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Abstract. The practical stability of a nonlinear nonautonomous Caputo fractional differential
equation is studied using Lyapunov like functions. The novelty of this paper is based on the new
definition of the derivative of a Lyapunov like function along the given fractional differential
equation. Comparison results using this definition for scalar fractional differential equations are
presented. Several sufficient conditions for practical stability, practical quasi stability, strongly
practical stability of the zero solution and the corresponding uniform types of practical stability
are established.

1. Introduction

An important property in the qualitative theory of differential equations is stabil-
ity of solutions. In [20] the authors pointed out that the stability and even asymptotic
stability themselves are neither necessary nor sufficient to ensure practical stability.
The desired state of a system may be mathematically unstable but however the system
may oscillate sufficiently close to the desired state, and its performance is deemed ac-
ceptable. Practical stability is neither weaker nor stronger than the usual stability; an
equilibrium can be stable in the usual sense, but not practically stable, and vice versa.
Practical stability is studied for various types of differential equations (see, for example,
[3], [5], [10], [11], [12], [13], [15], [17], [19], [21], [22], [28]).

The stability of fractional order systems is quite recent. There are several ap-
proaches in the literature to study stability and one is the Lyapunov approach. Results
on stability in the literature via Lyapunov functions could be divided into two main
groups:

- continuously differentiable Lyapunov functions (see, for example, the papers [2],
[9], [14], [24]). Different types of stability are discussed using the Caputo deriva-
tive of Lyapunov functions which depends significantly of the unknown solution
of the fractional equation.

Mathematics subject classification (2010): 34A34, 34A08, 34D20.
Keywords and phrases: practical stability, strongly practical stability, Lyapunov functions, Caputo

derivatives, fractional differential equations.
This research is partially supported by the Fund NPD, Plovdiv University, No. MU15-FMIIT-008.

c© � � , Zagreb
Paper DEA-08-04

53

http://dx.doi.org/10.7153/dea-08-04


54 RAVI AGARWAL, S. HRISTOVA AND D. O’REGAN

- continuous Lyapunov functions (see, for example, the papers [7], [16], [18]) in
which the authors use the derivative of a Lyapunov function similar to the Dini
derivative of Lyapunov functions.

In this paper the practical stability of nonlinear nonautonomous Caputo fractional
differential equations is defined and studied using Lyapunov functions. The Caputo
fractional Dini derivative of a Lyapunov function is defined in an appropriate way. Note
this type of derivative is introduced in [1] and is used to study the stability and asymp-
totic stability of Caputo fractional equations. Comparison results using this new defini-
tion and scalar fractional differential equations are presented and sufficient conditions
for practical stability, uniform practical stability, quasi practical stability, uniform quasi
practical stability, strong practical stability and uniformly strongly practically stability
of nonlinear nonautonomous Caputo fractional differential equations are obtained.

2. Notes on fractional calculus

Fractional calculus generalizes the derivative and the integral of a function to a
non-integer order [16, 25, 26] and there are several definitions of fractional derivatives
and fractional integrals. In engineering, the fractional order q is often less than 1, so
we restrict our attention to q ∈ (0,1) .

1: The Riemann–Liouville (RL) fractional derivative of order q ∈ (0,1) of m(t)
is given by (see, for example, Section 1.4.1.1 [6], or [25])

RL
t0 Dqm(t) =

1
Γ(1−q)

d
dt

t∫
t0

(t− s)−q m(s)ds, t � t0,

where Γ(.) denotes the Gamma function.
2: The Caputo fractional derivative of order q ∈ (0,1) is defined by (see, for

example, Section 1.4.1.3 [6])

c
t0D

qm(t) =
1

Γ(1−q)

t∫
t0

(t− s)−q m′(s)ds, t � t0. (2.1)

The Caputo and Riemann-Liouville formulations coincide when m(t0) = 0. The prop-
erties of the Caputo derivative are quite similar to those of ordinary derivatives. Also,
the initial conditions of fractional differential equations with the Caputo derivative has
a clear physical meaning and as a result the Caputo derivative is usually used in real
applications.

3: The Grunwald−Letnikov fractional derivative is given by (see, for example,
Section 1.4.1.2 [6])

GL
t0 Dqm(t) = lim

h→0+

1
hq

[ t−t0
h ]

∑
r=0

(−1)r
(

q
r

)
m(t − rh), t � t0,
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and the Grunwald−Letnikov fractional Dini derivative by

GL
t0 Dq

+m(t) = limsup
h→0+

1
hq

[ t−t0
h ]

∑
r=0

(−1)r
(

q
r

)
m(t − rh),

(
q
r

)
t � t0, (2.2)

where
(q
r

)
are the Binomial coefficients and [ t−t0

h ] denotes the integer part of the frac-
tion t−t0

h .

