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Abstract. The aim of this survey paper is to provide the recent developments on the existence,
uniqueness and regularity results to fully nonlinear elliptic equations of the form{

F(x,u,Du,D2u) = f (x) in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in R
n .

1. Introduction

Let us consider
F(x,u,Du,D2u) = f (x) in Ω, (1.1)

u = 0 on ∂Ω, (1.2)

where Ω ⊂ R
n is a smooth bounded domain, unless we say explicitly otherwise, F :

Ω×R×R
n×S(n)−→R , S(n) is the set of all n×n real symmetric matrices equipped

with usual ordering and f : Ω −→ R . Equations of the form (1.1) are called fully non-
linear second order partial differential equations (in short, PDEs) when F is not affine in
D2u . Hamilton-Jacobi-Bellman(in short, HJB) equations are examples of (1.1), which
characterize the value functions of stochastic control problems. Hamilton-Jacobi-Isaac
equations, which are the fundamental of the differential game theory, are also example
of fully nonlinear elliptic equation. These problems arise from applications in engineer-
ing, physics, economics, and finance, see [116, 79, 110, 122, 123]. k -Hessian equations
are another kind of examples of the fully nonlinear elliptic equations. These problems
arise in geometry. If we take the extreme values of k [38], i.e, if k = 1, we get Laplace
equation and if k = n, we get Monge-Ampère equation. Monge-Ampère equation is an
interesting fully nonlinear elliptic PDEs that frequently arises in differential geometry,
for example, in the Weyl and Minkowski problems in differential geometry of surfaces.
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It also has some geometric applications which can be found in [160]. For the exis-
tence and regularity results for Monge-Ampère equations, we refer to [33, 42, 43, 42].
Monge-Ampère equations have the divergence form while Bellman and Isaac’s equa-
tions are of nondivergence form. Due to the nondivergence structure of Bellman and
Isaac’s equations, we can not apply the theory of the weak solutions that comes from
the integration by parts. At the same time some fully nonlinear equations of the nondi-
vergence as well as divergence form shares maximum principle with it which helps us
to define another notion of the weak (viscosity) solution which is the most appropriate
for the study of the nondivergence form equations.

Let us briefly present the developments on the theory of nonlinear PDEs. In the
beginning, the general theory of some classes of nonlinear equations was not devel-
oped, however, most of the nonlinear problems were studied by the experts in those
fields of mathematics, where these problems arose. The first nonlinear elliptic equation
subjected to intensive investigations was the Monge-Ampère equation. This equation
arises in the theory of convex surfaces. Due to the lack of general theory of Monge-
Ampère equation, it was studied with the help of convex surfaces theory. In 1958,
Aleksandrov introduced the notion of generalised solution of Monge-Ampère equation
in [2]. This notion of solution is closely related to the normal mapping, see Chapter 1
[87]. Up to 1971, the smoothness of its generalized solutions was proved only for the
case of two variables, see [12]. In 1971, Pogorelov proved the interior regularity for
the multidimensional case, see [144]. The smoothness of generalised solution up to the
boundary for the multidimensional Monge-Ampère equation was proved in 1982 after
the general theory of nonlinear equations was developed see, [111, 161]. N.V Krylov
in [108, 109] using probabilistic methods in 1972 showed the solvability of general de-
generate Bellman equations in the whole space in the class of functions with bounded
derivatives. These results seem to be very important because a large class of nonlinear
equations are treated there, in fact, the Monge-Ampère equations are also a partial case
of Bellman equations. Thus it appeared that there is a possibility of constructing a gen-
eral theory of nonlinear equations including the Monge-Ampère equations. Till 1979,
the probabilistic methods played the main role in the theory of the Bellman equations.
In 1979, Brezis and Evans [27] considered the case of the Bellman equations with two
elliptic operators and proved its solvability in C2,α . In [64], L.C. Evans obtained the lo-
cal C2,α estimates for elliptic Bellman equations with constant coefficients. In addition
to C2,α estimates, L.C. Evans also obtained the existence of solution by the method of
continuity in [64]. Independently, in the same year, N.V Krylov [111, 112] obtained
the same results for elliptic and parabolic Bellman equations with variable coefficients
and also proved the C2,α regularity up to the boundary for the elliptic case. The basis
of the works [64, 111, 112] are the results of Krylov and Safonov [113, 114] on the
Hölder estimates for solutions of linear equations with measurable coefficients. There
are also some existence results for the weak solutions of Bellman equations, see [18].
The methods mentioned above for the study of Bellman equations had used the convex-
ity(concavity) of F in D2u . But there are also fully nonlinear elliptic equations which
are not convex in D2u , for instance, Isaac’s equations. These equations arise from
stochastic differential game theory, for the details, we refer to [110]. In order to take
care of theses equations, various methods developed for the existence of solutions to
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the Dirichlet problems of the form (1.1), (1.2). These methods comprise the following:

(i) the classical method of continuity which can be applied, when the function F is
concave(or convex)in D2u variable, see Chapter 17 [85], [108], Section 3 [37].
(ii) utilization of the stochastic game or control theory representation, see [110, 123].
(iii) approximation by nonlinear Poisson equations based on [66].
(iv) the Perron’s scheme developed in [94, 95], see also [47].
(v) a discretization method which was developed by N. S. Trundinger and H. Kuo [115].

In this article, we are interested in (iv) i.e, viscosity solutions of the second order
fully nonlinear elliptic PDEs. This notion of the solution first of all appears in [52]
in the context of the first order Hamilton Jacobi equations. The idea to define the
viscosity solutions has been taken from the early appeared articles by L. C. Evans [64,
66] concerning “weak passages to the limit” in equations satisfying certain maximum
principle. In these developments, roadmaps were indicated by the aspects of nonlinear
functional analysis and nonlinear semigroup theory. In [52], M. G. Crandall, P. L. Lions
have defined various equivalent definitions of the viscosity solution.

Further, the results of [52] was simplified in [46] by using another equivalent def-
inition given in [52]. This notion has been quite successful in the study of existence
and uniqueness theory of solutions of Hamilton-Jacobi equations, see for example, G.
Barles [14, 16], M. G. Crandall, H. Ishii, and P. L. Lions [48], M. G Crandall, and P.
L. Lions [53, 126], H. Ishii [95, 96, 97]. The notion of the viscosity solution in the
context of the second order fully nonlinear elliptic equations was appeared in [17, 123].
In [123], P. L. Lions obtained the general uniqueness theorem by identifying the vis-
cosity solution as the value function of the associated optimal control problem, see also
[130, 128, 124]. In [123, 129], P. L. Lions made the assumption that F is convex or
concave in (D2u,Du,u) and that F grows linearly in (D2u,Du,u) and not only this
much but also, that F is uniformly decreasing in u. The main question concerning the
uniqueness was that how to extend the result of P.L. Lions to more general F (like,
nonconvex or nonconcave), and also the proof of P. L. Lions depends fully on the the-
ory of the stochastic optimal control problems [124]. In order to solve this problem,
the first step was taken by R. Jensen, using purely analytic techniques in [99]. He con-
sidered the operator F , which was independent of x , the solutions were in W 1,∞ (i.e,
Lipschitz continuous), and the domain was bounded. A close observation of the proof
in [99] shows that the assumption of the independence of x was not necessary. The
Lipschitz continuity and independence of x were relaxed in [100]. H. Ishii [94] refined
the Jensen’s results, and also he obtained the uniqueness results that cover the results
of P.L. Lions [123]. In the sequel of Ishii’s work, P. L. Lions and H.Ishii obtained
very general existence and uniqueness results concerning various boundary conditions
like, for instance Dirichlet and Neumann conditions. They also applied the method
and results obtained there to quasilinear Monge-Amp ère equations and obtained some
regularity results like, Hölder continuity of the solutions and concavity of the solutions.
One of the best references for theory of the viscosity solutions for the second order fully
nonlinear elliptic PDEs is [47]. [102] is also a very good reference for the beginners. In
[102], N. Katzourakis has taken the p -Laplacian and ∞-Laplacian as the particular ex-
amples to compare the viscosity solution with variational method in L∞ . In [47], M. G.
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Crandall, H. Ishii, P. L. Lions have established the existence of the viscosity solutions
by Perron’s method. They have given the full exposure to the comparison principle
which was needed for applying the Perron’s method of sub and super solutions. Reg-
ularity of viscosity solutions to fully nonlinear elliptic PDEs are given in [36]. Up to
now, in order to define the viscosity solutions of F , we need that it is continuous in the
x variable. L. Caffarelli [34, 35] and N. Trundinger [158] started the study of viscosity
solutions of fully nonlinear second order uniformly elliptic equations from the Lp point
of view. In particular, W 2,p estimates have been obtained in [35] and later, by using the
results of [69], were generalised by L. Escauriaza [63]. The similar results have been
extended to the parabolic case by L. Wang [162, 163]. Later in 1995, L. Cafferelli[50]
defined the precise notion of the Lp -viscosity solution. In order to define the notion of
Lp -viscosity solution, we do not need the continuity of F in the x variable.

The aim of this survey is to provide the recent results on the existence, unique-
ness and regularity questions to fully nonlinear elliptic equations. More specifically,
we discuss more on these questions to equations involving Pucci’s operator and also
focus more on eigenvalue problems for singular fully nonlinear second order elliptic
operators.

The organization of this papers is as follows. We present basic definitions and ex-
amples in Section 2, which are needed for our presentation. In Section 3, we present the
comparison principle and the existence results for proper operator by Perron’s method.
In order to deal with existence results for nonproper operator, we need Liouville type
theorem that is presented in Section 4. This section also contains some existence re-
sults. Section 5 deal with the eigenvalue and eigenfunctions for Pucci’s operator and
more general operators. It contains several other results related to eigenvalue, like, iso-
lation as well as the simplicity of the eigenfunction and bifurcation results. There are
many existence and nonexistence results which are also characterized in terms of the
conditions on nonlinear terms. In Section 6, we present the comparison principle, Li-
ouville type theorem and some existence and regularity results related to singular fully
nonlinear elliptic equation and finally Section 7 deals with some regularity results to
the solutions of fully nonlinear elliptic equations.

2. Basic Definitions and Examples

Let us first recall some basic definitions for second order fully nonlinear elliptic
PDEs, see [47] for details.

DEFINITION 1. [47] An equation of the form (1.1) is said to be degenerate elliptic
if it satisfies the following monotonicity condition:

F(x,r, p,X) � F(x,r, p,Y ) whenever Y � X , for all (x,r, p) ∈ Ω×R×R
n, (2.1)

further, we say that F is proper if it also satisfies following monotonicity condition

F(x,r, p,X) � F(x,s, p,X) whenever r � s, for all (x, p,X) ∈ Ω×R
n×S(n). (2.2)
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The operator F is said be uniformly elliptic if there exist 0 < λ � Λ such that

λ trace(N) � F(x,r, p,M−N)−F(x,r, p,M) � Λtrace(N), (2.3)

or equivalently

λ trace(N) � F(x,r, p,M)−F(x,r, p,M +N) � Λtrace(N), (2.4)

for every nonnegative definite matrix 0 � N . In this case, we say that the numbers λ
and Λ are ellipticity constants for F , see example 1.12 [47]. Here and below, for any
two symmetric matrix X ,Y we will write X � Y whenever Y − X is a nonnegative
semidefinite matrix.

EXAMPLE 1. ([47]) Let us start from the simple partial differential equation

F(x,u,Du,D2u) = L(u) = −
n

∑
i, j=1

ai j(x)
∂ 2u

∂xi∂x j
+

n

∑
i=1

bi(x)
∂u
∂xi

+ c(x)u, (2.5)

where A(x) = [ai, j(x)] is an n× n real symmetric matrix. Clearly (2.5) is degenerate
elliptic if A(x) � 0 and it is proper if c(x) � 0. Further, it is also uniformly elliptic
if there also exist constants 0 < λ � Λ, such that λ |ξ |2 � A(x)ξiξ j � Λ|ξ |2 for all
0 �= ξ ∈ R

n.

Let us take A(x) = I,b(x) = 0 and c(x) = 0, we get the following equation

F(x,u,Du,D2u) = −trace(D2u) = −Δu = 0. (2.6)

Clearly, (2.6) is uniformly elliptic with ellipticity constants λ = Λ = 1.

EXAMPLE 2. ([47]) Let us consider following second order quasilinear equation

F(x,u,Du,D2u) = −
n

∑
i, j=1

ai j(x,Du)
∂ 2u

∂xi∂x j
+b(x,u,Du) = 0, (2.7)

where A(x, p) = [ai, j] is an n×n symmetric matrix with real entries. The above equa-
tion can also be written as follows

F(x,u,Du,D2u) = −trace(A(x,Du)D2u)+b(x,u,Du) = 0. (2.8)

Equation (2.8) is degenrate elliptic if A � 0, and it is proper if b is also nondecreasing
with respect to u .

EXAMPLE 3. ([47]) Let us consider quasilinear equation in the divergent form

F(x,u,Du,D2u) = −
n

∑
i=1

∂
∂xi

(ai(x,Du))+b(x,u,Du) = 0. (2.9)
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Equation (2.9) can be put in the form (2.7) (if enough regularity is available) as follows

F(x,u,Du,D2u) = −
n

∑
i, j=1

∂ai

∂ p j
(x,Du)

∂ 2u
∂xi∂x j

+b(x,u,Du)−
n

∑
i=1

∂ai

∂xi
(x,Du) = 0,

(2.10)
and so it takes the form

F(x,u,Du,D2u) =−trace(Dpa(x,Du)D2u)+b(x,u,Du)−
n

∑
i=1

∂ai

∂xi
(x,Du) = 0. (2.11)

Thus (2.9) is degenerate elliptic if a(x, p) is nondecreasing in second variable and fur-
ther it is also proper if b is nondecreasing in second variable. For more about the
quasilinear equations, see [85].

EXAMPLE 4. ([30]) Let us consider the minimal surface equation

F(x,u,Du,D2u) = −
n

∑
i=1

∂
∂xi

( ∂u
∂xi√

1+ |Du|2
)
, (2.12)

which is the Euler-Lagrange equation of the area functional∫
Ω

√
1+ |Du|2dx, Ω ⊂ R

n.

An easy differentiation in (2.12) yields the following equation

F(x,u,Du,D2u) = −trace(A(x,Du)D2u) = 0, (2.13)

where

A(x,Du) = [ai, j] =

⎡⎣δi, j −
∂u
∂xi

∂u
∂x j

1+ |Du|2

⎤⎦ .

