0)r. Integrating equation (1.1) from 7 to v and
letting v — oo for 7 € [t,°0)T, we get that

a0 (0)* = lim )00 = [ oo (332)
Note that a(t)(r(t)wa2 (t))2 is positive on [t],)r, we have

()™ (1)) / p(s)x(s)As for 1€ [t,0)r. (3.33)

. . . . n—2
Integrating from 7 to v and letting v — oo again, and since r(t)x*" " (t) < 0 on [f],%0)T,

we obtain
0 > — / / p(s)x(s)AsAu. (3.34)
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Since (—1)j+’"xAj > 0 for j € [k—1,n—2)y, repeating above process n— k —2 times,
we have

A =g e ] e
X (t)}/t /M"ik---/u4 ) /u3 m/uz puy)x(up)AuyAuy -+ Auy g, (3.35)

or

—xAk(t) Z/tw/u:;/uj ! /MN ! wp(ul)x(ul)AulAuz---Aun_k, (3.36)

r(uz) Juy a(uz) Ju,

Whether is (3.35) or (3.36) is determined by the parity of n — k. According to the
assumption tlim x(r) #0, we set tlim x(t) =d > 0. Thus we can find a 1, > ; such that

x(t) > d/2 for t € [tp,°)T. Then, integrating above equations from #; to ¢, we get

. d [~ [~ S B B
—xAklt 2—// / —/ —/ uy)AuiAuy - - Auy i q,
(2) ) b Sy " r(u3) s a(uz) o p( 1) 1 2 n—k+1
(3.37)

or

s [ st 39
2) = 1 1 2 —k+15 .
dJo Juy_i g T(u3) Juy a(uz) Juy n+

Both contradict (3.28).
Case ii. x2" (r) > 0 for r € [t;,o°)r. Integrating (3.33) from #, to ¢, where
x(t) > d /2 for t € [t2,%0)7 still holds, considering r(1)x2" " (t) > 0 we have

n—2 /1 ©
A1) > m/tz m/u p(s)x(s)AsAu. (3.39)

The remaining part is similar to the proof of Case i, and we can finally get a contradic-
tion to (3.29).
Next, we prove that when tlim x(t) #0, foreach m € {k,k+1,...,n—3} equations

(3.30) and (3.31) are oscillatory makes the equation (1.1) oscillate. Also discuss in two
cases: ,
Case i'. X" (1) <0 for t € |1, ). From Kiguradze’s lemma, we have x*" (r) >

0 and 2" (t) <0 for 7 € [t],°°)T. Thus we have
- m— t m
A = ) :/ & (5)As
I

> A" () / As
=20 —n). (3.40)

On the other hand,

(x“"(ﬂ)A _M0e—n) N0 (3.41)

t—1 (t—11)(o(t)—n)



298 Y1zZHUO WANG, ZHENLAI HAN AND CHUANXIA HOU

Substituting (3.40) into (3.41), we get (X" (1)/t —1,)* < 0 for 7 € [1,e0)7, which

m—1 . . .
means x*"  (¢)/t —1; is strictly decreasing. Thus

A7) =" (1) = / A (9 As

I

Amfl "
t
> xi()/ (s—11)As
5l

r—n
_ altt) ety (3.42)
1—1

And
xAn773 ([ Am 3 / xAm 2
" hy(s,t m—
2/ 2(s: 1))CA 1(s)As
n

s—1
hy(s,t1)As
1—1 1 2( 1)
_ st ety (3.43)

r—n

Thus by the recursive method, we can get the unequal relation between x(#) and KA (1)

as
hm(t,ll)xAm—l

1 —1

x(t) >

From the proof of Case i above, inequality (3.36) can be rewritten as
Vx(uy ) AutAugy - Aty 1,

oz [T -

when we replace k with m + 1. Substituting (3.44) into (3.45) and from ! (r) is
strictly increasing on [f1,0)T, we obtain

1 Ltl n
A / / : / / / p : )AulAMZ Aty gy
Up—m—1 Us u3 u3 u2 hl uj 7t1

+2" ) <o, (3.46)

(1). (3.44)

u3

Set y(1) = KA (). Thus y(¢) is a positive solution of the inequality
A1) + Qul)y(r) < 0. (3:47)
From Lemma 7, the dynamic equation