EXAMPLE 1. Note GL
0 Dq sin(t)= t1−qE2,2−q(−t2) and note for q = 0.5 the deriva-

tive is not periodic but it converges to the periodic function sin(t +q π
2 ) . �

PROPOSITION 1. (Theorem 2.25 [8]). Let m ∈ C1[t0,b] . Then, for t ∈ (t0,b] ,
GL
t0 Dqm(t) =RL

t0 Dqm(t) .

Also, according to Lemma 3.4 ([8]) the following equality

c
t0D

q
t m(t) =RL

t0 Dq
t m(t)−m(t0)

(t − t0)−q

Γ(1−q)

holds.
From the relation between the Caputo fractional derivative and the Grunwald −

Letnikov fractional derivative using (2.2) we define the Caputo fractional Dini deriva-
tive as

c
t0D

q
+m(t) = GL

t0 Dq
+[m(t)−m(t0)],

i.e.

c
t0D

q
+m(t) = limsup

h→0+

1
hq

[
m(t)−m(t0)−

[ t−t0
h ]

∑
r=1

(−1)r+1
(

q
r

)(
m(t− rh)−m(t0)

)]
. (2.3)

DEFINITION 1. ([7]) We say m ∈ Cq([t0,T ],Rn) if m(t) is differentiable (i.e.
m′(t) exists), the Caputo derivative c

t0D
qm(t) exists and satisfies (2.1) for t ∈ [t0,T ] .

REMARK 1. If m ∈Cq([t0,T ],Rn) then c
t0D

q
+m(t) = c

t0D
qm(t) .

In this paper we will use the following result:

LEMMA 1. ([2]). Let x ∈Cq([t0,∞),Rn) . Then for any t � t0 the inequality

c
t0D

q
(
xT (t)x(t)

)
� 2 xT (t) c

t0D
qx(t)

holds.
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3. Statement of the problem

Consider the initial value problem (IVP) for the system of fractional differential
equations (FrDE) with a Caputo derivative for 0 < q < 1,

c
t0D

qx = f (t,x), x(t0) = x0 (3.1)

where x,x0 ∈ R
n, f ∈C[R+×R

n,Rn] , f (t,0) ≡ 0, t0 � 0.
We will assume in this paper that the function f ∈C[R+×R

n,Rn] is such that for
any initial data (t0,x0) ∈ R+ ×R

n the IVP for FrDE (3.1) has a solution x(t; t0,x0) ∈
Cq([t0,∞),Rn) . Note some sufficient conditions for global existence of solutions of IVP
for FrDE (3.1) are given in [4], [8], [16].

The goal of our paper is to study various types of practical stability of the zero
solution of the IVP for FrDE (3.1). We now present some types of practical stability of
the zero solution of fractional differential equations. In the definition below we assume
x(t;t0,x0) is any solution of the FrDE (3.1).

DEFINITION 2. Let positive constants λ ,A, λ < A be given. The zero solution of
the system of FrDE (3.1) is said to be

(S1) practically stable with respect to (λ ,A) if there exists t0 � 0 such that for
any x0 ∈ R

n the inequality ||x0|| < λ implies ||x(t;t0,x0)|| < A for t � t0 ;
(S2) uniformly practically stable with respect to (λ ,A) if (S1) holds for all t0 ∈

R+ ;
(S3) practically quasi stable with respect to (λ ,A,T ) if there exists t0 � 0 such

that for any x0 ∈ R
n the inequality ||x0|| < λ implies ||x(t; t0,x0)|| < A for t � t0 +T ,

where the positive constant T is given;
(S4) uniformly practically quasi stable with respect to (λ ,A,T ) if (S3) holds for

all t0 ∈ R+ ;
(S5) strongly practically stable with respect to (λ ,A,K,T ) if there exists t0 � 0

such that for any x0 ∈ R
n the inequality ||x0|| < λ implies ||x(t; t0,x0)|| < A for t � t0

and ||x(t; t0,x0)||< K for t � t0+T , where the positive constants λ ,A,K,T, K < λ < A
are given;

(S6) uniformly strongly practically stable with respect to (λ ,A,B,T ) if (S5) holds
for all t0 ∈ R+ .