A simple computation shows that

ai, jξiξ j � |ξ |2
(
1− |Du|2

1+ |Du|2
)
,

since |Du|2
1+|Du|2 < 1, thus (2.12) is degenerate elliptic but not uniformly elliptic because

as |Du| → ∞, implies that |Du|2
1+|Du|2 → 1. For more details about Example (4), see [30].

EXAMPLE 5. ([30]) Finally, let us consider some examples of fully nonlinear par-
tial differential equation. Let z = u(x,y) be surface in R

3 . Its Gaussian curvature
K(x,y) is given by the formula

K(x,y) =
1

(1+ |Du|2)2

∣∣∣∣∣ ∂ 2u
∂x2

∂ 2u
∂y∂x

∂ 2u
∂y∂x

∂ 2u
∂y2

∣∣∣∣∣ . (2.14)
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One question that naturally comes into mind that given a smooth function K(x,y), can
we find a function having the graph with Gaussian curvature K(x,y)? In the case n = 2,
the answer of this question can be given by the solution of following problem

F(x,Du,D2u) = −Det(D2u)+K(x,y)(1+ |Du|2)2, (2.15)

while for any n, the answer of the above question can be given by solution of the
following equation

F(x,Du,D2u) = −Det(D2u)+K(x)(1+ |Du|2) n+2
2 . (2.16)

Equations (2.15), (2.16) are called Monge-Ampère equation. For the details, we refer
to [30]. The next two examples on the Monge-Ampère and Hamilton Jacobi Isaac’s
equations are taken from the celebrated papers of Crandall, Ishii and Lions [47].

EXAMPLE 6. ([47]) General Monge-Ampère equation, which contains (2.15) and
(2.16) as a particular case, is

F(x,u,Du,D2u) = −Det(D2u)+ f (x,u,Du) = 0, (2.17)

where u is convex and f (x,r, p) � 0. Observe that (2.17) is degenerate elliptic and
proper if f is nondecreasing in u . It has many applications in geometry like affine
geometry, see[160]. For more information on the Monge-Ampère equations, see [87,
60].

EXAMPLE 7. ([47]) Let us recall two fully nonlinear second order PDEs called
HJB equation and Hamilton-Jacobi-Isaac’s equations. These are the fundamental equa-
tions of the stochastic control problem and differential game theory, respectively. We
will also present some examples based on these equations. For this, let us consider a
family of linear elliptic operators

Lαu = −
n

∑
i, j=1

aα
i j(x)

∂ 2u
∂xi∂x j

u+
n

∑
i=1

bα
i (x)

∂u
∂xi

+ cα(x)u,

and

Lαβ u = −
n

∑
i, j=1

aαβ
i j (x)

∂ 2u
∂xi∂x j

u+
n

∑
i=1

bαβ
i (x)

∂u
∂xi

+ cαβ (x)u.

Let us define
F(x,u,Du,D2u) = sup

α∈A
(Lαu− f α(x)), (2.18)

and
F(x,u,Du,D2u) = sup

α∈A
inf

β∈B
(Lαβ u− f αβ (x)). (2.19)

The statements (2.18) and (2.19) are called HJB equation and Hamilton-Jacobi-Isaac
equation, respectively.
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Let us refer to the work of J. Kovats [106, 107] for the series of the following examples.

EXAMPLE 8. ([106]) Let us consider following second order PDE

F(x,u,Du,D2u) = −Δu+
(∂ 2u

∂x2
1

)−
= 0, (2.20)

where (t)+ = max{t,0} and (t)− = max{−t,0}. (2.20) is clearly fully nonlinear second
order(possibly simplest one) PDE. Let us present the PDE (2.20) in the form of (2.18)
by introducing the matrix

Aα =

⎡⎢⎢⎢⎣
α

1
. . .

1

⎤⎥⎥⎥⎦ . (2.21)

F(x,u,Du,D2u) = max
α∈[1,2]

[−trace(AαD2u)] = 0. (2.22)

EXAMPLE 9. ([106]) Let us consider one more example in this sequel

F(x,u,Du,D2u) = −Δu−
(∂ 2u

∂x2
1

)+
+
(∂ 2u

∂x2
2

)−
= 0. (2.23)

Further, this equation can be written in the form (2.16) with the help of the following
matrix

Aαβ =

⎡⎢⎢⎢⎢⎢⎣
α

β
1

. . .
1

⎤⎥⎥⎥⎥⎥⎦ . (2.24)

F(x,u,Du,D2u) = max
α∈[1,2]

min
β∈[1,2]

[−trace(Aαβ D2u)] = 0. (2.25)

EXAMPLE 10. ([106]) Let us consider the perturbed equation for ε ∈ [0,1] ,

F(x,u,Du,D2u) = Δu+ ε
(∂ 2u

∂x2
1

)+− (1− ε)
(∂ 2u

∂x2
2

)−
= 0, (2.26)

which can also be put in the form (2.28). For this, we will introduce the following
equation matrix

Aαβ (x) =

⎡⎢⎢⎢⎢⎢⎣
1+ εα

1+(1− ε)β
1

. . .
1

⎤⎥⎥⎥⎥⎥⎦ . (2.27)
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With the help of this matrix, (2.27), (2.26) can be written as follows:

F(x,u,Du,D2u) = max
α∈[1,2]

min
β∈[1,2]

[−trace(Aαβ (x)D2u)] = 0. (2.28)

EXAMPLE 11. ([107]) Let us consider the following equation

F(x,u,Du,D2u) = max
{
−Δu+

(∂ 2u

∂x2
2

− 1
2

∂ 2u

∂x2
1

)+
, −Δu+

(∂ 2u

∂x2
1

− 1
2

∂ 2u

∂x2
2

)+}
(2.29)

Aαβ =

⎡⎢⎢⎢⎢⎢⎣
α
β

β
α

1
. . .

1

⎤⎥⎥⎥⎥⎥⎦ . (2.30)

With the help of this matrix (2.30) can be written as

F(x,u,Du,D2u) = max
1�α2

min
1�β�2

[−trace[Aαβ D2u]] = 0. (2.31)

All the equations (2.25), (2.28), (2.31) are uniformly elliptic PDEs. HJB equations
defined by (2.18) arise in the optimal control problem of stochastic process, see [68, 92,
93]. If in a stochastic control problem, the diffusion coefficient is a control variable, we
get a very important class of second order fully nonlinear PDEs called Pucci’s extremal
operators.

DEFINITION 2. (Pucci’s Operator [146, 147]) Let us define, for fixed 0 < λ � Λ,
the Pucci’s extremal operators⎧⎪⎨⎪⎩

P−
λ ,Λ(M) = sup

A∈A [λ ,Λ]
{−trace(AM)}

P+
λ ,Λ(M) = inf

A∈A [λ ,Λ]
{−trace(AM)},

(2.32)

where A[λ ,Λ] denotes the set of real symmetric matrices having the eigenvalues in
[λ ,Λ] . Another equivalent definition of the Pucci’s extremal operators are given be-
low: ⎧⎪⎪⎨⎪⎪⎩

P−
λ ,Λ(M) =−Λ ∑

ei>0

ei −λ ∑
ei<0

ei,

P+
λ ,Λ(M) =−λ ∑

ei>0

ei −Λ ∑
ei<0

ei,
(2.33)

where ei are the eigenvalues of M ∈ S(n) .

For more properties of the Pucci’s operator, see Lemma 2.13 [45]. Note that this def-
inition is more suitable from the computation point of view, and also when we take
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λ = Λ = 1, these operators coincides with −Δu . At the same time some authors use
another definition of the Pucci’s operator

M +
λ ,Λ(M) = −P−

λ ,Λ(M) and M−
λ ,Λ(M) = −P+

λ ,Λ(M).

In this case if we take λ = Λ = 1, then it coincides with Δu . For more properties of
M±

λ ,Λ , see Lemma 2.10 [36]. These operators play almost same role in the study of the
regularity theory of fully nonlinear elliptic PDEs as Laplace equation in the regularity
theory for linear second order elliptic PDEs.

LEMMA 1. (Equivalent forms of uniform ellipticity conditions [82]) For F : Ω×
R×R

n×S(n)−→ R, following conditions are equivalent
(i) F is uniformly elliptic with ellipticity constants 0 < λ � Λ
(ii)

F(x,r, p,M)−F(x,r, p,M +N) � Λtrace(N+)−λ trace(N−) (2.34)

(iii)
P−

λ ,Λ(M−N) � F(x,r, p,M)−F(x,r, p,N) � P+
λ ,Λ(M−N), (2.35)

where (x,r, p) ∈ Ω×R×R
n and M,N ∈ S(n) .

For the proof, we refer to Proposition 1.1.2 [82].

REMARK 1. We remark that in proving (2.35), it is easy to see that every uni-
formly elliptic equation can be written as Isaac’s equation.

Recently, P. Felmer and H. Chen in [70] introduced another operator resembling with
Pucci’s extremal operators and defined as follows:⎧⎪⎪⎨⎪⎪⎩

P−(r,λ ,Λ)(M) =−Λ(r) ∑
ei>0

ei −λ (r) ∑
ei<0

ei,

P+(r,λ ,Λ)(M) =−λ (r) ∑
ei>0

ei −Λ(r) ∑
ei<0

ei,
(2.36)

where λ ,Λ : (0,∞) −→ R , are continuous functions. Let us recall the basic definitions
of classical and viscosity solutions to fully nonlinear elliptic PDEs.

DEFINITION 3. A function u ∈ C2(Ω) is called classical solution of (1.1) in Ω
if it satisfies the equation point-wise. Further, it is called the classical solution of the
Dirichlet problem (1.1), (1.2) if u ∈ C2(Ω), classical solution of (1.1) and u = 0 on
∂Ω.

DEFINITION 4. (Sub and Superjet [47]) Let Ω be a bounded open subset of R
n

and u : Ω −→ R be an upper semi continuous function at x̂ . Then the second order
superjet of u at x̂ is denoted by J2,+

Ω u(x̂) and is given by⎧⎨⎩{(p,X) ∈ R
n×S(N)|u(x) � u(x̂)+ < p,x− x̂ > +

1
2

< X(x− x̂),x− x̂ >

+o(|x− x̂|2) and x ∈ Ω as x → x̂}.
(2.37)
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Thus the superjet of an upper semi continuous function in Ω is a map

J2,+
Ω u : Ω −→ P(RN ×S(N)),

and its value at x̂ is given by (2.37). Similarly, for a lower semi continuous function
u : Ω −→ R the second order subjet of u at the point x̂ is denoted by J2,−

Ω u(x̂) and its
value at the point x̂ is given by⎧⎨⎩{(p,X) ∈ R

n ×S(N) | u(x) � u(x̂)+ < p,x− x̂ > +
1
2

< X(x− x̂),x− x̂ >

+o(|x− x̂|2) and x ∈ Ω as x → x̂}.
(2.38)

DEFINITION 5. (C -viscosity solution [47]) An upper (resp., lower) semi contin-
uous function u : Ω −→ R , is called a viscosity sub (resp., super) solution of (1.1) at x̂
if for any φ ∈C2(Ω), such that u−φ has local maximum (resp., minimum) at x̂ then

F(x̂,u(x̂),Dφ(x̂),D2φ(x̂)) � (resp.,�) f (x̂). (2.39)

If u is a viscosity sub and super solution at x̂ then u is called viscosity solution of (1.1)
at x̂. Further, if u is viscosity (resp., sub, super) solution of (1.1) at each point of Ω
then u is called viscosity(resp., sub, super)solution of (1.1) in Ω. Sometimes we will
also say C -viscosity solution to separate it from Lp -viscosity solution, which be will
introduced below.

We say that F(x,u,Du,D2u) � (resp., �, =) f in Ω in the viscosity sense when
u ∈C(Ω) is a viscosity subsolution (resp., supersolution, solution) of F = f in Ω.

PROPOSITION 1. (Sub and Superjet in terms of test functions [103]) Let u : Ω →
R be an upper(resp., lower) semi continuous function. Then

J2,+
Ω u(x̂) = {(Dφ(x̂),D2φ(x̂)) ∈ R

N ×S(N) | there exists φ ∈C2(Ω) such that

u−φ attains its maximum at x̂}.
J2,−

Ω u(x̂) = {(Dφ(x̂),D2φ(x̂)) ∈ R
N ×S(N) | there exists φ ∈C2(Ω) such that

u−φ attains its minimum at x̂}.
For the proof, we refer to Proposition 2.6 [103].

DEFINITION 6. (C -Viscosity solution [47]) An upper(resp., lower) semi continu-
ous function u : Ω −→ R is said to be viscosity sub (resp., super) solution of (1.1) at x̂
if,

F(x̂,u(x̂), p,X) � 0 (resp., F(x̂,u(x̂),q,Y ) � 0) for (p,X) ∈ J2,+
Ω u(x̂)(

resp., (q,Y ) ∈ J2,−
Ω u(x̂)

)
.

If u is a viscosity sub (resp., supersolution) at each point of Ω, then we say that u is
a viscosity sub (resp., supersolution) of (1.1) in Ω . Further, if u is a viscosity sub and
supersolution of (1.1) at each point of Ω then it called viscosity solution of (1.1) in Ω .
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REMARK 2. We have taken the above definition of C -viscosity solution from
[47]. But in [94], the author has considered more general definition of viscosity so-
lutions.

REMARK 3. Both Definitions (5) and (6) of viscosity solution are equivalent in
view of Proposition 1.

Now we recall the following relation between classical and viscosity solution for de-
generate elliptic PDEs by the following theorem.

THEOREM 1. Assume that F is degenerate elliptic. Then a function u : Ω −→ R

is a classical solution of (1.1) in Ω if and only if u is a viscosity solution of (1.1) in Ω
and u ∈C2(Ω).

For the proof of Theorem 1, we refer to Proposition 2.3 [103]. In the above definition
of viscosity solution of (1.1), we assume that F, f are continuous function of the x
variable. In order to define the notion of Lp -viscosity solution, we do not need the
continuity of F in the x variable. We just only need the measurability of F in the x
variable. The following definition of the Lp -viscosity solution, we have taken from
[45].

DEFINITION 7. (Lp -viscosity solution) Let F be proper, n < 2p and f ∈Lp
loc(Ω) .