Y1) + Om(t)y(t) =0 (3.48)
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also has a positive solution, which is a contradiction to the hypothesis.
Case i’ . X" (t) > 0 for 7 € [t],°0)7. From Case ii (3.39) and (3.44) we have

A (t) > / / p(s)x(s)AsAu

l ! hm(s ll)
> ﬂ/ ﬁ/u p(s)ﬁ"A ey
! fi(s,11)
(_/ / (”ﬁASAu
12" ) u—11 [, hu(st)
- m r—1 /t1 a(u)l L p(s)TtllASAu (3.49)

Integrating (3.49) from ¢ to v, letting v — oo, and repeating this process n —m — 3
times, we have

m+1
A() =

m— l
= xA u3 hl Mz,tl = p(ur)hm(uy,ty)
Aul---Aun,m,l.
P ug T(u u3,ll) h1 ui,)

(3.50)

Thus

Am+l ([) >xAm71(t)

us oy ( uz,fl / puy) i (uy,t1)
. Auy Ay,
/ /un . /144 M3)h1(M3,l1)/ hl (u1,11) ! ot

(3.51)

Setting y(t) = "'

(t) it becomes
(1) + 0, (1)y(1) <0.
Then, by Lemma 7, dynamic equation
A1)+ 05 (1)y(1) = 0
also has a positive solution, which is a contradiction to the hypothesis. The proof is
complete. [l

REMARK 5. For the extreme case

I e
/:o // @/ M/ plun)AurAuy -+ Aty 1y < oo (3.53)

holds, the existence of nonoscillatory solution of (1.1) can be discussed, but in this
paper we omit it.

cAthyy < oo, (3.52)
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4. Examples
In this section, we will show the application of our main results.

EXAMPLE 1. Consider the higher-order differential equation
(4)+E(z)—0 r>1 (4.1)
X (1) =0, > 1 .

Here r(t) =1, a(t) =1, p(t) = 6/¢*. It s clear that the conditions (3.1) and (3.2) hold.

To apply Theorem 1 it remains to prove that (3.8) is satisfied. In our case the condition
reads

T _Av

[ [

liminf —/ 0 Bn p(s)As

= I a(s) t ftl (—

a(u)

= liminf s—4ds

[{—o0

ds/ ftls— ftdv)d’r.6

3l 3l —l
zliminf(t—tl)/ il i 8
t

1o (s—11)s*
—3t 317 —t
>1iminf(z—z1)/ ”Jg 0 s
[—00 t Ky
1
=1>-.
4

Then, from Theorem 1, we get that all solutions of (4.1) are oscillatory or converge to
zero. In fact, one can easily see that the basis of solution space of (4.1) is given by

{t71, *cosV2logt, t*sinv/21ogt}.

EXAMPLE 2. Let T = ¢"0, ¢ > 1 and consider the higher-order g-difference

equation
o

thy(1,0)

Here r(t) =1, a(t) = 1, p(tr) = o/thy(¢,0). It is clear that the conditions (3.1) and
(3.2) hold. In our case the condition reads

A+

x(1) =0, 4.2)

f ‘ O_(T j;‘i' aAL) AT
P« i =liminf | —— / ! akd pls)As
o a(s) : ft1 ) Lu.
o Ins—o(@) ([ dyv)dst  a
_1lgglf qs/ ‘)d shz(s,O)dqs

u
o [*(s— d,T
> liminf dqs/ o ())q 2 s
E— 1) qu shy(s,0)
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. h2 (5,0) o
> liminf / s / dys
100 4 ) du f, dguhy(s,0)

A
— Timinf ds/ —\.—) dys
t—o0 1 q t j;l qu q

= 0.

Hence, if oo > 1/4, then from Theorem 1, all solutions of (4.2) are oscillatory or con-
verge to zero. If o < 1/4, since

)1356 Dbffv

g e e I s
q*':h;nlglf s

11 als)
S 57 dgv (Ji (s = 0(0) [ dqvdy7) ggydys

= liminf

1—eo f,t dys
i ftz d 4Vha(s,0) \hz(sO)d
- H‘X’ f’ dgs
> limi fqaf”d 0 = o (G o)
= Jidgs
Zqo.

Also note that [* = g. We see thatif ¢. > q/1+¢, thatisif oc > 1/1+ ¢, from Theorem
2, all solutions of (4.2) are oscillatory or converge to zero.
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original manuscript.
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