EXAMPLE 2. Consider the scalar FrDE

c
t0D

qx = Cx, x(t0) = x0, (3.2)

where x ∈ R , C is a constant. Its solution is x(t;t0,x0) = x0 Eq(C(t − t0)q) for t � t0 ,
where Eq denotes the one parametric Mittag-Leffler function. For C � 0 the zero
solution is uniformly stable. Also, for any given couple (λ ,A), 0 < λ < A, the zero
solution is uniformly practically stable w.r.t. to (λ ,A) (see Figure 1 for C = −1 and
q = 0.2). �
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Figure 1. Example 2: Graphs of solution of
(3.2) for q = 0.2 , C = −1 and various

initial points.
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Figure 2. Example 3: Graphs of solutions
with various initial points x0 .

REMARK 2. In the case q = 1 Definition 2 reduces to a definition for the corre-
sponding types of practical stability of zero solution of ordinary differential equations,
given in the books [17], [22].

REMARK 3. The practical stability of a nonzero solution x∗(t) = x(t; t0,x0) of the
system FrDE (3.1) could be reduced to studying the practical stability of the zero solu-
tion of an appropriate FrDE. Indeed, define z(t) = y(t; t0,y0)− x∗(t) , where y(t; t0,y0)
is any solution of (3.1). Then z(t) is a solution of c

t0D
qz(t) = F(t,z) for t � t0 ,

z(t0) = y0− x0 , where F(t,z) = f (t,z+ x∗(t))− f (t,x∗(t)) and F(t,0) = 0.

EXAMPLE 3. Consider the ordinary differential equation

x′ = (1− x)x (3.3)

which is similar to logistic model in population dynamic. The solution of that equation
with an initial value condition x(t0) = x0,x0 > 0 is x(t) = x0et

(1−x0)et0+x0et . The zero

solution is not stable, but it is uniformly practically stable w.r.t. (λ ,1), 0 < λ < 1. Zero
solution of (3.3) is also uniformly practically stable w.r.t. (λ ,A), 0 < λ < A, A � 1,
but it is not practically stable w.r.t. (λ ,A), 0 < λ < A < 1, (see the graphs of solutions
for t0 = 0, and various x0 on Figure 2).

Consider the Lyapunov function V (t,x) = e−2tx2 . Then for 0 � x � 1, t0 � 0 we
obtain D(3.3)V (t,x) = 2e−2tx2(1− x)−2e−2tx2 = −2x3 � 0. �

In this paper we will use the followings sets:

K = {a ∈C[R+,R+] : a is strictly increasing and a(0) = 0},
B(λ ) = {x ∈ R

n : ‖x‖ � λ}, λ = const > 0.

In our results we will use the initial value problem for scalar fractional differential
equations of the form

c
t0D

qu = g(t,u) , t � t0, u(t0) = u0 (3.4)

where u,u0 ∈ R , g : R+×R→ R , g(t,0)≡ 0, t0 � 0.We will assume in the paper that
the function g : R+×R→ R is such that for any initial data (t0,u0) ∈ R+×R the IVP
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for the scalar FrDE (3.4) with u(t0) = u0 has a solution u(t; t0,u0) ∈Cq([t0,∞),R) (we
will assume the existence of a maximal solution in Section 5). Note some existence
results are given in [4], [8], [16].

In this paper we will study the connection between the practical stability of the
system FrDE (3.1) and the practical stability of the scalar FrDE (3.4).

We now introduce the class Λ of Lyapunov-like functions which will be used to
investigate the practical stability of the system FrDE (3.1).

DEFINITION 3. Let J ⊂ R+ and Δ ⊂ R
n, 0 ∈ Δ . We will say that the function

V (t,x) : J×Δ → R+ belongs to the class Λ(J,Δ) if V (t,x) ∈ C(J×Δ,R+) is locally
Lipschitzian with respect to its second argument and V (t,0) ≡ 0 for t ∈ J .

Lyapunov like functions used to discuss stability for differential equations require
an appropriate definition of the derivative of the Lyapunov function along the stud-
ied differential equations. Note for the ordinary differential equation x′ = f (t,x) the
following derivative of the Lyapunov function V (t,x) along the ordinary differential
equation is

DV (t,x) = limsup
h→0

1
h

[
V (t,x)−V(t−h,x−h f (t,x)

]
. (3.5)

In some papers, for example [16], [18], the derivative of the Lyapunov function
from the class Λ along the FrDE(3.1) is introduced as a natural generalization of (3.5)
as

DqV (t,x) = limsup
h→0

1
hq

[
V (t,x)−V(t −h,x−hq f (t,x)

]
. (3.6)

EXAMPLE 4. Consider the quadratic Lyapunov function V (x) = x2, x ∈ R . Then
using (3.5) and (3.6) we have

DV (x) = 2x f (t,x)

and

DqV (x) = limsup
h→0

1
hq

[
x2 − (x−hq f (t,x))2

]
= 2x f (t,x).