A function u∈C(Ω) is an Lp -viscosity sub solution(resp., supersolution) of (1.1) in Ω
if for all φ ∈W 2,p

loc (Ω), whenever ε > 0, O ⊂ Ω is open and

F(x,u(x),Dφ(x),D2φ(x))− f (x) � +ε a.e. in O (2.40)(
resp., F(x,u(x),Dφ(x),D2φ(x))− f (x) � −ε a.e. in O

)
,

then u−φ cannot have a local maximum(resp., minimum) in O .
Equivalently, u is an Lp -viscosity subsolution (resp., supersolution) if for all φ ∈
W 2,p

loc (Ω) , and point x̂ ∈ Ω at which u− φ has a local maximum (resp., minimum)
one has ⎧⎨⎩

ess liminf
x→x̂

(F(x,u(x),Dφ(x),D2φ(x))− f (x)) � 0

(ess limsup
x→x̂

(F(x,u(x),Dφ(x),D2φ(x))− f (x)) � 0).
(2.41)

Moreover, u is an Lp -viscosity solution of (1.1) in Ω if it is both an Lp -viscosity
subsolution and Lp -viscosity supersolution.

REMARK 4. The restriction n < 2p , guarantees that the test function φ is contin-
uous. Further, particular case of the classical result of Caleder ón and Zygmund stating
that if n < 2p , then the functions in W 2,p

loc are pointwise twice differentiable(in the sense
of possessing second order Taylor expansions) a.e. Thus the derivatives of φ appearing
in the definition have a pointwise as well as a distributional sense.
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DEFINITION 8. (Lp -strong solution) A function u∈W 2,p
loc (Ω) is called Lp -strong

subsolution (resp., strong supersolution) of F = 0 in Ω if

F(x,u,Du,D2u) � 0(resp., F(x,u,Du,D2u) � 0) a.e in Ω.

Further, if u is a Lp -strong sub and supersolution of F = 0 in Ω it is called Lp -strong
solution of the same equation.

Following theorem gives the conditions under which different type of solutions are
equivalent.

THEOREM 2. Let F satisfies the structure (SC), n � p < ∞ and f ∈ Lp
loc(Ω).

(i) If u is an Lp -strong solution of F � f in Ω , then u is an Lp -viscosity solution of
F � f in Ω.
(ii) If F, f are continuous in x, then u is a C-viscosity solution of F � f in ω if and
only if u is an Lp -viscosity solution of F � f in Ω .
(iii) If n � q < p, then u is an Lq -viscosity solution of F � f in Ω if and only if u is
an Lp -viscosity solution of F � f in Ω.
All the statements (i)-(iii) are also true for F � f and F = f .

For the proof of Theorem 2, we refer to Theorem 2.1 [51]. Structural condition (SC)
appeared in the statement of the theorem is given below.

3. Existence and uniqueness of solution

3.1. Perron’s Method

The first result concerning the existence of viscosity solution for the second order
fully nonlinear elliptic PDEs was given by P. L. Lions [123]. It was the second in a
series and the first was [122], in which he had given the conditions ensuring the conti-
nuity of the cost function of the optimal control problem. Later in [123], he considered
the following equation

F(x,u,Du,D2u) = sup
α∈A

(Lαu(x)− f α(x)) = 0 in Ω, (3.1)

and showed that every continuous optimal cost function is a viscosity solution of (3.1).
The proof of P. L. Lions was based on stochastic control theory and also used the con-
vexity of the function F in D2u . From (3.1) it is clear that F is convex in (u,Du,D2u) ,
however, we have seen several examples which are not convex in D2u . Later in [95], H.
Ishii extended the classical Perron’s method to the case of viscosity solutions. It covers
the results of P.L Lions, moreover, it also covers a class of fully nonlinear operators
which are not convex in D2u . Below, we will present some existence results based on
the Perron’s method, where F need not to be convex. However, the convexity of F in
D2u plays an important role in the uniqueness and regularity theory for the viscosity
solutions to fully nonlinear elliptic PDEs. Before presenting the existence results, let
us present some definitions and notations to make the statements clear.
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DEFINITION 9. Given a function u : Ω −→ R, we denote the upper (resp., lower)
semi continuous envelope of u by u∗(resp.,u∗) and is defined by

u∗(x) = lim
ε→0

sup{u(y) : 0 < |x− y|< ε, and y ∈ Ω}

(resp., u∗(x) = lim
ε→0

inf{u(y) : 0 < |x− y|< ε, and y ∈ Ω}.

EXAMPLE 12. Consider a function u : R −→ R defined by

u(x) =
{

1, if x is a rational number
0, if x is an irrational number.

It is easy to see that the upper (resp., lower) semi continuous envelope u∗ (resp.u∗) of
u i.e, u∗ = 1 (resp., u∗ = 0).

For the properties of the upper and lower semicontinuous envelopes of a function, we
refer to page 296 [13]. Below, we will denote Ω×R×R

n×S(n) and Ω×R×R
n×S(n)

by Γ and Γ , respectively. In [94], H. Ishii proved the following proposition.

PROPOSITION 2. Let F be a continuous function on Γ . Let S be a nonempty
family of viscosity subsolutions of F = 0 in Ω. Define a function u on Ω by

u(x) = sup{w(x) |w ∈ S} for x ∈ Ω.

Assume that u∗(x) < ∞ for x ∈ Ω , where u∗ is an upper semicontinuous envelop of u .
Then u is a viscosity subsolution of F = 0 in Ω.

For the proof of Proposition 2, we refer to Proposition 2.2 [94].

PROPOSITION 3. Let F be a continuous function on Γ . Suppose that there is
a viscosity subsolution w and a viscosity supersolution v of F = 0 satisfying w �
v in Ω and w,v ∈ C(Ω). Then there is a viscosity solution u of F = 0 satisfying w �
u � v in Ω .

For the proof, we refer to Proposition 2.3 [94] and see also [95].

THEOREM 3. Let Ω be an open subset of R
n and let F : R×R

n × S(n) −→ R

be continuous and degenerate elliptic. Assume the function r −→ F(r, p,X) is non-
decreasing for (p,X) ∈ R

n × S(n) . Let w and v be respectively, viscosity sub and
supersolutions of

u+F(u, p,X) = 0 in Ω. (3.2)

Assume further that w(x) � v(x) for x ∈ ∂Ω. Then w � v in Ω.

For the proof of Theorem 3, see Theorem 3.1 [94].

THEOREM 4. If the hypotheses of Theorem 3 are satisfied and there exist w and
v, respectively continuous sub and supersolution of (3.2) satisfying w � v in Ω and
w = v on ∂Ω, then there exists a solution u of (3.2) satisfying w � u � v in Ω.
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For the proof of Theorem 4, we refer to Theorem 3.2 [94].
The next theorem gives the existence of the viscosity solution to F = 0 in Ω , where F
is given by (2.19) under certain conditions on the coefficients of Lαβ . Let us consider
the required hypotheses;
(A1) Suppose that matrix Aαβ = (aαβ

i j ) = ΣT Σ with Σ : Ω×A ×B −→ M(m,n) ,
where M(m,n) is the set all m×n matrices.
(A2) The functions Aαβ , bαβ , cαβ and f αβ are uniformly bounded in α,β .
(A3) The functions Σ(.,α,β ), bαβ are Lipschitz continuous in Ω for each α, β .
(A4) The functions cαβ and f αβ are continuous in x for each α, β . Further, suppose
that

inf{cαβ | α ∈ A ,β ∈ B} > 0.

REMARK 5. Note that F in this case need not to be convex in D2u .

THEOREM 5. Assume Ω is bounded and that (A1)-(A4) hold. Let w and v be
respectively, viscosity sub and supersolutions of

F(x,u,Du,D2u) = 0 in Ω.

Assume that w�(x) � v�(x) for x ∈ ∂Ω. Then w� � v� in Ω.

THEOREM 6. Suppose the hypotheses of Theorem 5 hold. Suppose that there are
w,v ∈C(Ω) respectively, viscosity sub and supersolution of

F(x,u,Du,D2u) = 0 in Ω. (3.3)

Assume further w � v in Ω and w = v on ∂Ω. Then there exists a viscosity solution u
of (3.3) satisfying w � u � v.

For the proof of Theorems 5 and 6 , we refer to Theorems 3.3 and 3.4 [94], respectively.

3.2. Comparison Principle

From Theorems 4 and 6, one question that naturally comes into the mind that
under what conditions on F , the conclusion of Theorems 5, 3 holds. Because if it
holds, then finding viscosity solutions is equivalent to find the viscosity sub and super-
solutions of equation F = f , which is very easy in comparison to find the viscosity
solution. Furthermore, it also gives the uniqueness of the viscosity solution. Whenever,
under the assumption w � v on ∂Ω the conclusion of the Theorems 5, 3 holds, we say
that comparison principle holds for the equation under consideration. More precisely,
comparison principle states that if w ∈USC(Ω), v ∈ LSC(Ω) are respectively, sub and
supersolution of

F(x,u,Du,D2u) = 0 in Ω, (3.4)

and satisfy w � v on ∂Ω . Then w � v in Ω. From Theorems 3 and 5 it is clear that the
structural conditions on F , which ensures to comparison principle holds vary. In fact,
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these conditions vary with regularity of the viscosity solutions. One of the sufficient
conditions on F ensuring the comparison principle to hold is given below.

1. Assume that there exists γ > 0 such that

γ(r− s) � F(x,r, p,X)−F(x,s, p,X) for r � s, (x, p,X) ∈ Ω×R
n×S(n). (3.5)

2. There is a function ω : [0,∞] −→ [0,∞] that satisfies ω(0+) = 0 such that

F(y,r,α(x− y),Y )−F(x,r,α(x− y),X) � ω(α|x− y|2 + |x− y|) (3.6)

whenever x,y ∈ Ω, r ∈ R and X ,Y ∈ S(n) such that

−3α
(

I O
O I

)
�
(

X O
O −Y

)
� 3α

(
I −I
−I I

)
. (3.7)

For the details, see Theorem 3.3 [47]. Further, one can relax the conditions if sub and
supersolution are more regular. The right hand side of (3.6) is optimal in the sense that
we can not replace the right hand side of (3.6) by ω(α|x− y|τ + |x− y|) with τ < 2
unless the solution is more regular. For example, if we remove the Lipschitz continuity
in (A2) of Theorem 5, we may not get the conclusion. For instance, let us consider the
following counter example.

EXAMPLE 13. ([94]) Let us consider the following linear second order equation

u(x)− traceA(x)D2u(x) = 0 in R
n, (3.8)

where

A(x) =
|x|2−α

(n−1)α
(
I− 1

|x|α x⊗ x
)
,

for some α ∈ (0,2) and x⊗ x denotes the matrix [xix j]1�i, j�n.
If we define

Σ(x) =
|x|1−α/2(

(n−1)α
)1/2

(
I− 1

|x|α x⊗ x
)

for x ∈ R
n,

then Σ(x)∈ S(n) , Σ2(x)= A(x) for x∈R
n, and Σ∈C0,1−α/2(Rn2

). Define u,v : R
n −→

R by

u(x) = exp |x|α and v(x) =
{

exp |x|α if x �= 0
0 if x = 0

If x �= 0, then it satisfies

u(x)− traceA(x)D2u(x) = v(x)− traceA(x)D2v(x) = 0 (3.9)

and at x = 0, A(0) = 0, v is lower semicontinuous and J2,+
Ω v(0) = φ . So it follows

from definition that u and v both are viscosity solutions of (3.9) in R
n . Let us consider

a domain Ω with 0 ∈ Ω . It is easy to see that u and v are solutions of (3.9) with
u = v on ∂Ω but u �� v in Ω.
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REMARK 6. If the viscosity solutions of

F(x,u,Du,D2u) = f in Ω, (3.10)

are Hölder continuous with exponent, θ > 0, and if F satisfies the condition (3.6) with
the right hand side ω(α|x− y|τ + |x− y|) for some τ > 2− θ along with (3.5), then
the comparison principle still holds. For different type of relaxation in the structural
conditions on F with different type of regularity of the viscosity solution, see Section
5A [47].

Next, we want to present comparison theorem from [98] with a slight modification in
the hypotheses made by H. Ishii and P.L Lions. These modifications were made by
Ishii and Yoshimura which, we have taken the statement from [6]. So let us define the
structue condition on F, required in the statement of the next comparison theorem. For
each R > 0, there exists a modulus ωR : [0,∞) −→ [0,∞), such that

sup
t>0

ωR(t)
(t +1)

< ∞

and a positive constant 1
2 < τ � 1, depending on R such that

|F(x,r, p,X)−F(x,s, p,X)| � ωR((|X |+1)|r− s|τ), (3.11)

THEOREM 7. Assume that F satisfies (3.11), and a structure condition (SC1),
(which is defined next) and for some σ > 0,

r → F(x,r, p,X)−σr is nondecreasing (3.12)

for every X ∈ S(n), p ∈ R
n, and x ∈ Ω. Suppose that w,v ∈ C(Ω) are respectively, a

sub and supersolution of
F(x,r, p,X) = 0 in Ω,

and that w � v on ∂Ω. Then w � v in Ω.

REMARK 7. The condition (3.12) in the Theorem 7 can be further weakened to
the properness of the function F, if either sub or supersolution is strict in the following
sense.
We say here w is a strict subsolution of F = 0 in Ω if for some ε > 0, w ∈ C(Ω)
satisfies

F(x,w,Dw,D2w) � −ε in Ω

in the viscosity sense. Similarly, we say that v ∈ C(Ω) is a strict supersolution of
F = 0 in Ω if for some ε > 0, v satisfies

F(x,v,Dv,D2v) � ε in Ω,

in the viscosity sense.
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For the proof of Theorem 7 and Remark 7, see Theorem 2.12 and Proposition 2.13 [6],
respectively, see also Section 5A of [47]. One consequence of the comparison princi-
ple is the following existence and uniqueness result. With the help of the comparison
principle we can also obtain estimates for the viscosity solutions of the equations under
consideration, see Section 5B [47].

THEOREM 8. Let us suppose that the comparison principle holds for (3.13). Sup-
pose also that there is a subsolution w and a supersolution v of{

F(x,u(x),Du,D2u) = 0 in Ω
u = 0 on ∂Ω,

(3.13)

and satisfies
w�(x) = v�(x) = 0 for x ∈ ∂Ω.

Then u(x) = sup{ω(x) : w � ω(x) � v and ω is subsolution of (3.13)}, is a viscosity
solution of the (3.13).

The proof of above theorem is an application of Perron’s method, see [94, 95, 47]. For
the proof of Theorem 8, we refer to Theorem 4.1 [47].

Let us consider:

(SC)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P−

λ ,Λ(X −Y )− γ|p−q|� F(x,r, p,X)−F(x,r,q,Y )
� P+

λ ,Λ(X −Y)+ γ|p−q|
for x ∈ Ω,r ∈ R, p,q ∈ R

n,X ,Y ∈ S(n), and

F(x,r, p,X) is nondecreasing in r.

