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Abstract. In this paper, a stage structured eco-epidemiological model with linear functional re-
sponse is proposed and studied. The stages for both prey and predator have been considered.
Infection occurs in the prey population only. The proposed mathematical model consists of five
nonlinear ordinary differential equations to describe the interaction among juvenile prey, adult
prey, infected prey, juvenile predator and adult predator populations. The model is analyzed
by using linear stability analysis to obtain the conditions for which our model exhibits stability
around the possible equilibrium points.

1. Introduction

Many of the ’old’ mathematical equations resulting from the progress of mathe-
matical ecology such as classical Volterra prey-predatormodel, Lotka-Volterra compte-
tition equations and logistic growth equations[1, 46], have imposed a huge amount of
influence on the growth of theortical and mathematical ecology. They provided the
fundamental basis to many (if not almost) to the underlie subdisciplines of the subject.
Without paying due credit to them is not possible to model any ecological problem.
Truly speaking they are the father of the further development in the subject. The main
motivation behind writing this paper is these old studies.

The basic goal in population dynamics is to study the dynamical relationship be-
tween predator and prey which has long been and will continue to be one of the impor-
tant aspect in the subject. This relationship may be formulated by the term so called
’functional response’, which means the change in the quantity of prey consumed by a
single predator per unit time in relation to prey density. In literature there have been
proposed number of functional responses. Few of them are enlisted for ready reference
(without full detail):

• g(x) = C(t)x : Holling type I or linear function response [7, 8, 59].

• g(x) = C(t)x
m+x : Holling type II [7, 8, 59, 54].

• g(x) = C(t)xp

1+mxp ,0 < p � 1: Generalized type II Holling functional response [9].
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• g(x) = C(t)x2

m+x2 : Holling type III [7, 8, 59].

• g(x) = C(t)x

a+x+ x2
m

: Holling type IV [59].

• g(x,y) = xy
ay+x : Ratio dependent [60, 53, 35].

• g(x,y) = Cxy
(1+ax)(1+by) : Crowley-Martin type functional response [32, 40].

• Hassell-Verley type functional response [25, 40].

• g(x,y) = Cx
1+k1x+k2y

:Beddington-De Anglis type [11, 40, 18].

• Function response of the type g(x) = k(1− e−Cx) [Ivlev][15].

These functional responses has been extensively used. It is obvious that all the function
responses convey their importance. It is also remarkable that Holling type functional
responses are more frequently used as compare to other functional responses. Recently
a very good study of Dawes JH and Souza MO (2013) [9] on Holling type functional
responses is published. They derive Holling’s type I,II,III responses and possible gen-
eralization of these responses. It is also important to mention that all these functional
reponses somewhat generalize the Lotka-Volterra model (response).

A general prey-predator is of the form{
dx
dt = αx−βg(x),
dy
dt = δg(x)− γy,

(1)

where x(t) and y(t) are prey and predator populations respectively at any time t ; dx
dt ,

dy
dt

represents growth rate of two populations over time t and the constants α,β ,δ ,γ gov-
ern interaction among two populations. Function g(x) is the functional response.

If g(x) follows the Holling type I functional response, then model (1) takes the
form {

dx
dt = αx−βxy,
dy
dt = δxy− γy,

(2)

Holling type I is linear as used in Lotka-Volterra system, hence it is oldest among all
the functional responses. Since the intake rate is constant in this case, hence the curve
represented by the Holling type I functional response is linear, passing through origin
and unbounded. In other words, the model (2) is the Lotka-Volterra functional response.

If g(x) follows the Holling type II functional response, then model (1) takes the
form {

dx
dt = αx− β xy

m+x ,
dy
dt = δxy

m+x − γy,
(3)

this model may also written as {
dx
dt = αx− β xy

m+ahx ,
dy
dt = δxy

m+ahx − γy,
(4)
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or {
dx
dt = αx− β xy

1+ahx ,
dy
dt = δxy

1+ahx − γy,
(5)

here a and h are attack rate and handling time of a predator respectively. In the
case of Holling type II, the curve is rectangular hyperbola(for example Holling’s disc
equation)[7, 8]. Hence, it is clear that model (3-5) are more general as compare to (2).
More detail about the Type I,II,III responses may be found in [7, 8].