Both derivatives are of the same type, i.e. (3.6) could be considered as a generalization
of (3.5).

In some papers, for example [24], the fractional derivative of the Lyapunov func-
tion with the unknown solution x(t) of the FrDE (3.1) is applied. In the case of
quadratic Lyapunov functions according to Lemma 1 we get

c
t0D

qV (x(t)) = c
t0D

q
(
x2(t)

)
� 2 x(t) c

t0D
qx(t) = 2x(t) f (t,x(t))

or
c
t0D

q
(
x2(t)

)
� DqV (x(t)).

Therefore, in the case of a quadratic Lyapunov function one could use the derivative
(3.6) instead of the Caputo fractional derivative c

t0D
qV (x(t)) . �
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The formula (3.6) for the derivative of a Lyapunov function could lead to problems
when the Lyapunov function depends on t .

EXAMPLE 5. Let V : R+ ×R → R+ be given by V (t,x) = sin2 t x2 . It is locally
Lipshitz with respect to its second argument x .

Apply formula (3.6) to obtain the derivative of V , namely

DqV (t,x) = limsup
h→0

1
hq

[
sin2 t x2 − sin2(t −h)(x−hq f (t,x))2

]

= limsup
h→0

1
hq

{(
sin2 t− sin2(t−h)

)
x2 + sin2(t−h)hq f (t,x)(2x−hq f (t,x))

}

= x2 limsup
h→0

sin2 t− sin2(t−h)
hq + limsup

h→0
sin2(t−h) f (t,x)(2x−hq f (t,x))

= 2x sin2(t) f (t,x).

(3.7)

Let f (t,x) ≡ 0. Then the solution of (3.1) for n = 1 and t0 = 0 is x(t) ≡ x0 , t �
0 and V (t,x(t)) = x2

0 sin2 t . All the conditions of Corollary 2.2 [18] are satisfied so
the inequality V (t,x(t)) � V (t0,x0) , t � t0 has to be hold. However in this case the
inequality x2

0 sin2 t � x2
0 sin2 0 = 0 is not satisfied for all t � t0 . �

The formula (3.6) in the case of Lyapunov function depending on t gives a quite
different result.

EXAMPLE 6. Let V : R+ ×R → R+ be given by V (t,x) = x2m(t) , where m ∈
C1(R+,R+) . Then from (3.5) we obtain

DV (t,x) = 2xm(t) f (t,x)+ x2(m(t)
)′

(3.8)

and from (3.6) we get

DqV (t,x) = limsup
h→0

1
hq

[
x2m(t)−m(t−h)

(
x−hq f (t,x)

)2
]

= limsup
h→0

1
hq

[
x2(m(t)−m(t−h)

)−m(t−h)
((

x−hq f (t,x)
)2− x2

)]

= x2 limsup
h→0

m(t)−m(t−h)
hq + f (t,x) limsup

h→0
m(t −h)(

(
2x−hq f (t,x)

)

= 2xm(t) f (t,x).

(3.9)

Formula (3.9) gives only one term for the derivative of Lyapunov function, which differs
to the classical derivative (3.8) of Lyapunov function for ordinary differential equations.

Formula (3.9) is independent on the order q of the fractional differential equation.
However the behavior of solutions of fractional differential equations depends signifi-
cantly on the order q . For example, consider the IVP for FrDE c

0D
qx = 1−x, x(0) = 0.

Note x(t) = tqEq,1+q(−tq) . Now limt→∞ x(t) varies for different q (see the graphs of
solutions for different q in Figure 3). �
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Now we define in a new way a derivative of Lyapunov function among a given
fractional differential equation. The formula will differ from the derivative of Lyapunov
functions (3.6).

To define the derivative of the Lyapunov function we will use the Caputo fractional
Dini derivative of a function m(t) given in (2.3). We define the generalized Caputo
fractional Dini derivative of the function V (t,x) ∈ Λ([t0,T ),Δ) along trajectories of
solutions of the system FrDE (3.1) as follows::

c
+Dq

(3.1)
V (t,x; t0,x0)

= limsup
h→0+

1
hq

{
V (t,x)−V(t0,x0)

−
[ t−t0

h ]

∑
r=1

(−1)r+1
(

q
r

)[
V (t− rh,x−hq f (t,x))−V (t0,x0)

]}
, for t � t0,

(3.10)

where t ∈ (t0,T ) , x,x0 ∈ Δ , and there exists h1 > 0 such that t − h ∈ [t0,T ) , x−
hq f (t,x) ∈ Δ for 0 < h � h1 .