(3.14)

REMARK 8. F is uniformly elliptic if and only if

P−
λ ,Λ(X −Y ) � F(x,r, p,X)−F(x,r,q,Y ) � P+

λ ,Λ(X −Y).

In literature, some authors says that F is uniformly elliptic and Lipschitz continuous in
p instead of saying that F satisfies (SC) defined above.

If F satisfies condition given by (3.14), then we say that F satisfies structure condition
(SC). By using approximation of F to obtain the conditions ensuring the comparison
principle to hold, we get the following theorem.

THEOREM 9. Let Ω satisfy a uniform exterior cone condition. Suppose F is
continuous, satisfies (SC) and φ ∈C(∂Ω) then there are viscosity solutions u, u∈C(Ω)
of {

F(x,u,Du,D2u) = 0 in Ω,

u = φ on ∂Ω,
(3.15)

such that any other viscosity solution of (3.15) satisfies u � u � u.
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For the complete proof of Theorem 9, we refer to Theorem 1.1 of [49]. Next, we will
consider the equations of the form{

F(x,u,Du,D2u) = f (x) in Ω,

u = φ on ∂Ω,
(3.16)

where F(x,0,0,0) ≡ 0.

REMARK 9. All equations F(x,u,Du,D2u) = g(x) can be put in the form of
(3.16) with right hand side f (x) = g(x)−F(x,0,0,0) .

Suppose that F is given by (3.16), satisfies

(SC1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(i)

{
P−

λ ,Λ(X −Y )− γ|p−q|− δ |r− s|� F(x,r, p,X)−F(x,s,q,Y )

� P+
λ ,Λ(X −Y )+ γ|p−q|+ δ |r− s|,

(ii) and the function r → F(x,r, p,X) is nondecreasing for all (x, p,X) ∈
Ω×R

n×S(n).
(3.17)

where γ, δ � 0. If F satisfies only the condition (i) in (3.17), then we say that F
satisfies (SC1)(i), similarly if F satisfies (ii) in (3.17), we say that it satisfies (SC1)(ii).
Further, if it satisfies both the conditions (i) and (ii) in (3.17), then we say that F
satisfies (SC1). Note that if F satisfies (SC1)(i), then F + δu is proper. Next, we want
to present two existence theorems of [165]. The proofs of these theorems are based on
the Perron’s method.

PROPOSITION 4. Suppose Ω ⊂⊂ R
n and satisfy a uniform exterior cone condi-

tion. Suppose that f ∈ C(Ω) is bounded, φ ∈ C(∂Ω) and F is Lipschitz continuous
and satisfies (SC1), F(x,0,0,0) = 0 and

d(r− s) � F(x,r, p,X)−F(x,s, p,X) for all (x, p,X) ∈ Ω×R
n×S(n)

and r,s ∈ R, r � s . Then there exists a C -viscosity solution u of the Dirichlet problem
(3.16).

For the proof of Theorem 4, we refer to Proposition 1.6 [165]. With the help of the
convolution and Jensen’s regularization, introduced by Jensen in [99], N. Winter also
proved the following theorem.

THEOREM 10. Suppose Ω ⊂⊂ R
n and satisfy a uniform exterior cone condition.

Suppose further that F is continuous on Γ and satisfies (SC1). Then for f ∈ C(Ω),
bounded, and ψ ∈ C(∂Ω), there exists at least one viscosity solution of the Dirichlet
problem (3.16).

In [165], N. Winter proved Theorem 10 by using Perron’s method but this method re-
quires comparison principle to hold for which sufficient conditions are given by (3.5)
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and (3.6) . In general F , given in statement of Theorem 10, does not satisfy (3.5). In or-
der to tackle this, N. Winter approximated given F by Fη(x,r, p,X) = F(x,r, p,X)+ηr
for appropriate η so that (3.5) holds, and then regularized Fη by sub-convolution of
Fη introduced by R. Jensen in [99], so resulting function Fε

η becomes Lipschitz contin-
uous, and therefore it will satisfy both (3.5) and (3.6) and comparison principle holds
for Fε

η . With comparison principle, it also satisfies the assumptions of Proposition 4
and therefore has a solution. Finally, N. Winter used the stability result for the viscosity
solutions to obtain the viscosity solution of the original Equation (3.16). For the details,
we refer to Proposition 1.11 [165].

REMARK 10. In [47], M. G. Crandall, M. Kocan, P. L. Lions and A. Świech re-
laxed the continuity of F in x and also (SC1) condition by using the notion of Lp -
viscosity solution. More precisely, authors assumed that F is measurable in x and also
satisfies following condition in r .
For each R > 0, there exists ωR : [0,∞) −→ [0,∞), such that ωR(0+) = 0 and

|F(x,r, p,X)−F(x,s, p,X)| � ω(|r− s|), (3.18)

holds for almost all x ∈ Ω and |r|+ |s|+ |p|+‖X‖� R.

THEOREM 11. Let Ω satisfy a uniform exterior cone condition and F satisfies
(SC) a.e. in Ω and (3.18). Let F(x,0,0,0)≡ 0 , f ∈ Ln(Ω) and φ ∈C(∂Ω) then (3.16)
has an Ln -viscosity solution.

In order to prove Theorem 11 authors mollify F in x as follows:

Fε(x,r, p,X) =
1
εn

∫
Rn

η
(x− y

ε

)
F(y,r, p,X)dy,

where η ∈ C∞
o (Rn) satisfies η � 0,

∫
Rn η(x)dx = 1, and used the fact that this Fε

also satisfies (3.18) and Fε(x,0,0,0) ≡ 0. Using (SC), (3.18) and |P±| � Λ‖X‖, it is
easy to see that Fε bounded and measurable in x for fixed (r, p,X) ∈ R×R

n × S(n)
and further, they also used the boundedness of F to get the Lipschitz continuity of Fε .
Further, by approximating f ∈ Ln by a continuous function in Ω , the authors applied
Theorem 9 to get a viscosity solution of approximated problem. Further, using the
maximum principle and following theorem, they get the existence of viscosity solution
to the original problem. Once again for the complete proof, see Theorem 4.1 [49].

THEOREM 12. Let Ω satisfy a uniform exterior cone condition and C ⊂C(∂Ω)
be compact, R > 0 and BR = { f ∈ Ln(Ω) | ‖ f‖Ln(Ω) � R}. Then the set of all u∈C(Ω)
such that there exist f ∈ Ln(Ω) and ψ ∈ C for which u is an Ln -viscosity solution of
both

P−
λ ,Λ(D2u)− γ|Du|� f and − f � P+

λ ,Λ(D2u)+ γ|Du|

in Ω and u = ψ on ∂Ω is precompact in C(Ω) .
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REMARK 11. In Section 3 [49], the authors also construced the global barriers for
the inequation

P−
λ ,Λ(D2u)− γ|Du|� M

by using the results of [134, 135] which further extends the results of [133].

Theorem 11 does not tell us the uniqueness of Ln -viscosity solution but the fol-
lowing theorem tells us about uniqueness of the viscosity solution. Furthermore, it will
also give interior W 2,p -estimate for the viscosity solution under some more conditions
on F . In order to state the next theorem, we need following notation

β (x,y) = sup
X∈S(n)

|F(x,0,0,X)−F(y,0,0,X)|
1+‖X‖ . (3.19)

The following is the existence and uniqueness theorem for the solution of (3.16).

THEOREM 13. Let Ω satisfy the uniform exterior cone condition. Let F satisfies
(SC1) with δ |r−s|= ω(|r−s|) and convex (or concave) in D2u. Let f ∈ Lp(Ω) and let
p > p0(n,λ ,Λ,γ and diam(Ω)) and ψ ∈ C(∂Ω). Then there exists θ = θ (n, p,λ ,Λ)
such that if for any y ∈ Ω(

1
rn

∫
Br(y)

β (y,x)pdx

) 1
p

� θ for r � r0,

for some r0 > 0, then there exists a unique Lp -viscosity solution u ∈W 2,p
loc (Ω)∩C(Ω)

of (3.16) such that for every Ω′ ⊂⊂ Ω

‖u‖W2,p(Ω′) � C(‖u‖L∞(Ω) + ω(‖u‖L∞(Ω))+‖ f‖Lp(Ω)),

where C = C(r0,n, p,λ ,Λ,γ,ω(1),diam(Ω),dist(Ω′,∂Ω)).

Convexity of F in D2u can be replaced by weaker condition for the details, see Remark
3.3 [156]. The proof of Theorem 13 once again is similar to the proof of Theorem 11.
For the details, we refer to Theorem 3.1 [156]. One can obtain a better estimate and
existence result for F(x,u,Du,D2u) = f . In [165], author has proved the following
theorem.

THEOREM 14. Assume that F satisfies (SC1) for a.e. x, F(.,0,0,0)≡ 0 in Ω and
F is concave (convex) in D2u. Let Ω ⊂⊂ R

n,∂Ω ∈C1,1 and consider the (3.16) with
f ∈ Lp and n−ε0 < p < ∞ with φ ∈W 2,p(Ω) . Then there exists a unique Lp -viscosity
solution u of (3.16). Moreover, u ∈W 2,p(Ω) and

‖u‖W2,p(Ω) � C
(
‖u‖L∞(Ω) +‖φ‖W2,p(Ω) +‖ f‖Lp(Ω)

)
. (3.20)

For the proof of Theorem 14, we refer to Theorem 4.6 [165].
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4. Liouville type theorem and some existence results

In the previous section, we presented the existence of viscosity solutions for those
proper operators which satisfy the comparison principle and also have a viscosity sub
and a viscosity supersolution. Although it covers certain class of the operators but still
there is a large class of operators which do not fall in the category mentioned above.
We will look for another methods for investigating the existence of solutions. There is
a method consisting of converting the differential operator into compact perturbation of
the identity operator defined on some Banach space and applying degree theory. For
the definition and properties of degree of compact perturbation of identity operator,
we refer to [61],[41]. One such method is available in a sequence of articles [35, 36,
86, 156, 73, 159, 165]. In order to apply degree theory, we need the regularity of
the viscosity solution, and for that we need an apriori bound, for example, see (3.20)
in which we need a bound for ‖u‖L∞(Ω) for getting the bound for ‖u‖W2,p(Ω) . The
most famous classical technique for obtaining an apriori bound is the blow-up method
available in [83, 84]. In this method an equation in a bounded domain blows up into
another equation in the whole Euclidean space or a half space, see for example Lemma
3.1 [1], and with the help of corresponding Liouville-type theorem in the Euclidean
space R

n or half space R
n
+ and a contradiction argument, an apriori bounds could be

obtained. Thus whole process reduces to find the Liouville-type theorem in the context
of the viscosity solutions provided all the mentioned information about the solution are
available. Liouville type theorem in the context of the viscosity solution were obtained
by A. Cutri, F. Leoni in [55]. They concluded the Liouville type theorem to certain
fully nonlinear elliptic PDEs by generalising the classical Hadamard three circle (three
sphere) theorem for the Laplace operator given in Chapter 2, Section 12 [145].

THEOREM 15. Let u ∈C(Rn) be a viscosity solution either of

P+
λ ,Λ(D2u) � 0 in R

n, (4.1)

or of
P−

λ ,Λ(D2u) � 0 in R
n, (4.2)

if u is respectively, bounded either from above or from below, and if the parameter α
defined by α = λ

Λ (n−1)+1 satisfies α � 2, then u is constant.

For the proof, we refer to Theorem 3.2 [55]. Liouville type theorem for fully nonlinear
uniformly elliptic equations having zeroth order term is given below.

THEOREM 16. Assume that β = Λ
λ (n− 1)+ 1 > 2 and let u ∈ C(Rn), be a vis-

cosity solution of {
F(x,D2u)−g(x)up � 0 in R

n,

u � 0,
(4.3)

where F is uniformly elliptic and g ∈C(Rn), is a nonnegative function such that there
exist G, r0 > 0 and γ � −2 satisfying

g(x) � G|x|γ for |x| � r0. (4.4)
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If γ = −2 and 0 < p < 1 or if γ > −2 and 0 < p � (β+γ)
(β−γ) , then u ≡ 0.

For the proof, we refer to Theorem 4.1 [55]. Theorem 16 provides optimal result in the
cases if γ = −2 and p � 1, γ < −2, p > 0 and p > β+γ

β−2 if γ > −2 for the counter

example see remark 7 [55]. In the above theorem, we can replace F by P+
λ ,Λ , to get

the following theorem.

THEOREM 17. {
P+

λ ,Λ(D2u)−up � 0 in R
n,

u � 0 in R
n,

(4.5)

where p > 1. Suppose N � 3 and set p− = β
β−2 , where β is defined in Theorem 15.

If 1 < p � p−(or 1 < p < ∞ if β � 2) , then the only viscosity supersolution of (4.5) is
u ≡ 0.

Theorem 17 also holds for P−
λ ,Λ if we replace β by α and p− by p+ = α

α−2 . In [71],
authors considered more general operator(rotationally invariant) and define the critical
exponent for that operator. These operators are not, in general, convex or concave but
they do not include the gradient term. Next, we would like to present Liouville type
theorem for fully nonlinear elliptic operator which depends upon the gradient as well as
zeroth order terms. In [39], I. Capuzzo Dolcetta and A. Cutri generalize the Hadamard
three circle Lemma to more general fully nonlinear operator and as a consequence got a
Liouville type theorem valid for the more general operator. In order to state the precise
statement, we need some more hypotheses which are given below.
Suppose that F given by Equation () is uniformly elliptic, satisfies F(x,0,0,0) = 0 and

F(x,s, p,0) � ρ(|x|)|p|+ r(x)sα ∀ (x,s, p) ∈ Ω×R
+×R

n,

where α � 1 and r , ρ are continuous functions real valued functions such that

|x|ρ(|x|) � −Λ(n−1) and r(x) � 0 ∀ x ∈ Ω.

Under the above assumptions authors proved the following theorems

THEOREM 18. Let w be be the viscosity be solution of the{
F(x,w,Dw,D2w) � 0 in R

n

w � 0 in R
n,

(4.6)

where F satisfies the above mentioned conditions. Define

φ(r) =
∫ r

r1
t−

Λ
λ exp

(
− 1

λ

∫ t

r1
ρ(τ)dτ

)
dt.

If
lim

r→+∞
φ(r) = +∞,

Then u is a constant. Moreover, if r(x0) < 0 for some x0 then u ≡ 0.
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THEOREM 19. Let w be the viscosity supersolution of 4.6 with ρ and r(x) satis-
fying the following conditions

sup
Rn

|x|ρ(|x|) = K < ∞ and r(x) � −g(|x|) for r large, and

lim
r→+∞

r2g(r)(L−φ(r))α−1 = +∞.