Model (1) may be written by other functional responses as mentioned in the dis-
cussion above. For example;

Holling type IV model; ⎧⎨
⎩

dx
dt = αx− β yx

a+x+ x2
m

,

dy
dt = β yx

a+x+ x2
m

δxy− γy,
(6)

Ratio dependent model; {
dx
dt = αx− β xy

ay+x ,
dy
dt = δxy

ay+x − γy,
(7)

Crowley-Martin model; {
dx
dt = αx− Cxy

(1+ax)(1+by) ,
dy
dt = Cxy

(1+ax)(1+by) − γy,
(8)

and so on.
Till now, we have mentioned two dimensional models. Three dimensional models

have also been proposed by incorporating some more concepts. We mention two such
concepts (i) infection in species (ii) stages of life. If infection occurs in prey species
then model (2) becomes three dimensional model and takes the form;⎧⎪⎨

⎪⎩
dx
dt = αx− ξ xy,
dy
dt = ξ xy−d1y− pyz,
dz
dt = qpyz−d2y,

(9)

where x , y and z denote, respectively, the population densities of suspectable prey
species, infected prey species and predator species. The model (9) with logistic growth
term takes the form ⎧⎪⎨

⎪⎩
dx
dt = rx(1− x+y

K )− ξ xy,
dy
dt = ξ xy−d1y− pyz,
dz
dt = qpyz−d2y.

(10)

The dynamical behavior of system (10) has been studied in [16]. For more studies
wherein infection in prey have been considered, we refer [3, 10, 12, 27, 30, 37, 58, 39].
If we consider infection in predator population then again we have the three dimensional
prey-predator system. For such systems, we refer reader to ([33, 48, 13] and references
therein). Similarly, if one consider the stages of prey i.e. juvenile and adult, we have a
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three dimensional model. For prey-predator system with stage-structured for prey, we
cite ([23, 41] and references therein). If we consider the stages for predator, we have a
three dimensional system. For such models, we refer reader to [24, 31, 36, 50, 61, 20].

For four dimensional models, in literature two situations (i) infection in both
species (ii) stages for both species have been proposed. We can refer to [22, 43] for
such four dimensional models. High dimensional models (dimension 5 and more) are
rare. Five dimensional models evolved when infection and stages have been consid-
ered [44]. Motivated by this fact, in the present study, a five dimensional prey-predator
model is proposed and analyzed.

Rest of the paper is organized as follows. The next Section is dealing with the
model formulation. Stability results are presented in Section 3. Paper ends with a brief
discussion in Section 4.

2. Mathematical model and basic dynamical results

In this paper, we proposed a new prey-predator model⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx1
dt = rx1−βx1−d1x1−ax1x5,
dx2
dt = βx1−d2x2−bx2x5− γx2x3,
dx3
dt = γx2x3 −d3x3,
dx4
dt = k1ax1x5 + k2bx2x5− δx4−d4x4,
dx5
dt = δx4−d5x5,

(11)

subjected to the initial conditions;

x1(0) > 0,x2(0) > 0,x3(0) > 0,x4(0) > 0,x5(0) > 0. (12)

In system (11), x1(t),x2(t),x3(t),x4(t) and x5(t) stand for juvenile prey, adult prey,
infected prey, juvenile predator and adult predator densities, at time t respectively. The
constants r,β ,d1,a,d2,b,γ,d3,k1,k2,δ ,d4,d5 are positive. That stand for

r : birth rate of the juvenile prey;
β : the transmission rate of juvenile prey to adult one;
d1 : death rate of juvenile prey;
a : the capturing rate of juvenile prey by the adult predator;
d2 : death rate of adult prey;
b : the capturing rate of adult prey by the adult predator;
γ : infection coefficient of prey;
d3 : death rate of infected prey;
k1,k2 : the coefficients of conversing prey to predator;
δ : the transmission rate of juvenile predator to adult one;
d4 : death rate of juvenile predator;
d5 : death rate of adult predator.
The model (11) is derived under the following ecological assumptions.
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(A1) We assume that x(t) is the total prey density at any time t . Prey density is divided
into three parts viz. juvenile prey (x1(t)) , adult prey (x2(t)) and infected prey (x3(t)) .
Hence, at any time t , we have,

x(t) = (x1(t)+ x2(t)+ x3(t)). (13)

It is assumed that birth and death rates of all the species are linear.
(A2) We assume that y(t) is the total predator density at any time t . Predator density is
divided into two parts viz. juvenile predator (x4(t)) and adult predator (x5(t)) . Hence,
at any time t , we have,

y(t) = (x4(t)+ x5(t)). (14)

(A3) We assume that infection occurs in prey species only. Infection is not commu-
nicable to predator population. To do so, we assume that predator consume juvenile
and adult prey only (infected prey are safe from predation). The infected prey popula-
tion neither recover nor immune. The infection process follows simple mass action law
action γx2x3 , γ is called the transmission rate.
(A4) We also assume that only adult predator can hunt the prey population. Juvenile
predator population depend on adult predator population for food and safety etc. We
also assume that predator predate the juvenile and adult prey at different rates.