Note the definition (3.10) has been introduced and used in [1] for studying the
stability properties of zero solution of FrDE (3.1).

REMARK 4. Let q = 1 in formula (3.10). Then using
(q
r

)
= 0 for n < r , n,r > 0

integers, we obtain for any t � 0 the formula

D+V (t,x) = limsup
h→0+

1
h

{
V (t,x)−V(t−h,x−h f (t,x))

}

which is used in the literature.

We will give an example to illustrate the application of the introduced Caputo
fractional Dini derivative of the function V (t,x) ∈ Λ([t0,T ),Δ) along trajectories of
solutions of the initial value problem for the system FrDE (3.1) and we willl make
comparisons wih other derivatives of Lyapunov functios in the literature.

EXAMPLE 7. Let V : R+ ×R → R+ be given by V (t,x) = x2m(t) , where m ∈
C1(R+,R+) . Then the Caputo fractional Dini derivative along trajectories of solutions
of the initial value problem for the system FrDE (3.1) given by formula (3.10) is reduced
to

c
+Dq

(3.1)
V (t,x; t0,x0)

= limsup
h→0+

1
hq

{
x2m(t)− x2

0m(t0)

−
[ t−t0

h ]

∑
r=1

(−1)r+1
(

q
r

)[(
x−hq f (t,x)

)2

m(t− rh)− x2
0m(t0)

]}
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= x2 limsup
h→0+

1
hq

[ t−t0
h ]

∑
r=0

(−1)r
(

q
r

)
m(t− rh)− x2

0m(t0) limsup
h→0+

1
hq

[ t−t0
h ]

∑
r=0

(−1)r
(

q
r

)

− f (t,x) limsup
h→0+

(
2x−hq f (t,x)

) [ t−t0
h ]

∑
r=1

(−1)r
(

q
r

)
m(t − rh).

Using limN→∞ ∑N
r=0(−1)r

(q
r

)
= 0, where N is a natural number, and the limit

limh→0+[ t−t0
h ] = ∞ we obtain

lim
h→0+

[ t−t0
h ]

∑
r=1

(−1)r
(

q
r

)
= −1 (3.11)

and from the definition of Grunwald−Letnikov fractional derivative we obtain

c
+Dq

(3.1)
V (t,x; t0,x0) = x2 GL

t0 Dqm(t)− x2
0

GL
t0 Dqm(t0)+2x f (t,x)m(t). (3.12)

According to Proposition 1 we obtain

c
+Dq

(3.1)
V (t,x; t0,x0) = x2 RL

t0 Dqm(t)− x2
0

RL
t0 Dqm(t0)+2x f (t,x)m(t)

= x2 RL
t0 Dqm(t)− x2

0m(t0)
(t− t0)qΓ(1−q)

+2x f (t,x)m(t).
(3.13)

Consider the Lyapunov function in the case t0 = 0, x0 = 0. Then the Caputo fractional
Dini derivative of V from (3.13) is given by

c
+Dq

(3.1)
V (t,x;0,0) = x2 RL

0 Dqm(t)+2x f (t,x)m(t). (3.14)

The derivative (3.14) obtained from the formula (3.10) is similar to the classical deriva-
tive DV (t,x) = x2

(
m(t)

)′ + 2x f (t,x)m(t) used for studying zero solution of ordinary
differential equation (compare with Example 6). �

REMARK 5. Note in some papers, for example [24], the fractional derivative of
the Lyapunov function with the unknown solution x(t) of the FrDE (3.1) is applied. In
the case of the Lyapunov function V (t,x) depending directly on t the Caputo fractional
derivative c

t0D
q
(3.1)

V (t,x(t)) is very difficult to obtain. For example, if V (t,x) = m(t)x2

as in Example 7, then the derivative c
t0D

q
(
m(t)

(
x(t)

)2
)

is very complicated to apply.

4. Fractional differential inequalities and comparison results

Again in this section we assume 0 < q < 1. Now we will give some comparison
results. Note similar results were obtained by the authors in paper ([1]).

LEMMA 2. ([1]). Let m ∈C([t0,T ],R) and suppose that there exists t∗ ∈ (t0,T ] ,
such that m(t∗) = 0 and m(t) < 0 for t0 � t < t∗ . Then if the Caputo fractional Dini
derivative (2.3) of m exists at t∗ then the inequality cDq

+m(t∗) > 0 holds.
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LEMMA 3. (Comparison result) [1]. Assume the following conditions are satis-
fied:

1. The function x∗(t) = x(t;t0,x0) ∈ Cq([t0,T ],Δ) is a solution of the FrDE (3.1)
where Δ ⊂ R

n , t0, T ∈ R+, t0 < T are given constants, x0 ∈ Δ .