If limr→+∞ φ(r) = L < +∞ then u ≡ 0 .

For the proof of the Theorems 18 and (19), we refer to Theorem 4.1 and Theorem 4.2
[39], respectively.

REMARK 12. For further extension of this idea, see [70].

In [74], P. Felmer, A. Quaas proved the Liouville type theorem for radial solution to
(4.5) valid for larger range of p than in (17). In order to state the results of [74], we
need to define some terminology.

DEFINITION 10. {
P±

λ ,Λ(D2u)−up = 0 in R
n,

u � 0 in R
n.

(4.7)

Assume that u is a radial solution of (4.7) then we say that;
(i) u is a pseudo-slow decaying solution if there exist constants 0 < C1 <C2, such that

C1 = liminf
r→∞

rαu(r) < limsup
r→∞

rαu(r) = C2.

(ii) u is a slow decaying solution if there exists 0 < c�, such that

lim
r→∞

rαu(r) = c�.

(iii) u is a fast decaying solution if there exists 0 < C , such that

lim
r→∞

rνu(r) = C,

where ν = α or ν = β depending on P+
λ ,Λ or P−

λ ,Λ appears in (4.7).

Let us consider {
P+

λ ,Λ(D2u) = up in R
n,

u � 0 in R
n.

(4.8)

The next theorem deals with the existence and nonexistence of the radial solution to
(4.8).



Differ. Equ. Appl. 8, No. 2 (2016), 135–205. 159

THEOREM 20. There are critical exponents 1 < ps− < p�− < pp
−, with

ps
− =

β
β −2

,

and
β +2
β −2

< p�
− < pp

− = p�
n =

n+2
n−2

,

that satisfy:
(i) If 1 < p < p�−, then there is no non-trivial radial solution to (4.8).
(ii) If p = p�− , then there is a unique fast decaying radial solution to (4.8).
(iii) If p�− < p � pp

− , then there is a unique radial solution to (4.8) which is a slow
decaying or a pseudo-slow decaying solution.
(iv) If p > pp

− , then there is a unique slow decaying radial solution to (4.8), where for
uniqueness in (ii), (iii) and (iv), we mean uniqueness up to scaling.

For the proof, we refer to Theorem 1.2 [74]. There are also similar results for P−
λ ,Λ .

THEOREM 21. {
P−

λ ,Λ(D2u) = up in R
n,

u � 0 in R
n.

(4.9)

Suppose that α > 2 , then there are critical exponents 1 < ps
+ < p�

+ < pp
+, with

ps
+ =

α
α −2

, ps
+ =

α +2
α −2

and p�
n =

n+2
n−2

,

and
max{ps

+, p�
n} < p�

+ < pp
+.

(i) If 1 < p < p�
+, then there is no non-trivial radial solution to (4.9).

(ii) If p = p�
+, then there is a unique fast decaying radial solution to (4.9).

(iii) If p�
+ < p � pp

+, then there is a unique pseudo-slow decaying radial solution to
(4.9).
(iv) If pp

+ < p, then there is a unique slow decaying radial solution to (4.9).
Once again for uniqueness in (ii), (iii) and (iv), we mean uniqueness up to scaling.

For the proof, we refer to Theorem 1.1 [74]. In [74], authors also proved the following
existence theorem on the ball.

THEOREM 22. Let R > 0 and B(0,R), be a ball of radius R centered at the origin
in R

n . Then the problem⎧⎪⎨⎪⎩
P±

λ ,Λ(D2u)−up =0 in B(0,R),

u >0 in B(0,R),
u =0 on ∂B(0,R),

(4.10)

has unique solution provided 1 < p < p�∓.
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For the proof of Theorem 22, we refer to Theorem 5.1 [74]. In [75], the same authors
define the critical exponent for general uniformly elliptic operators and considered the
same problem for that operator. We have taken the next theorem from [1], which is
given below.

THEOREM 23. Let f : [0,∞) −→ [0,∞), be a continuous function satisfying the
following three assumptions:
(i) f (t) = 0, if t = 0, t = 1,and f (t) > 0, i f t �= 1,t > 0.
(ii) There exist constants γ > 0, and σ ∈ (1, α

α−2 ), such that f (t) � γ(t − 1)σ , for
t > 0.
(iii) There exists a constant b > 0, such that liminft→0+

f (t)
t � b.

Then any bounded solution of the problem{
P−

λ ,Λ(D2w) � f (w) in R
n,

w � 0,
(4.11)

is either the constant function w ≡ 0, or else w ≡ 1.

For the proof of above theorem, we refer to Theorem 1.2 [1].

THEOREM 24. Let w be a viscosity solution of the inequation

P−
λ ,Λ(D2w)+ f (w) � 0 in R

n, (4.12)

where f is a continuous nonnegative function. Then either infRn w = −∞, or
infRn w, is a zero of f.

For the proof of above theorem, we refer to Proposition 2.1 [1].

4.1. Liouville type theorem in exterior domain

In the best of our knowledge, the first result on the nonexistence in the exterior
domain in the context of the fully nonlinear elliptic equation appeared in [9]. The proof
of results in [55] fully depends upon the classical three circle lemma and radial solution.
A subset Ω ⊂ R

n is called exterior domain if R
n \BR(0) ⊂ Ω ⊂ R

n \ {0} . In [9], the
authors considered the following problem

F(D2u) = up, (4.13)

where p � 1 and F is a positively homogeneous uniformly elliptic operator. In order
to present the result, let us introduce some terminology used in the statement and are
available in [10]. Theorem 3 of [10] states that there exists a nonconstant solution of

F(D2u) = 0 in R
n \ {0}, (4.14)

which is bounded from below in B1 and bounded from above in R
n \B1 see also, [11].

In fact theorem states more that the set of all such solutions is of the form {aΨ + b :



Differ. Equ. Appl. 8, No. 2 (2016), 135–205. 161

a > 0, b∈ R}, where Ψ ∈C1,δ
loc (Rn \{0}) can be chosen to satisfy one of the following

homogeneity relations, for all s > 0

Ψ(sx) = Ψ(x)− logs (4.15)

or
Ψ(sx) = s−α∗

Ψ(x), α∗Ψ(x) > 0 in R
n \ {0}, (4.16)

for some α∗ ∈ (−1,∞)\{0} . The number α∗ is called scaling exponent and is crucial
for the following theorem. It is easy to observe that if u is a solution of (4.13) in R

n \Br

then for each τ > 0 the function defined by

uτ(x) = τβ ∗
u(τx), where β ∗ = β ∗(p) =

2
p−1

,

is also a solution of (4.13) in R
n \B r

τ
.

THEOREM 25. Assume that F is a positively homogeneous unformly elliptic op-
erator and p > 1 . Then the Equation 4.13,
(1) has no nontrivial nonnegative supersolution in any exterior domain if α∗ � β ∗ ,
(2) has a positive supersolution in R

n , if α∗ > β ∗ ,
(3) has a positive solution in R

n \ {0} if α∗ > β ∗ .

For the proof of Theorem 25, we refer to Theorem 1.4[9]. In [8], S. N. Armstrong
and B. Sirakov studied such type of problem almost completely for those operators
which share maximum principle. It covers a many operators with divergent as well
as nondivergent structure including Issac operator. In this paper authors optimize many
previous results by providing the minimal conditions on the nonlinearity of the function
as well as many new results in the exterior domain and in the half space. At the same
time they also consider the system of elliptic equations. As this paper contains many
results so instead of presenting all the results here we will refer to whole paper. Below
we are presenting Liouville type theorem in the half space. Here we will not give it to
separate section. In [149](see also [117]), A. Quaas and B. Sirakov proved the following
Liouville type theorem in the halfspace by using the moving plane method.

THEOREM 26. Suppose we have a nontrivial classical bounded solution of⎧⎪⎨⎪⎩
P−

λ ,Λ(D2u) = f (u) in R
n
+,

u �0 in R
n
+,

u =0 on ∂R
n
+,

(4.17)

where f is locally Lipschitz continuous function with f (0) � 0. Then if the problem

P−
λ ,Λ(D2u) = f (u),

has a nontrivial nonnegative bounded solution in R
n
+ such that u = 0 on ∂R

n
+ , then

the same problem has a positive solution in R
n−1.
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For Liouville type theorem to the system of fully nonlinear elliptic equation in
the half space, see [131] and references therein. See [118, 81, 132], where authors
dealt with geometric properties of the solution of fullynonlinear equations by using
the moving plane method. In [72], P. Felmer and A. Quaas, have shown the existence
of eigenvalue for P±

λ ,Λ in the B(0,R) by using the Krein-Rutman theorem that was
proved by Rabinowitz [151]. In fact, they characterized all the positive solutions of⎧⎪⎨⎪⎩

P±
λ ,Λ(D2u) = μu in B(0,R),

u > 0 in B(0,R),
u = 0 on ∂B(0,R).

(4.18)

The precise statement of the theorem is as follows:

THEOREM 27. The eigenvalue problem (4.18) has a solution (μ±
1 ,u±1 ) , with μ±

1
and u+

1 are positive and u−1 negative. Moreover, all positive solutions to (4.18) are
of the form (αμ+

1 ,αu+
1 ) and all negative solutions are of the form (αμ−

1 ,αu−1 ) with
α > 0.

For the proof of Theorem 27, we refer to Section 3 [72].

REMARK 13. For the Monge-Ampère equations, see [127]. Below, we will present
some results concerning the eigenvalue with some more information, see Theorem 5.

Theorem 22 was extended by P. Felmer and A. Quaas in [72], allowing more general
nonlinearity. In order to state precise statement of the theorem, we need some assump-
tions, which are following.
(f1) f ∈C([0,+∞)) and is locally Lipschitz.
(f2) f (s) � 0 and there is 1 < p < p�± and a constant C > 0, such that

lim
s→+∞

f (s)
sp = C.

(f3) There is a constant c � 0, such that c− γ < μ±
1 and

lim
s→0

f (s)
s

= c,

where μ+
1 (μ−

1 ), is the first eigenvalue for P+
λ ,Λ(P−

λ ,Λ) in BR with the Dirichlet bound-
ary condition.

THEOREM 28. Assume n � 3 and f satisfies the hypotheses (f1), (f2) and (f3)
stated above. Then there exist a positive radially symmetric C2 solution of{

P±
λ ,Λ(D2u)+ γu = f (u) in B(0,R),

u = 0 on ∂B(0,R).
(4.19)
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For the proof, we refer to Theorem 1.2 [72]. The authors have also extended the The-
orem 28 in R

n, by choosing γ = 1 and f (u) = up , more precisely, they proved the
following theorem.

THEOREM 29. Assume n � 3 and 1 < p < p�±. There exist a positive radially
symmetric C2 solution of

P±
λ ,Λ(D2u)+u = up in R

n. (4.20)

5. Eigenvalue problem and some existence results

At the end of the previous section we have presented some results concerning the
eigenvalue for the Pucci’s extremal operators in the ball. Here we will present the
theorem concerning the existence of eigenvalue in the general domain as well as more
general operator. In [148], A. Quaas used the Liouville Theorem 17 to obtain an apriori
bound. Having obtained an apriori bound, he used the degree theory in the positive cone
as presented in [59] and moving plane method to generalise Theorem 28 for the convex
and C2,α domain Ω under the conditions (f1), (f2) and (f3) with p± instead of p�±. It is
clear that, in general, p± < p�±, so it is valid for small range of p than in the case of the
ball. This is due to lack of the Liouville type theorem for that range. For more on the
moving plane method, see [19]. He also proved the existence of the first eigenfunction
for P±

λ ,Λ in a convex and C2,α domain Ω , see Theorem 3.1 [148]. In [28], J. Busca,
M. J. Esteban and A. Quaas considered the following eigenvalue problem{

P±
λ ,Λ(D2u) = μu in Ω,

u = 0 on ∂Ω,
(5.1)

where Ω is any smooth bounded domain. They proved the existence of the eigenvalues,
eigenfunction and some more informations concerning it. They considered nonlinear
bifurcation problem associated with the extremal Pucci’s operator to show the existence
of the solution of {

P±
λ ,Λ(D2u) = f (u) in Ω,

u = 0 on ∂Ω,
(5.2)

under certain conditions on f . The following proposition gives the characterization of
the eigenvalues of P±

λ ,Λ .

PROPOSITION 5. Let Ω be a regular domain. There exist two positive constants
μ+

1 ,μ−
1 that we call first half-eigenvalues such that:

(i) There exist two functions φ+
1 ,φ−

1 ∈ C2(Ω)∩C(Ω), such that (μ+
1 ,φ+

1 ), (μ−
1 ,φ−

1 )
are solutions to {

P+
λ ,Λ(D2u) = μu in Ω

u = 0 on ∂Ω,
(5.3)

and φ+
1 > 0, φ−

1 < 0 in Ω . Moreover, these two half eigenvalues are simple, that is, all
positive solutions to (5.3) are of the form (μ+

1 ,αφ+
1 ) , with α > 0. The same holds for
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negative solution.
(ii) The first half eigenvalues also satisfy

μ+
1 = inf

A∈A
μ1(A), μ−

1 = sup
A∈A

μ1(A),

where A is the set of all symmetric measurable matrices such that 0 < λ I � A(x) �
ΛI, and μ1 is the principle eigenvalue of associated nondivergent second order linear
elliptic operator associated to A.
(iii) The two first half eigenvalues can also be characterized as

μ+
1 = sup

u>0
ess inf

Ω

(
P+

λ ,Λ(D2u)

u

)
, μ−

1 = sup
u<0

ess inf
Ω

(
P+

λ ,Λ(D2u)

u

)
.

The supremum is taken over all functions u ∈W 2,N
loc (Ω)∩C(Ω).

(iv) The two first half eigenvalues also satisfy following characterization

μ+
1 = sup{μ | there exists φ > 0 in Ω satisfying P+

λ ,Λ(D2φ) � μφ},

μ−
1 = sup{μ | there exists φ < 0 in Ω satisfying P+

λ ,Λ(D2φ) � μφ}.

Eigenvalues of the operator P±
λ ,Λ form an increasing sequence which can be seen in

Theorem 1.2 [28]. In [28], the authors considered the following bifurcation problem:{
P+

λ ,Λ(D2u) = μu+ f (u,μ) in Ω,

u = 0 on ∂Ω,
(5.4)

where f is continuous

f (s,μ) = o(|s|) near s = 0, uniformly for μ ∈ R

and Ω is a general bounded domain. It can be observed that if (μ ,0) is a bifurcation
point for (5.4), then μ is an eigenvalue of P+

λ ,Λ.