LEMMA 1. Solutions of model (11) corresponding to the initial conditions (12)
are defined on the interval [0,+∞) and remain positive for all time t � 0 .

Proof. The system of equations (11) can be written in the vector notation

dX(t)
dt

= A(X(t)), (15)

where,
X(t) = col(x1,x2,x3,x4,x5) ∈ R3

+

X(0) = col(x1(0),x2(0),x3(0),x4(0),x5(0)) ∈ R3
+

and

A(X(t)) =

⎛
⎜⎜⎜⎜⎝

A1(X(t))
A2(X(t))
A3(X(t))
A4(X(t))
A5(X(t))

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

rx1 −βx1−d1x1−ax1x5

βx1−d2x2 −bx2x5− γx2x3

γx2x3 −d3x3

k1ax1x5 + k2bx2x5 − δx4−d4x4

δx4 −d5x5

⎞
⎟⎟⎟⎟⎠

with A : R
5 → R

5
+ and A ∈C∞(R5).

It is clear that in the Eqs. (15), Ai(Xi) |Xi=0� 0, for i = 1,2, ..5. Due to the
general classical theorem introduced by Nagumo[29], the solution of (15) with initial
conditions A(0) ∈ R

5, say A = A(t;A0), such that A ∈ R
5,∀t � 0 that is for all finite

time.
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LEMMA 2. Solutions of model (11) corresponding to the initial conditions (12)
which initiate in R5

+ are uniformly bounded within the region Ω .

Proof. Case I. k1 = k2 = 1.
Let

W = x1 + x2 + x3 + x4 + x5, (16)

differentiation of (16) and using Eq. (11), we get

dW
dt

= (r−d1)x1 −d2x2 −d3x3−d4x4−d5x5. (17)

For a constant η , by Eq. (17), we have{
dW
dt + ηW = (r−d1 + η)x1− (d2−η)x2− (d3−η)x3

−(d4−η)x4− (d5−η)x5.
(18)

If we choose η = min{d1,d2,d3,d4,d5} , Eq. (18) gives

dW
dt

+ ηW � (r+ η + ε),ε > 0, (19)

If we denote K′ = (r+ η + ε), we have

dW
dt

+ ηW � K′, (20)

integrating both sides, due to [5, 14, 21, 42], the above inequality (20), we get

0 <� ηW (0)−K′

η
e−ηt +

K′

η
, (21)

taking t → ∞ , we have from (21),

0 < W (x1,x2,x3,x4,x5) � K′

η
. (22)

Hence, from Eq. (22) it can be concluded that, all the solutions of system (11), initiating
from {R5

+\0} are confined in the region Ω = {(x1,x2,x3,x4,x5) ∈ R5
+,W = K′

η + ε1}
for any ε1 > 0 and t → ∞ , hence the proof completed.

The two cases viz. (i)k1 = k2 �= 1 (ii) k1 �= k2 may also be proceeded similarly.

2.1. Equilibria and their existence

Infection free equilibrium (Ex1x2x4x5) may be obtained by solving the following
system; ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
rx1 −βx1−d1x1 −ax1x5 = 0,

βx1−d2x2−bx2x5 = 0,

k1ax1x5 + k2bx2x5− δx4−d4x4 = 0,

δx4 −d5x5 = 0,

(23)
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The components of equilibrium point Ex1x2x4x5 are given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = x2(d2+bx5)
β ,

x2 =
(δ+d4)x4

x5
(d2+bx5)k1a

β +k2b
,

x4 = d5(r−β−d1)
δa ,

x5 = (r−β−d1)
a ,

(24)

Ecologically feasible co-existing equilibrium point may be obtained by solving the fol-
lowing system; ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

rx1 −βx1−d1x1 −ax1x5 = 0,

βx1−d2x2−bx2x5 − γx2x3 = 0,

γx2x3−d3x3 = 0,

k1ax1x5 + k2bx2x5− δx4−d4x4 = 0,

δx4 −d5x5 = 0,

(25)

in R5
+ = {(x1,x2,x3,x4,x5) ∈ R5 : x1 � 0,x2 � 0,x3 � 0,x4 � 0,x5 � 0}. Let co-existing

equilibrium point(s)be E∗ = (x∗1,x
∗
2,x

∗
3,x

∗
4,x

∗
5) . Mathematically, components of interior

equilibrium point E∗ = (x∗1,x
∗
2,x

∗
3,x

∗
4,x

∗
5) are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗1 =
(

(δ+d4)d5
δk1a

− k2bd3
γk1a

)
,

x∗2 = d3
γ ,

x∗3 =
(

(δ+d4)βd5
d3δk1a

− k2bβ
γk1a − d2

γ − b(r−β−d1)
γa

)
,

x∗4 = d5(r−β−d1)
δa ,

x∗5 = (r−β−d1)
a ,

(26)