2. The function g ∈C([t0,T ]×R,R) .

3. The function V ∈ Λ([t0,T ],Δ) and for any point t ∈ [t0,T ] the inequality

c
+Dq

(3.1)
V (t,x(t;t0,x0)) � g(t,V (t,x(t; t0,x0)))

holds.

4. The function u∗(t) = u(t;t0,u0) ∈ Cq([t0,T ],R) is the maximal solution of the
initial value problem (3.4).

Then the inequality V (t0,x0) � u0 implies V (t,x∗(t)) � u∗(t) for t ∈ [t0,T ].

If g(t,x) ≡ 0 in Lemma 3 we obtain the following result:

COROLLARY 1. Assume the following conditions are satisfied:

1. The function x∗(t) = x(t;t0,x0) ∈ Cq([t0,T ],Δ) is a solution of the FrDE (3.1)
where Δ ⊂ R

n .

2. The function V ∈ Λ([t0,T ],Δ) and the inequality

c
+Dq

(3.1)
V (t,x(t;t0,x0) � 0, t ∈ [t0,T ]

holds.

Then for t ∈ [t0,T ] the inequality V (t,x∗(t)) � V (t0,x0) holds.

EXAMPLE 8. Let V : R+ ×R → R+ be given by V (t,x) = sin2 t x2 and t0 = 0.
From (3.13) we obtain the Caputo fractional Dini derivative of V , namely

c
+Dq

(3.1)
V (t,x;0,x0) = x2 RL

0 Dq(sin(t))2 +2x f (t,x)(sin(t))2.

Use (sin(t))2 = 0.5−0.5cos(2t) and RL
0 Dq cos(2t) = 2q cos(2t + qπ

2 ) and obtain

c
+Dq

(3.1)
V (t,x;0,x0) = x2

(
0.5

t−q

Γ(1−q)
+2q−1 cos(2t +

qπ
2

)
)

+2x f (t,x)(sin(t))2.

Let f (t,x) ≡ 0. The solution of (3.1) for n = 1 is x(t) ≡ x0 , t � 0 and the Caputo
fractional Dini derivative

c
+Dq

(3.1)
V (t,x;0,x0) = x2

(
0.5

t−q

Γ(1−q)
+2q−1 cos(2t +

qπ
2

)
)
.
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Figure 3. Example 6: q = 0.1,0.5 and 0.8 .
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Figure 4. Example 8: q = 0.2,0.5 and 0.8 .

The sign of the Caputo fractional Dini derivative of V changes (see Figure 4 for the
graph of p(t) = 0.5 t−q

Γ(1−q) +2q−1 cos(2t + qπ
2 ) , q = 0.2,0.5,0.8). Therefore, the condi-

tions of Corollary 1 are not satisfied (compare with Example 4 for the derivative (3.6)).
Now let V : R+×R → R+ be given by V (t,x) = x2 . According to Eq. (3.13) for

m(t) ≡ 1 we obtain the equality

c
+Dq

(3.1)
V (t,x;0,x0) =

x2− x2
0

tqΓ(1−q)
+2x f (t,x).

Let f (t,x) = − x
tqΓ(1−q) . Then c

+Dq
(3.1)

V (t,x;0,x0) � 0 and according to Corollary 1

the inequality |x(t : t0,x0)|� |x0| , t � 0, holds for any solution x(t; t0,x0) of (3.1). �

REMARK 6. Corollary 1 is similar to Corollary 2.2 [18] where instead of deriva-
tive (3.10) is used (3.6).

The result of Lemma 3 is also true on the half line.

COROLLARY 2. [1]. Assume the following conditions are satisfied:

1. The function x∗(t) = x(t;t0,x0) ∈ Cq([t0,∞),Δ) is a solution of the FrDE (3.1)
where Δ ⊂ R

n .

2. The function g ∈C([t0,∞)×R,R) .

3. The function V ∈ Λ([t0,∞),Δ) and the inequality

c
+Dq

(3.1)
V (t,x(t;t0,x0)) � g(t,V (t,x(t; t0,x0))), t � t0

holds.

4. The function u∗(t) = u(t;t0,u0) ∈ Cq([t0,∞),R) is the maximal solution of the
initial value problem (3.4).

Then the inequality V (t0,x0) � u0 implies V (t,x∗(t)) � u∗(t) for t � t0.
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5. Main results

We obtain sufficient conditions for practical stability of the zero solution of the
system FrDE (3.1). Further we assume 0 < q < 1.