THEOREM 30. The pair (μ+
1 ,0)(resp., (μ−

1 ,0)), is a bifurcation point of positive
(resp., negative) solutions to (5.4). Moreover, the set of nontrivial solutions of (5.4)
whose closure contains (μ+

1 ,0)(resp., μ−
1 ,0), is either unbounded or contains a pair

(μ ,0) for some μ eigenvalue of (5.3) with μ �= μ+
1 (resp., μ �= μ−

1 ).

REMARK 14. Bifurcation results to the following problem{
P+

λ ,Λ(D2u) = μg(x,u) in Ω

u = 0 on ∂Ω,
(5.5)

with the following assumptions on g :

1. u → g(x,u) is nondecreasing and g(x,0) = 0,
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2. u → g(x,u)
u decreasing, and

3. limu→0
g(x,u)

u = 1, limu→∞
g(x,u)

u = 0

can be found in [120] for the Bellman equation, see also [125]. In [120], author used the
method of sub and supersolutions so the conditions imposed there were very crucial,
but in [28] results were proved by using degree theory.

There are various results concerning eigenvalues and eigenfunctions for fully non-
linear elliptic equations, for details see [28]. More generally in [150], they considered
the more general fully nonlinear elliptic operator F(x,u,Du,D2u) and found out its
eigenvalues under certain conditions on F . In fact, they developed a theory of eigen-
values and eigenfunctions as H. Berestycki, L. Nirenberg, S.R.S. Varadhan, did in the
case of linear operators in [20]. Let us suppose that γ,δ > 0 and all M,N ∈ S(n), p,q∈
R

n, u,v ∈ R, x ∈ Ω, F satisfies (SC1)

F(x,tu,t p,tM) = tF(x,u, p,M) for all t � 0. (5.6)

Suppose also that
F(x,0,0,M) is continuous in S(n)×Ω. (5.7)

One more important condition that will play an important role is given by

F(x,u− v, p−q,M−N) � H(x,u, p,M)−H(x,v,q,N)
� −F(x,−(u− v),−(p−q),−(M−N)).

(5.8)

The above condition (5.8) tells us that how far an operator H(x,u, p,M) is from linear.
If F satisfies (5.6), then (5.8) is equivalent to concavity of F in (u, p,M) . The existence
of eigenvalues and eigenfunctions are given in following theorem.

THEOREM 31. Suppose that F satisfies (5.6)-(5.8) and (SC1). Then there exist
functions φ+

1 ,φ−
1 ∈W 2,p

loc (Ω)∩C(Ω), for all p < ∞ and φ+
1 > 0, φ−

1 < 0 in Ω, such
that {

F(x,φ+
1 ,Dφ+

1 ,D2φ+
1 ) = μ+

1 φ+
1 in Ω,

φ+
1 = 0 on ∂Ω,

(5.9)

{
F(x,φ−

1 ,Dφ−
1 ,D2φ−

1 ) = μ−
1 φ−

1 in Ω,

φ−
1 = 0 on ∂Ω.

(5.10)

For the proof of Theorem 31, see Theorem 1.1 [150].

REMARK 15. One can also obtain minimax formula for μ+
1 . For this, we refer to

Theorem 1.1 of [4].

The principle eigenfunctions are simple, in fact, A. Quaas and B. Sirakov proved the
following theorem.
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THEOREM 32. Suppose that F satisfies hypothesis of Theorem 31. Assume that
there exists an Ln -viscosity solution u ∈C(Ω) of{

F(x,u,Du,D2u) = μ+
1 φ+

1 in Ω,

u = 0 on ∂Ω,
(5.11)

or of {
F(x,u,Du,D2u) � μ+

1 φ+
1 in Ω,

u(x0) > 0, u � 0 on ∂Ω,
(5.12)

for some x0 ∈ Ω. Then u≡ tφ+
1 , for some t ∈R . Similarly, if v∈C(Ω), satisfies either

(5.11) or the reverse inequalities in (5.12) with μ+
1 replaced by μ−

1 , then v≡ tφ−
1 , for

some t ∈ R.

For the proof of Theorem 32, we refer to Theorem 1.2 [150]. These eigenvalues of F
are isolated, that is, under a similar conditions as in Theorem 32, there exists ε0 > 0,
depending on n,Ω,λ ,Λ,γ and δ , such that the problem{

F(x,u,Du,D2u) = μu in Ω,

u = 0 on ∂Ω,
(5.13)

has no solution u �= 0 for μ ∈ (−∞,μ−
1 + ε0) \ {μ+

1 ,μ−
1 } . The A. Quaas and B. Sir-

akov also give the necessary and sufficient conditions for the positivity of the principle
eigenvalues. The following theorem also shows that the existence of a positive Ln -
viscosity supersolution implies the existence of a positive uniformly bounded strong
supersolution. More precisely, we have following theorem.

THEOREM 33. Suppose F satisfies the assumptions of Theorem 31.
(i) Assume there is a function u ∈C(Ω), such that{

F(x,u,Du,D2u) � 0 in Ω,

u > 0 in Ω,
(5.14)

respectively {
F(x,u,Du,D2u) � 0 in Ω,

u < 0 in Ω,
(5.15)

in the Ln -viscosity sense. Then either μ+
1 > 0 or μ+

1 = 0 with u≡ tφ+
1 , for some t > 0

(resp., μ−
1 > 0 or μ−

1 = 0 with u ≡ tφ−
1 , for some t > 0 ).

(ii) Conversely, if μ+
1 > 0, then there exists a function u ∈ W 2,p(Ω), p < ∞, such

that F(x,u,Du,D2u) � 0, u � 1 in Ω and ‖u‖W2,p(Ω) � C, where C depends on

p,n,Ω,λ ,Λ,γ,δ ,and μ+
1 .

REMARK 16. When F is proper, u ≡ 1, satisfies the conditions of Theorem 33
and hence proper operators have positive eigenvalues.
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It follows from the Theorem 33 that the eigenvalues are strictly decreasing with respect
to domain, that is, if Ω′ ⊂ Ω , then μ+

1 (Ω) < μ+
1 (Ω′) and μ−

1 (Ω) < μ−
1 (Ω′), in fact,

μ+
1 ,μ−

1 are continuous with respect to domain, for the details, see Proposition 4.10
[150].

REMARK 17. If the operator F satisfies the assumptions of Theorem 31, then the
necessary and sufficient condition for F to satisfy comparison principle is that μ+

1 > 0.
However μ−

1 > 0, does not imply the comparison principle to hold.

REMARK 18. A. Quaas and B. Sirakov also obtained that μ+
1 > 0, is a sufficient

condition for the existence of unique solution u ∈ W 2,p(Ω)∩C(Ω), of the following
Dirichlet problem {

F(x,u,Du,D2u) = f in Ω,

u = 0 on ∂Ω,
(5.16)

where f ∈ Lp for p � n and F satisfies the same conditions as in the Theorem 33. In
addition to this, authors also obtained that for any Ω′ ⊂⊂ Ω following estimate holds

‖u‖W2,p(Ω′) � C‖ f‖Lp(Ω),

where C depends on p,Ω′,Ω λ , Λ, γ, δ , and μ+
1 . On the other hand, if μ+

1 = 0 or

μ−
1 > 0 � μ+

1 , then the problem (5.16) does not possess a solution in C(Ω) provided
f � 0, f �≡ 0. For the details, see Theorem 1.8 [150].

The above remark states that if only one of the two eigenvalues are positive, the Dirich-
let problem (5.16) may not have a solution. The precise statement is given in the fol-
lowing theorem.

THEOREM 34. Suppose that F satisfies (5.6)-(5.8) and (SC1). If μ−
1 (F) > 0,

then for any f ∈ Lp(Ω) p � n, such that f � 0 in Ω, there exists a nonpositive solution
u ∈W 2, p(Ω)∩C(Ω), of (5.16).

REMARK 19. The uniqueness of the solution obtained in Theorem 34 is not guar-
anteed. For the proof, we refer to [150].

The following existence result is applicable to Isaac’s operators. It says that an Isaac’s
equation is solvable provided the operator is controlled, in the sense of (5.8), by an
operator with positive eigenvalues.

THEOREM 35. Assume F satisfies (5.6)-(5.8) and (SC1), and H satisfies (5.8) and
(5.6). If μ+

1 (F) > 0, then the problem{
H(x,u,Du,D2u) = f in Ω,

u = 0 on ∂Ω,
(5.17)

is solvable in the Lp -viscosity sense for any f ∈ Lp(Ω), p � n. Further, if H is convex
in M then u ∈W 2,p(Ω)∩C(Ω), and u is unique.
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For the proof, see Theorem 1.10 [150]. In [149], A. Quaas and B. Sirakov proved a
Liouville type theorem in half space that is valid for larger range of p than Theorem
17. In order to state the theorem, let us introduce a notation R

n
+ = {x ∈ R

n : xn > 0}.

THEOREM 36. Suppose N � 3 and set

p̃+ =
λ (n−2)+ Λ
λ (n−2)−Λ

.

Then the problem {
P+

λ ,Λ(D2u)−up = 0 in R
n
+,

u = 0 in ∂R
n
+,

(5.18)

does not have a nontrivial nonnegative bounded solution, provided 1 < p � p̃+ ( or
1 < p < ∞ if λ (n−2) � Λ).

In [149], A. Quaas and B. Sirakov studied the problem{
P+

λ ,Λ(D2u) = f (x,u) in Ω,

u = 0 on ∂Ω,
(5.19)

by using the Liouville type Theorem 26, degree theory for a compact operator in closed
cone with non-empty interior in a Banach space. In order to state the precise statement
of the existence results we need the following assumptions on f ;

1. f is a Hölder continuous function on Ω× [0,∞), such that f (x,0) = 0 and
f (x,s) � −γs for some γ � 0 and all s � 0, x ∈ Ω .

2. limsupu→∞ < μ+
1 < liminfu→0

f (x,u)
u � ∞, uniformly in x ∈ Ω.

THEOREM 37. Suppose (1) and (2) hold. Then problem (5.19) has a positive
classical solution.

For the proof, see Theorem 1.1 [149]. Again, let us define another condition which
turns to the problem (5.19) into a superlinear equations, that is, f (x,u) satisfies the
following condition

(3) limsup
u→0

f (x,u)
u

< μ+
1 < liminf

u→∞

f (x,u)
u

� ∞, uniformly in x ∈ Ω.

In order to state existence theorem for superlinear equations, they considered the family
of problems obtained from (5.19) by replacing f (x,u) by f (x,u+ t), for t � 0. Set Ut

denotes the set of nonnegative classical solutions for any such problem and let Bt =⋃
0�s�t Us.

THEOREM 38. Let us assume that conditions (i) and (iii) hold and also that for
each t � 0, there is a constant C depending only on t, Ω and f such that

‖u‖L∞(Ω) � C, for all u ∈ Bt . (5.20)

Then the problem (5.19) has a classical positive solution.
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For the proof, see Theorem 1.2 [149]. As we mentioned in the Remark 18, it was shown
by A. Quaas and B. Sirakov that the Dirichlet problem{

F(x,u,Du,D2u) = f (x) in Ω,

u = 0 on ∂Ω,
(5.21)

has a unique solution if μ+
1 > 0, while if μ−

1 > 0 � μ+
1 , then (5.21) has a solution for

f � 0 but (5.21) does not have solution for f � 0, f �≡ 0. The question of uniqueness
in the last case was left open, since in Remark 17 we have seen that μ−

1 > 0 alone does
not imply the comparison principle. In [154], B. Sirakov showed that uniqueness fails
only when one of the two eigenvalues is positive. In order to state the precise statement,
we need some more structure conditions that are given below. Let us consider{

H(x,u,Du,D2u) = f (x) in Ω,

u = 0 on ∂Ω,
(5.22)

where again Ω is a smooth bounded domain in R
n. We suppose that H in (5.22)

satisfies the following hypothesis;
for all M ∈ S(n), p ∈ R

n,u ∈ R,x ∈ Ω, and for some constants A0, γ,δ

F(x,u, p,M)−A0 � H(x,u, p,M) � P+
λ ,Λ(M)+ γ|p|+ δ |u|+A0, (5.23)

where F is some (u, p,M)-convex nonlinear operator satisfying (5.6), (5.7) and

P−
λ ,Λ(M)− γ|p|− δ |r|� F(x,r, p,M) � P+

λ ,Λ(M)+ γ|p|+ δ |r|. (5.24)

Suppose also that for each R∈R, there exists cR such that (4.3) is satisfied with δ = cR

and for all M,N ∈ S(n), p,q ∈ R
n, x ∈ Ω, u,v ∈ [−R,R] . B. Sirakov also assumed that{

H(x,v,Du,D2u)−u = f in Ω,

u = 0 on ∂Ω,
(5.25)

has at most one solution u , for each v ∈C(Ω). Further, he has also used the following
decomposition of

f (x) = −tφ(x)+g(x), (5.26)

where t ∈ R, φ+
1 (F0,Ω) is the first positive normalized eigenfunction of the operator

F0(x, p,M) = F(x,0, p,M)

so that maxΩ φ = 1. The existence of φ ∈W 2,p(Ω)∩C(Ω), p < ∞,φ > 0 in Ω , satis-
fying

F0(x,Dφ ,D2φ) = μ+
0 φ in Ω,

has been proved in [150]. Furthermore F0 is proper so μ+
0 = μ+

1 > 0, see (16).
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THEOREM 39. Suppose F and H satisfy (5.23), (5.24), (5.7) and (5.8). Further,
F is also convex in (u, p,M) and

μ+
1 (F,Ω) < 0 < μ−

1 (F,Ω). (5.27)

Then for each g ∈ L∞(Ω) in (5.26), there exists a number t∗(g) ∈ R, such that:
(i) if t < t∗(g) then (5.22) has at least two solutions,
(ii) if t = t∗(g) then (5.22) has at least one solution,
(iii) if t > t∗(g) then (5.22) has no solution.
Further, the map g → t∗(g) is continuous from L∞(Ω) to R.

For the proof of Theorem 39, we refer to Theorem 1 [154]. The value of t∗(g) is
computed by S. N. Armstrong in [4] in terms of H and g . Now we will present the
existence results of [5] which are also in the sequel of results presented above. In this
paper S. N. Armstrong considered the C -viscosity solution. In order to state the result
precisely, we need the following hypothesis given below.
(A) For each K > 0, there exist an increasing continuous function ωK : [0, ∞) −→
[0, ∞) for which ωK(0) = 0, and a positive constant 1

2 < α � 1, depending on K ,
such that

|F(x,r, p,M)−F(y,r, p,M)| � ωK(|x− y|α(|M|+1)), (5.28)

for all M ∈ S(n), p ∈ R
n, r ∈ R and x,y ∈ Ω satisfying |p|, |r| � K.