It is also important to mention that, our model (11) has unique co-existing equilibrium
point E∗ = (x∗1,x

∗
2,x

∗
3,x

∗
4,x

∗
5) . Hence, the co-existing equilibrium E∗ = (x∗1,x

∗
2,x

∗
3,x

∗
4,x

∗
5)

exists provided the following conditions are satisfied;

⎧⎪⎪⎨
⎪⎪⎩

(δ +d4)d5γ > k2bδd3,(
(δ+d4)βd5

d3δk1a
− k2bβ

γk1a − d2
γ − b(r−β−d1)

γa

)
> 0,

(r−β −d1) > 0.

(27)

REMARK 1. Equilibrium points other then Ex1x2x4x5 , E∗ (as mentioned above)
viz. Ex2x3x4x5 , Ex1x3x4x5 , Ex1x2x3x5 , Ex1x2x3x4 , Ex3x4x5 , Ex1x4x5 , Ex1x2x5 , Ex1x2x3 , Ex2x4x5 ,
Ex2x3x5 etc. do not exist.
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3. Stability Analysis

At any non zero point (x1,x2,x3,x4,x5) , Jacobian matrix of Eq. (11) is given by

J =

⎛
⎜⎜⎜⎜⎝

a11 0 0 0 a15

a21 a22 a23 0 a25

0 a32 a33 0 0
a41 a42 0 a44 a45

0 0 0 a54 a55

⎞
⎟⎟⎟⎟⎠ , (28)

where, a11 = (r−β −d1−ax5), a15 = −ax1 , a21 = β , a22 = −d2−bx5− γx3 , a23 =
−γx2 , a25 = −bx2,a32 = γx3,a33 = γx2 − d3,a41 = k1ax5,a42 = k2bx5,a44 = −δ −
d4,a45 = k1ax1 + k2bx2,a54 = δ ,a55 = −d5.

3.1. Infection free equilibrium (Ex1x2x4x5)

At the point (x1,x2,0,x4,x5) , Jacobian matrix J (corresponding to (Ex1x2x4x5))
reduced to the following form

J =

⎛
⎜⎜⎜⎜⎝

a11 0 0 0 a15

a21 a22 a23 0 a25

0 0 a33 0 0
a41 a42 0 a44 a45

0 0 0 a54 a55

⎞
⎟⎟⎟⎟⎠ , (29)

where, a11 = (r−β −d1−ax5), a15 =−ax1 , a21 = β , a22 =−d2−bx5 , a23 =−γx2 ,
a25 = −bx2,a33 = γx2 − d3,a41 = k1ax5,a42 = k2bx5,a44 = −δ − d4,a45 = k1ax1 +
k2bx2,a54 = δ ,a55 = −d5. And x1,x2,x4,x5 are listed at Eq. (24). One eigenvalue of
Eq. (29) is a33 and rest four are the eigen values of the matrix⎛

⎜⎜⎝
a11 0 0 a15

a21 a22 0 a25

a41 a42 a44 a45

0 0 a54 a55

⎞
⎟⎟⎠ , (30)

the characteristic equation of Eq. (30) is given by

(λ 3 +A1λ 2 +A2λ +A3)λ = 0, (31)

where, ⎧⎪⎨
⎪⎩

A1 = −[a11 +a22 +a44 +a55],
A2 = −a44a54 +a11a44,

A3 = (a45a54)a11.

(32)

Hence, characteristic equation of Eq. (29) is given by

(λ 3 +A1λ 2 +A2λ +A3)λ (λ −a33) = 0, (33)

Therefore, ’0’ is an eigenvalue, hence, the infection free equilibrium point (Ex1x2x4x5)
is unstable.
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3.2. The co-existing equilibrium point E∗ = (x∗1,x
∗
2,x

∗
3,x

∗
4,x

∗
5)

The Jacobian matrix corresponding to E∗ is given by

J =

⎛
⎜⎜⎜⎜⎝

a∗11 0 0 0 a∗15
a∗21 a∗22 a∗23 0 a∗25
0 a∗32 a∗33 0 0

a∗41 a∗42 0 a∗44 a∗45
0 0 0 a∗54 a∗55

⎞
⎟⎟⎟⎟⎠ , (34)

where, a∗11 = (r−β −d1−ax∗5), a∗15 = −ax∗1 , a∗21 = β , a∗22 = −d2−bx∗5− γx∗3 , a∗23 =
−γx∗2 , a∗25 = −bx∗2,a

∗
32 = γx∗3,a

∗
33 = γx∗2 − d3,a∗41 = k1ax∗5,a

∗
42 = k2bx∗5,a

∗
44 = −δ −

d4,a∗45 = k1ax∗1 + k2bx∗2,a
∗
54 = δ ,a∗55 = −d5.