THEOREM 1. Suppose the following conditions hold:

1. The function g ∈C(R+ ×R,R) , g(t,0) ≡ 0 .

2. There exists Δ ⊂ R
n, 0 ∈ Δ such that for any t0 ∈ R+ and x0 ∈ Δ the FrDE (3.1)

has a solution x(t; t0,x0) ∈Cq([t0,∞),Δ) .

3. There exists a function V ∈ Λ(R+,Δ) such that

(i) the inequality
c
+Dq

(3.1)
V (t,x;t0,x0) � g(t,V (t,x)) (5.1)

holds for any t0,t ∈ R+, t � t0 and x,x0 ∈ B(A) where A is a given constant
such that B(A) ⊂ Δ;

(ii) b(||x||) � V (t,x) � a(||x||) for t ∈ R+, x ∈ B(A), where a,b ∈ K .

4. The zero solution of the scalar FrDE (3.4) is practically stable (uniformly practically
stable) w.r.t. (a(λ ),b(A)) where the constant λ > 0 is given such that λ < A, a(λ ) <
b(A) .

Then the zero solution of the system of FrDE (3.1) is practically stable (uniformly
practically stable) w.r.t. (λ ,A) .

REMARK 7. Note in the conditions of Theorem 1 we could have Δ ≡ R
n .

Proof. Let the zero solution of the scalar FrDE (3.4) be practically stable w.r.t. the
couple (a(λ ),b(A)) . Thus, there exists a point t0 � 0 such that |u0| < a(λ ) implies

|u(t;t0,u0)| < b(A) for t � t0, (5.2)

where u(t; t0,u0) is a solution of (3.4) (with initial point (t0,u0) i.e. u(t0) = u0 ).
Choose a point x0 ∈ B(λ ) and let x(t;t0,x0) ∈ Δ, t � t0, be a solution of the IVP

for the FrDE (3.1) for the chosen x0 and the above t0 . Assume the inequality

||x(t;t0,x0)|| < A for t � t0 (5.3)

is not true. Then there exists a point t∗ > t0 such that

||x(t; t0,x0)|| < A for t ∈ [t0,t∗) and ||x(t∗; t0,x0)|| = A. (5.4)

Let u0 = V (t0,x0) . According to condition 3(ii) and the choice of x0 we obtain
u0 < a(λ ) . From Lemma 3 for the interval [t0,t∗] we obtain

V (t,x(t;t0,x0)) � u∗(t;t0,u0) for t ∈ [t0, t∗]; (5.5)
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here u∗(t; t0,u0) is the maximal solution of (3.4). From inequality (5.5) and condition
3(ii) we get

b(A) = b(||x(t∗;t0,x0)||) � V (t∗,x(t∗;t0,x0)) � u∗(t∗; t0,u0) < b(A). (5.6)

The obtained contradiction proves inequality (5.3) is true. Thus the zero solution of
FrDE (3.1) is practically stable w.r.t. (λ ,A) .

If the zero solution of the scalar FrDE (3.4) is uniformly practically stable, then
the proof above with an arbitrary t0 shows the uniform practical stability w.r.t. (λ ,A)
of the zero solution of FrDE (3.1). �

THEOREM 2. Suppose the following conditions hold:

1. The conditions 1 and 2 of Theorem 1 are fulfilled.

2. There exists a function V ∈ Λ(R+,Δ) such that

(i) the inequality
c
+Dq

(3.1)
V (t,x;t0,x0) � g(t,V (t,x)) (5.7)

holds for any t0,t ∈ R+, t � t0 and x,x0 ∈ Δ;

(ii) b(||x||) � V (t,x) � a(||x||) for t ∈ R+, x ∈ Δ, where a,b ∈ K .

3. The zero solution of the scalar FrDE (3.4) is practically quasi stable (uniformly
practically quasi stable) w.r.t. (a(λ ),b(A),T ) where the positive constants T,λ ,A are
given such that λ < A, a(λ ) < b(A), B(A) ⊂ Δ .

Then the zero solution of the system of FrDE (3.1) is practically quasi stable (uni-
formly quasi practically stable) w.r.t. (λ ,A,T ) .

REMARK 8. Note in the conditions of Theorem 2 we could have Δ ≡ R
n .