Armstrong considered the following problem{
H(x,v,Du,D2u) = μu+ f in Ω,

u = 0 on ∂Ω,
(5.29)

and proved the following existence results.

THEOREM 40. Suppose that F satisfies (SC1), (5.6) and (A) stated above, also
assumed that f ∈C(Ω)∩Lp(Ω), for some p > n.

1. If f � 0 and μ < μ+
1 (F,Ω), then the Dirichlet problem (5.29) has a unique

nonnegative solution u ∈C(Ω). Moreover, u ∈C1,ν(Ω).

2. If f � 0 and μ < μ−
1 (F,Ω), then the Dirichlet problem (5.29) has a nonpositive

solution u ∈C1,ν(Ω).

3. If μ < min{μ+
1 (F,Ω), μ−

1 (F,Ω)}, then the Dirichlet problem (5.29) has a solu-
tion u ∈C1,ν(Ω).

For the proof, see Theorem 2.3 [5]. It can be seen that no μ satisfying

min{μ+
1 (F,Ω), μ−

1 (F,Ω)} < μ < max{μ+
1 (F,Ω), μ−

1 (F,Ω)}

is an eigenvalue for F in Ω, neither for such μ do we have general existence or unique-
ness of solutions of (5.29). See Section 6 [5] for some nonexistence results, and [154]
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for the nonexistence and failure of the uniqueness of the solutions of (5.29), for μ be-
tween two half eigenvalues. Next, we will present some existence results for the values
of μ satisfying

μ > max{μ+
1 (F,Ω), μ−

1 (F,Ω)}.
Let us define

μ2(F,Ω) = inf{ρ > max{μ+
1 (F,Ω), μ−

1 (F,Ω)} : ρ is an eigenvalue of F in Ω}.

The μ2(F,Ω) is finite, see Lemma 3.3 [5].

THEOREM 41. Suppose that F satisfies (SC1), (5.6) and (A) stated above, also
assume that f ∈C(Ω)∩Lp(Ω) for some p > n, and

max{μ+
1 (F,Ω), μ−

1 (F,Ω)} < μ < μ2(F, Ω).

Then there exists a solution u ∈C1,ν(Ω) of the Dirichlet problem (5.29).

For the proof, see Theorem 2.4 [5]. In [76], authors studied the Dirichlet problem{
F(x,v,Du,D2u) = f in Ω,

u = 0 on ∂Ω,
(5.30)

at the resonance case, that is, one of the semi-eigenvalue (i.e either μ+
1 = 0 or μ−

1 = 0).
Once again, we suppose that F satisfies the conditions (SC1), (5.6), (5.7) and (5.8), and
f is of the form

f = tφ+
1 +g, t ∈ R, (5.31)

where φ+
1 , is the first half eigenfunction and g ∈ Lp(Ω) . In order to state the precise

statement, we introduce some notations. Let S be the set of solutions of (5.30) in the
space C(Ω)×R as follows;

(u, t) ∈ S iff u is a solution of (5.30), with f = tφ+
1 +g.

Further, given a subset B ⊂C(Ω)×R and t ∈ R, define

Bt = {u ∈C(Ω) : (u,t) ∈ B}

and
BI = ∪t∈IBt

if I is an interval. Below, we will preset the results in the three cases

(i) μ+
1 (F) = 0 (ii) μ−

1 (F) = 0 (iii) μ−
1 (F) < 0, separately.
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THEOREM 42. Assume μ+
1 (F) = 0, then the following hold.

(i) There exists a number t∗+ = t∗+(g) such that if t < t∗+, then there is no solution of
(5.30), while for t > t∗+, (5.30) has a solution.
(ii) The set S is a continuous curve such that St has a singleton for all t > t∗+, that is,
solution is unique for t > t∗+. If t∗+ � t < s and (ut ,t),(us,s) ∈ S , then ut > us in Ω.
The map t → ut(x) is convex for each x ∈ Ω.
(iii) There exists t+ = t+(g) > t∗+ such that if t � t+, then ut < 0 in Ω, and for every
compact subset K ⊂⊂ Ω, we have limt→+∞ maxx∈K ut(x) = −∞.
(iv) If t = t∗+, then either
(a) (5.30) does not have solution (that is, St∗ is empty), limt↘t∗+ minx∈K ut = +∞ for
every K ⊂⊂ Ω, and there exists ε = ε(g) > 0 such that if t ∈ (t∗+,t∗+ +ε), then ut > 0 .
or
(b) there exists a function u∗ such that St∗+ = {u∗+ sφ+

1 |s � 0}.
Next, P. Felmer, A. Quaas, and B. Sirakov considered the second case of the resonance,
that is, μ−

1 (F) = 0.

THEOREM 43. Assume μ−
1 (F) = 0, then there exists a number t∗− = t∗−(g) such

that the following hold.
(i) If t < t∗−, then there is no solution of (5.30).
(ii) There is a closed connected set C ⊂ S such that Ct �= φ for all t > t∗− .
(iii) The set SI is bounded in W 2,p(Ω) for each compact subset I ⊂ (t∗−,∞).
(iv) If we denote αt = inf{supΩ u | u ∈ St}, we have limt→+∞ αt = +∞.
(v) The set C[t∗− , t∗−+ε) is unbounded in L∞(Ω) for all ε > 0 ; there exists C =C(g) > 0,

such that if u∈S[t∗−, t∗−+ε) and ‖u‖L∞(Ω) �C, then u < 0 in Ω; if un ∈S[t∗−, t∗−+ε) and
‖un‖L∞(Ω) → ∞, then maxK un →−∞ for each compact subset K ⊂⊂ Ω.
(vi) If St∗− is unbounded in L∞(Ω), then there exists a function u∗ such that St∗− =
{u∗+ sφ−

1 | s � 0}.
Finally, they also considered the case μ−

1 (F) < 0 but very little is known in this case.
If μ−

1 (F) is small and negative, then the following theorem holds.

THEOREM 44. There exists 0 < L � ∞, such that if μ−
1 (F) ∈ (−L, 0), then

(i) there exists a closed connected set C ⊂ S such that Ct �= φ for each t ∈ R (SI is
bounded in W 2,p(Ω) for each bounded I ⊂ R );
(ii) setting αt = inf{supΩ u | u ∈ St}, and ut(x) = sup{u(x) | u ∈ St}, we have

lim
t→+∞

αt = +∞ and lim
t→−∞

sup
K

ut(x) = −∞,

for each K ⊂⊂ Ω and ut < 0 in Ω, for all t below some number t−(g).

In [78], P. Felmer, A. Quaas and B. Sirakov obtained some existence results for follow-
ing equation {

H(x,v,Du,D2u) = μu+ f (x,u) in Ω,

u = 0 on ∂Ω,
(5.32)
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where Ω is a bounded and smooth domain in R
n, under Landesman-Lazer type as-

sumptions on f . For the Landesman lazer type results in the linear case, see [58] and
[89]. Note that in (5.29), f depends only on x .
Suppose that f : Ω×R −→ R, is continuous and sublinear in u at infinity, that is,

(A0) lim|s|→∞
f (x, s)

s = 0 uniformly in x ∈ Ω.

(A1) f (x, 0) � 0 and f (x, 0) �≡ 0 in Ω.

(A2) f (x, .) is locally Lipschitz, that is, for each R∈R there is LR such that | f (x,s1)−
f (x,s2)| � LR|s1 − s2| for all s1,s2 ∈ (−R, R) and x ∈ Ω .

Let us define functions which depend only on x

f s(x) := limsup
s→+∞

f (x,s), f i(x) := liminf
s→+∞

f (x,s)

and
fs(x) := limsup

s→−∞
f (x,s) fi(x) := liminf

s→−∞
f (x,s).

Below, we write the critical t -values at the resonance as follows:

t�+ = t∗+(g) = t∗μ+
1 , F(g) and t�− = t∗−(g) = t∗μ−

1 , F(g),

and p > n is a fixed number. We assume that there are

(Ai ) a function ai+ ∈ Lp(Ω), such that ai(x) � f i(x) in Ω and t∗+(ai) < 0,

(As ) a function as ∈ Lp(Ω), such that as(x) � fs(x) in Ω and t∗−(as) > 0,

(As ) a function as ∈ Lp(Ω), such that as(x) � f s(x) in Ω and t∗+(as) > 0,

(Ai ) a function ai ∈ Lp(Ω), such that ai(x) � fi(x) in Ω and t∗−(ai) < 0.

THEOREM 45. Suppose that F satisfies (SC1), (5.6), (5.7) and (5.8), and f sat-
isfies (A0) and (Ai). Then there exist δ > 0 and two disjoint closed connected sets of
solutions of (5.32), C1, C2 ⊂ S such that

1. C1(μ) �= φ for all μ ∈ (−∞, μ+
1 ],

2. C1(μ) �= φ and C2(μ) �= φ for all λ ∈ (μ+
1 , μ+

1 + δ ).

The set C2 is a branch of solutions “bifurcating from plus infinity to the right of μ+
1 ”,

that is, C2 ⊂C(Ω)× (μ+
1 , ∞) there is a sequence {(un, μn)} ∈ C , such that μn → μ+

1
and ‖un‖L∞(Ω) → ∞. Moreover, for every sequence {(un, λn)} ∈ C2, such that μn →
μ+

1 and ‖un‖L∞(Ω) → ∞ , un is a positive in Ω, for n large enough.
If we assume (As) holds, then there is a branch of solutions of (5.32) “bifurcating from
minus infinity to the right of μ−

1 ”, that is, a connected set C3 ⊂ S such that C3 ⊂
C(Ω)× (μ−

1 , ∞), for which there is a sequence {(un, λn)} ∈ C3 such that μn → μ−
1

and ‖un‖L∞(Ω) →∞. Moreover, for every sequence {(un, μn)} ∈Cn such that μn → μ−
1

and ‖un‖L∞(Ω) → ∞, un is negative in Ω for n large enough.



174 J. TYAGI AND R.B. VERMA

For the proof of the Theorem 45, see Theorem 1.1 [78].

THEOREM 46. Suppose that F satisfies (SC1), (5.6), (5.7) and (5.8), and f sat-
isfies (A0), (A1), (A2), (Ai) and (As). Then there exist a constant δ > 0 and three
disjoint closed connected sets of solutions C1, C2, C3 ⊂ S , such that (5.32)

1. C1(μ) �= φ for all μ ∈ (−∞, μ+
1 ],

2. Ci(μ) �= φ , i = 1, 2, for all μ ∈ (μ+
1 , μ−

1 ],

3. Ci(μ) �= φ , i = 1, 2, 3 for all μ ∈ (μ−
1 , μ−

1 + δ ).

The sets C2 and C3 have the same bifurcation from infinity properties as in the previous
theorem.

For the proof of the Theorem 46, we refer to Theorem 1.2 [78].

THEOREM 47. Assume that F satisfies the same hypotheses as in Theorem 46,
and f satisfies (A0), (A1), (A2), (As) and (Ai). Then there exist δ > 0 and disjoint
closed connected sets of solutions C1, C2 ⊂ S , such that

1. C1(μ) �= φ , for all μ ∈ (−∞, μ+
1 − δ ],

2. C1(μ) �= φ , C2(μ) contains at least one elements for all μ ∈ (μ+
1 −δ , μ+

1 ) and
C2 is a branch bifurcating from plus infinity to the left of μ+

1 ,

3. C1(μ) �= φ and C2 �= φ . for all μ ∈ [μ+
1 , μ−

1 ), and either:
(a) C1 is a branch bifurcating from minus infinity to the left of μ−

1 ,
(b) there is a closed connected set of solutions C3 ⊂ S , disjoint to C1 and C2

bifurcating from minus infinity to the left of μ−
1 , such that C3 has at least two

elements for all μ ∈ (μ−
1 − δ , μ−

1 ),

4. C2(μ) �= φ , for all μ ∈ [μ−
1 , μ−

1 + δ ]. In case (b) in (3), C2(μ) �= φ and
C3(μ) �= φ , for all μ ∈ [μ−

1 , μ−
1 + δ ].

For the proof of the Theorem 47, we refer to Theorem 1.3 [78]. A slightly different
type of nonlinearity in the gradient terms has been appeared in the literature. The first
result in this direction was appeared in [80]. Further, using the result in [80], S. Koike,
A. Świech, allowed the quadratic nonlinearity in the gradient term. There are various
difficulties arise by considering this nonlinearity due to lack of the maximum principle.
They considered the following equation{

F(x,Du(x),D2u(x)) = f (x) in Ω,

u = ψ on ∂Ω,
(5.33)

with the assumptions that F is measurable in x . This equation is uniformly elliptic,
that is,

P−
λ ,Λ(M−N) � F(x, p,M)−F(x,q,N) � P+

λ ,Λ(M−N).
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In order to deal with a wide class of PDEs with quadratic nonlinearities in the gradient
of u , they assumed that there exist γ1, γ2 > 0, such that{

|F(x,u, p,M)| � γ1|p|+ γ2|q|2,
|F(x, p,M)−F(x,q,M)| � γ1|p−q|)+ γ2(|p|+ |q|)|p−q|, (5.34)

for x ∈ Ω, p, q∈ R
n and M ∈ S(n) . Under this structural assumptions on F , S. Koike,

A. Świech proved the following theorem.

THEOREM 48. Assume that F is elliptic and measurable in x and also satis-
fies (5.34), and Ω satisfy a uniform exterior cone condition. Assume also that f ∈
Lp(Ω) for p > p0 . Then there exists δ = δ (n,λ ,Λ, p,γ1,γ2,diam(Ω)) > 0, such that if

γ2‖ f‖Lp(Ω)diam(Ω)2− n
p < δ ,

for any ψ ∈C(∂Ω), there is an Lp -viscosity solution of (5.33).