The characteristic equation of Eq. (34) is given by

λ 5 +B1λ 4 +B2λ 3 +B3λ 2 +B4λ +B5 = 0, (35)

where, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1 = a∗11 +a∗22 +a∗33 +a∗44 +a∗55,

B2 = (a∗44a
∗
55−a∗45a

∗
54)+ (a∗22a

∗
33−a∗23a

∗
32)+ (a∗44 +a∗55)

+a∗11(a
∗
44 +a∗55)+a∗11(a

∗
22 +a∗33),

B3 = (a∗44 +a∗55−1)(a∗22a
∗
33−a∗32a

∗
23)+ (a∗22 +a∗33−1)(a∗44a

∗
55,

−a∗45a
∗
54)− (a∗44 +a∗55)(a

∗
22 +a∗33)−a∗54a

∗
15a

∗
41,

B4 = a∗11(a
∗
22 +a∗33)(a

∗
44a

∗
55−a∗45a

∗
54)+a∗11(a

∗
44 +a∗55),

(a∗22a
∗
33−a∗23a

∗
32)− (a∗44a

∗
55−a∗45a

∗
54)(a

∗
22a

∗
33−a∗23a

∗
32)

−a∗25a
∗
54a

∗
42a

∗
33 +a∗11a

∗
25a

∗
54a

∗
42−a∗15a

∗
42a

∗
21 +a∗15(a22 +a∗33)a

∗
41,

B5 = a∗54a
∗
15(a

∗
21a

∗
33a

∗
42 +a∗23a

∗
41a

∗
32−a∗41a

∗
22a

∗
33),

−a∗25a
∗
54a

∗
42a

∗
33− (a∗44a

∗
55−a∗45a

∗
54)(a

∗
22a

∗
33−a∗23a

∗
32).

(36)

The co-existing equilibrium point E∗ = (x∗1,x
∗
2,x

∗
3,x

∗
4,x

∗
5) for the system (11) is lo-

cally asymptotically stable (using the Routh-Hurwitz criteria) if the following condi-
tions hold as follows:⎧⎪⎨

⎪⎩
Bi > 0, i = 1,2,3,4,5,

B1B2B3 > B2
3 +B2

1B4,

(B1B4−B5)(B1B2B3−B2
3−B2

1B4) > B5(B1B2 −B3)2 +B1B2
5.

(37)

REMARK 2. The existence of co-existing equilibrium point E∗ = (x∗1,x
∗
2,x

∗
3,x

∗
4,x

∗
5)

convey a message that all the five species viz. immature prey, mature prey, infected prey,
immature predator and mature predator exist in the ecosystem. It means that existence
of E∗ implies that infection in the system also exists. Infection free equilibrium point
(Ex1x2x4x5) is not stable. It means that once the infection occurs in the system, it can not
remove. Because the co-existing equilibrium point E∗ may be stable if the conditions
listed in (37) are satisfied.
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4. Discussion

In this paper, a stage structured prey-predator model is proposed and studied.
Stages for prey and predator both have been considered, therefore the prey popula-
tion is bifurcated into two populations viz. immature prey and mature prey and sim-
ilarly predator population is also bifurcated into two classes viz. immature predator
and mature predator. We also considered that infection occurs in the prey popula-
tion only. By remark 1, it is observed that only two equilibrium points for the model
(11) viz. infection free equilibrium (Ex1x2x4x5) and the co-existing equilibrium point
E∗ = (x∗1,x

∗
2,x

∗
3,x

∗
4,x

∗
5) exist. Local stability analysis have been investigated and results

show that the infection free equilibrium point (Ex1x2x4x5) is not stable. The co-existing
equilibrium point E∗ = (x∗1,x

∗
2,x

∗
3,x

∗
4,x

∗
5) is conditionally stable i.e. it is stable provided

the set of conditions listed in the Eq. (37) are satisfied. In real life situations the pa-
rameters are changing with time. Hence, models with time dependent parameters may
be included in the future scope. As a matter of fact, this study is not a case study hence
real data/parameters are not available. Real parameters investigation is also a concern
of future study.
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