Proof. Let the zero solution of the scalar FrDE (3.4) be practically quasi stable
w.r.t. (a(λ ),b(A),T ) . Thus there exists a point t0 � 0 such that |u0| < a(λ ) implies

|u(t;t0,u0)| < b(A) for t � t0 +T, (5.8)

where u(t; t0,u0) is a solution of (3.4) (with u(t0) = u0 )..
Choose a point x0 ∈ B(λ ) and let x(t;t0,x0) ∈ Δ be a solution of the IVP for the

FrDE (3.1) for the chosen x0 and the above t0 . Assume the inequality

||x(t;t0,x0)|| < A for t � t0 +T (5.9)

is not true. Then there exists a point t∗ � t0 +T such that ||x(t∗; t0,x0)|| � A .
Let u0 = V (t0,x0) . According to condition 2(ii) and the choice of x0 we obtain

u0 < a(λ ) and from Corollary 2 we obtain

V (t,x(t;t0,x0)) � u∗(t;t0,u0) for t � t0; (5.10)
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here u∗(t; t0,u0) is the maximal solution of (3.4).
From inequality (5.10) and condition 2(ii) we get

b(A) � b(||x(t∗;t0,x0)||) � V (t∗,x(t∗;t0,x0)) � u∗(t∗; t0,u0) < b(A). (5.11)

The obtained contradiction proves inequality (5.9) is true. Therefore, the zero solution
of FrDE (3.1) is practically quasi stable w.r.t. (λ ,A,T ) .

Let the zero solution of the scalar FrDE (3.4) be uniformly practically quasi stable
w.r.t. (a(λ ),b(A),T ) . Then the proof above with an arbitrary initial time t0 shows the
uniform practical quasi stability w.r.t. (λ ,A,T ) of the zero solution of FrDE (3.1). �

THEOREM 3. Suppose the following conditions hold:

1. The conditions 1 and 2 of Theorem 1 are fulfilled.

2. There exists a function V ∈ Λ(R+,Δ) such that

(i) the inequality
c
+Dq

(3.1)
V (t,x;t0,x0) � g(t,V (t,x)) (5.12)

holds for any t0,t ∈ R+, t � t0 and x,x0 ∈ Δ;

(ii) b(||x||) � V (t,x) � a(||x||) for t ∈ R+, x ∈ Δ, where a,b ∈ K .

3. The zero solution of scalar FrDE (3.4) is strongly practically stable (uniformly
strongly practically stable) w.r.t. (a(λ ),b(A),b(K),T ) where the positive constants
T,λ ,A,K are given such that K < λ < A, b(K) < a(λ ) < b(A), B(A) ⊂ Δ .

Then the zero solution of the system of FrDE (3.1) is strongly practically stable
(uniformly strongly practically stable) w.r.t. (λ ,A,K,T ) .

REMARK 9. Note in the conditions of Theorem 3 we could have Δ ≡ R
n .

The proof of Theorem 3 is similar to that in Theorem 1 and Theorem 2 so we omit it.

EXAMPLE 9. Consider the scalar FrDE

c
0D

qx(t) = (1− x)x (5.13)

which is the fractional generalization of the logistic model in population dynamic (see
Example 3).

Note, that if x0 > 0 then x(t) > 0, t � 0. Indeed, let h(t) = −x(t) . Then h(0) =
−x0 < 0. If we assume there exists a point t∗ > 0 such that h(t) < 0 for t ∈ [0,t∗)
and h(t∗) = 0 then according to Lemma 2 c

0D
qh(t∗) > 0. Also, from (5.13) we obtain

c
0D

qh(t∗) = 0. The obtained contradiction proves that the solution of (5.13) is positive
for positive initial values.

Let Δ = (0,∞) . Let the function m(t) ∈ C1(R+,Δ),m(0) = C > 0 be such that
RL
0 Dqm(t) = −2m(t) . Note that m(t) < m(0) for t � 0 ([7]).
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Now consider the Lyapunov function V (t,x) = m(t)x2 . Then according to Exam-
ple 7 for (t,x) ∈ R+×Δ we obtain

c
+Dq

(5.13)
V (t,x;0,x0) = −2x2m(t)− x2

0m(0)
tqΓ(1−q)

+2xm(t)x(1− x)

� −2x2m(t)− x2
0m(0)

tqΓ(1−q)
+2x2m(t)−2m(t)x3 � 0.

According to Theorem 1 the zero solution of the FrDE (5.13) is practically stable
w.r.t. (λ ,A), 0 < C < λ < A .

Note that in the case of ordinary derivatives q = 1, the Riemann-Louiville frac-
tional equation RL

0 Dqm(t) = −2m(t) for m(t) reduces to m′(t) = −2m(t) , m(0) = 1,
whose solution is e−2t and the Lyapunov function is the same as in Example 3. �
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