For the proof, see Theorem 5.1 [104]. A slightly general result in this direction was
proved by B. Sirakov in [155], which extends the existence results in [47]. He consid-
ered the following equation{

F(x,u,Du,D2u)+ c(x)u = f (x) in Ω,

u = ψ on ∂Ω,
(5.35)

and proved the existence and uniqueness results for (5.35). Let us first define the struc-
ture conditions⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F(x,u, p,M)−F(x,v,q,N) � P+
λ ,Λ(M−N)+ μ(|p|+ |q|)|p−q|+b(x)|p−q|

+d(x)h(u,v),

F(x,u, p,M)−F(x,v,q,N) � P−
λ ,Λ(M−N)− μ(|p|+ |q|)|p−q|−b(x)|p−q|

−d(x)h(u,v),
(5.36)

where 0 < λ � Λ, μ ∈R
+, b∈ Lp(Ω) , for some p > n, d ∈ Ln(Ω), b, d � 0 and h, h∈

C(R2). One example that satisfies the assumptions given by (5.36) is

P+
λ ,Λ(D2u)+ μ(x)|Du|2 +b(x)|Du|+ c(x)u = f (x),

with μ ∈ L∞(Ω), b ∈ Lp(Ω), p > n, c, f ∈ Ln(Ω). From the above example, it is clear
that the results of B. Sirakov are also true for the equations in divergence form.

THEOREM 49. Suppose F satisfies (5.36) with h = h((u− v)+), h = ((v−u)+),
for some continuous function h, such that h(0) = 0. Let c ∈ Ln(Ω), then
(i) if c(x) � −c almost everywhere in Ω, for some constant c > 0, then for any data
f ∈ Ln and ψ ∈C(∂Ω) there exists a solution u ∈C(Ω) of{

F(x,u,Du,D2u)+ c(x)u = f (x) in Ω,

u = ψ on ∂Ω.
(5.37)
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(ii) There exists a positive constant δ0, depending on λ , Λ, n, ‖b‖Ln(Ω), and diam(Ω)
such that if f ∈ Ln(Ω) and ψ ∈C(∂Ω) satisfy

‖μ | f |+ μMc+ + c+‖Ln(Ω) < δ0,

then there exists a solution u ∈C(Ω) of (5.37).
(iii) If problem (5.37) with c+ ≡ 0 or with μ = 0 and ‖c+‖Ln(Ω) < δ0 has a strong
solution then this solution is unique viscosity solution of (5.37).
(iv) The strong solutions of (5.37) are not unique if μ > 0 and c(x)≡ c > 0 (arbitrarily
small), even for λ = Λ, b = d = f = ψ ≡ 0.

For the proof of Theorem 49, see Theorem 1 [155]. Finally, in this direction S. Koike,
A. Świech, proved the existence of Lp -strong solutions concerning similar equations.
In [105], the authors considered the equation allowing superlinear growth in Du of
m-th order. More precisely, they considered the following equation{

P±(D2u)∓ γ(x)|Du|∓ μ(x)|Du|m = f (x) in Ω,

u =ψ on ∂Ω,
(5.38)

and proved the following theorem which generalises the above results in some sense.

THEOREM 50. Let p0 < p � q1, q1 > n, f ∈ Lp(Ω), γ ∈ Lq1 and ψ ∈W 2,p(Ω).
Assume that one of the following conditions holds.⎧⎪⎨⎪⎩

(i) q = ∞, p0 < p, n > m(n− p),
(ii) n < p � n < q < ∞,

(iii) p0 < p � n < q < ∞, mq(n− p) < n(q− p).
(5.39)

Let ⎧⎪⎪⎨⎪⎪⎩
r = mp for (i)
r = ∞ for (ii) with p = q,

r =
mpq
q− p

for (ii) with p < q or (iii).
(5.40)

Set ε1 = (2CD)−m > 0, where C is some constant. If

‖μ‖Lq(‖ f‖Lp(Ω) +‖ψ‖2,p)m−1 < ε1,

then there exist Lp -strong solutions u ∈W 2,p(Ω), of (5.38). Moreover

‖u‖W2,p(Ω) � Ĉ(‖ f‖Lp(Ω) +‖ψ‖W2,p(Ω)),

for some Ĉ = Ĉ(n,λ ,Λ, p,q1,q,m,‖γ‖q1 ,Ω) > 0.

Next, we want to present existence results concerning the singular perturbed equations
and some asymptotic behaviour of the solutions. In the fully nonlinear setting, singular
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perturbed problems are appeared in [1]. S. Alarc ón, L. Iturriaga and A. Quaas studied
the problem {

ε2P+
λ ,Λ(D2u) = f (x,u) in Ω,

u = 0 on ∂Ω,
(5.41)

where Ω is a smooth bounded domain in R
n, n > 2. They proved that it possesses non-

trivial solutions for small values of ε provided f is nonnegative continuous function
which has a positive zero. In order to state the precise statement, we need to put some
conditions on f :

1. f : Ω× [0,+∞) −→ [0,+∞) is continuous function and f (x, .) is locally Lips-
chitz in (0,∞) for all x ∈ Ω, f (x,0) = f (x,1) = 0 and f (x,t) > 0 for t ∈ {0;1}.

2. liminft→+0
f (x,t)

t = 1 uniformly for x ∈ Ω

3. There exist a continuous function a : Ω → (0,∞) and σ ∈ (1, α
α−2) such that

lim
t→1

f (x,t)
|t−1|σ = a(x).

4. There exist k > 0, and T > 1, such that the map t → f (x,t)+ kt, is increasing
for t ∈ [0,T ] and x ∈ Ω .

THEOREM 51. Assume that Ω is a bounded smooth domain. Then, under the
hypotheses (1)-(4), there exists ε∗ > 0, such that the problem (5.41) has at least two
positive viscosity solutions u1,ε , u2,ε for 0 < ε < ε∗.
Moreover, these solutions satisfy ‖u1,∞‖L∞ → 1− and ‖u2,∞‖L∞ → 1+ as ε → 0.

.

6. Singular elliptic equations

In this section, we continue our earlier discussion for Singular fully nonlinear el-
liptic equations. There are mainly two type of singularities appeared in literature in
the context of viscosity solutions of the fully nonlinear elliptic equations. First type
contains the singular nonlinearity and second type contains the singularities in the op-
erator. The first article, in the context of the viscosity solutions for first type singular
fully nonlinear elliptic PDEs is [78]. The study of second type of singular fully nonlin-
ear elliptic PDEs was started by I. Birindelli and F. Demengel in a sequence of papers
[21, 22, 23, 24, 25]. By taking into account the work of Evans and Spruck [67] and
Juutinen, Lindquist and Manfredi [101], I. Birindelli and F. Demengel noticed that one
can not take test function whose gradient is zero at the test point since the operator may
not be defined at that point. So in this case, there will be a small change in the definition
of the viscosity solutions.
First Type of Singularity:
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As we have mentioned that the first article in this direction is [78], where authors con-
sidered the following problem{

F(x,u,Du,D2u) = f (x,u) in Ω,

u = 0 on ∂Ω,
(6.1)

where F is a positively homogeneous fully nonlinear elliptic operator and f has singu-
larities at u = 0. In this paper, authors proved the existence, uniqueness and regularities
of viscosity solutions to (6.1) . The basic classical work in this direction for semilinear
equations can be found in [54]. The precise statement, in the fully nonlinear case is the
following.

THEOREM 52. Suppose F is of the form (2.18) and satisfies (SC1), (5.6), (5.7)
and (5.8). Assume ρ > 0 and p ∈ Ln(Ω), further, p � 0 in Ω and p > 0 on a subset
of Ω with positive measure. Then the problem{

F(x,u,Du,D2u) = p(x)u−ρ in Ω,

u = 0 on ∂Ω,
(6.2)

has unique Ln -viscosity solution u in W 2,n
loc ∩C(Ω).

The authors proved Theorem 52 by the method of sub and supersolution, with the com-
binations of the results on the existence of eigenvalues and eigenfunctions of fully non-
linear operators in [150]. Further, they also proved that if p in the above theorem be-
haves like a power of the distance function as in [86], [62], then the following theorem
also holds.

THEOREM 53. Suppose that F satisfies hypotheses of Theorem 52, assume there
are constants c1, c2 > 0 such that

c1d(x)η � p(x) � c2d(x)η , for some η � 0, (6.3)

where d(x) = d(x,∂Ω). Then for a solution u of Equation(6.2), we have:
(i) If ρ < 1+ η then u ∈ C1,β (Ω), for some β which depends only on η , ρ , λ , Λ ,
γ , δ , n , and Ω . (ii) If ρ = 1 + η then u ∈ Cβ (Ω) for all β < 1, and there exist
constants a1, a2, D > 0 such that

a1d(x)(D− logd(x))
1

1+ρ � u(x) � a2d(x)(D− logd(x))
1

1+ρ .

(iii) If ρ > 1+ η then u ∈C
η+2
1+ρ (Ω) and for some constants a1, a2 > 0,

a1d(x)
η+2
1+ρ � u(x) � a2d(x)

η+2
1+ρ , x ∈ Ω.
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In course of proving Theorem 52, P. Felmer, A. Quaas and B. Sirakov also proved the
existence of first eigenvalue for fully nonlinear elliptic operator with a non-negative
weight. More precisely, they considered the following eigenvalue problem{

F(x,u,Du,D2u) = μ p(x)u in Ω,

u = 0 on ∂Ω,
(6.4)

and proved the existence of (μ+
1 ,φ+) ∈ R×W 2,n(Ω) satisfying (6.4) with μ = μ+

1
such that φ+ > 0 in Ω. Here μ+

1 also depends upon the weight function p(x) . They
also proved the comparison principle for

H(w) := F(x,w,Dw,D2w)+ p(x)(w+ δ )−ρ = 0 in Ω, (6.5)

for details, we refer to Theorem 7 [78]. In this direction, [3] is also recently appeared,
where the authors use some geometric approach to find the viscosity solution.
Second Type of Singularity:
Before proceeding further, we would like to comment that in this subsection we are
following the definition of the viscosity solution, ellipticity, etc., from [21] for making
my presentation easier. Let us consider an operator

F : R
n× (Rn)� ×S(n)−→ R, (6.6)

where (Rn)� = R
n \ {0} , which satisfies the following conditions

(SF1) F(x, p,0) = 0, ∀ (x, p) ∈ R
n× (Rn)�.

(SF2) There exists a continuous function ω , ω(0) = 0, such that if X ,Y ∈ S(n) and ξ j

satisfy

− ξ j

(
I O
O I

)
�
(

X O
O Y

)
� 4ξ j

(
I −I
−I I

)
, (6.7)

where I is the identity matrix in S(n) , then for all x,y ∈ R
n, we have

F(x,ξ j(x− y),X)−F(y,ξ j(x− y),−Y) � ω
(

ξ j|x− y|2 +
1
j

)
.

(SF3) There exist σ , θ ∈ R satisfying σ � θ > −1, and λ ,Λ ∈ R
+, such that for all

x ∈ R
n, p ∈ (Rn)�, M,N ∈ S(n), N � 0, we have

|p|θ λ trace(N) � F(x, p,M +N)−F(x, p,M) �
( |p|σ + |p|θ

2

)
Λtrace(N).

In [21], authors proved the comparison principle for the singular fully nonlinear equa-
tions satisfying certain conditions. The comparison principle reads as follows.

THEOREM 54. Let Ω be a bounded open set in R
n, whose boundary is piecewise

C1 . Suppose that F satisfies conditions (SF1), (SF2) and (SF3), and b is some con-
tinuous and increasing function on R such that b(0) = 0. Suppose that w ∈C(Ω) is a
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viscosity sub-solution of F = b and v ∈C(Ω) is a viscosity supersolution of F = b. If
w � v on ∂Ω, then w � v in Ω.
If b is nondecreasing, the same conclusion holds when v is a strict supersolution or
vice versa when w is a strict subsolution.

For the proof, we refer to Theorem 1.1 [21]. Finally, the condition σ � θ > −1, is
optimal since it is possible to construct a counter example for σ = −1.

REMARK 20. The case where b is nonzero but satisfies some increasing behaviour
at infinity can be found in [164].

There is a strong maximum principle in the case where b = 0, that is, which is given
below.

PROPOSITION 6. Suppose that Ω be a bounded open set in R
n, which is piece-

wise C1 . Suppose that F satisfies (SF1) and (SF3) with σ = θ . Let v ∈C(Ω), v � 0
on ∂Ω , be a supersolution of F(x,Dv,D2v) = 0. Then, either v > 0 in Ω, or v ≡ 0.

For the proof of Proposition 6, we refer to Proposition 2.2 [21]. Using the Theorem
54 and Proposition 6, I. Birindelli, F. Demengel [21], have also proved the following
Liouville’s type theorem.

THEOREM 55. Suppose that u ∈C(Rn), is a nonnegative viscosity solution of

−F(x,Du,D2u) � h(x)uq in R
n, (6.8)

with h satisfying h(x) = a|x|γ , for large |x|, a > 0 and γ > −(σ +2). Let β = Λ
λ (n−

1)−1 and suppose that

0 < q � 1+ γ +(σ +1)(β +1)
β

,

then u ≡ 0.

For the proof, we refer to Theorem 3.1 [21].

6.1. Eigenvalues and Eigenfunctions

We have remarked that the definition of the viscosity solution is different for sin-
gular operators. So we consider the eigenvalue problem for the operators which are
singular separately. In [22], the authors considered the operator which does not explic-
itly depend on x and satisfies the following homogeneous type condition.

(SF4) F(t p,τX) = |t|σ τF(p,X) for all t ∈ R, τ � 0, σ > −1 and F(p,X) � F(p,Y )
for any p �= 0, and X � Y.
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Note that when F satisfies (SF3), then it satisfies monotonicity condition defined in
(SF4).
Let us consider the following set

E = {μ ∈ R : ∃ φ , φ∗ > 0 in Ω, F(Dφ ,D2φ)+ μφσ+1 � 0 in the viscosity sense },
(6.9)

where φ∗ is lower semicontinuous envelope of φ and

μ = supE. (6.10)

THEOREM 56. Suppose that Ω is a bounded open subset of R
n. Suppose that

κ < μ and F satisfies (SF4), then every viscosity solutions of{
F(Du,D2u)+ κ |u|σu � 0 in Ω,

u � 0 on ∂Ω,
(6.11)

satisfies u � 0 in Ω.

LEMMA 2. Suppose that Ω = B(0,R) , l = σ+2
σ+1 and

u(x) =
1
2l

(
|x|l −Rl

)2
.

Let F satisfies (SF3), then there exists some constant C depending on n, σ , λ and Λ
such that

sup
x∈B(0,R)

{−F(Du,D2u)
uσ+1

}
� C

Rσ+2 . (6.12)

For the proofs of Proposition 56 and Theorem 2, we refer to Proposition 3.2 and Lemma
3.5 [22], respectively. Using (56), (2), we obtain the following proposition.

PROPOSITION 7. Suppose that R is the radius of the largest ball contained in Ω
and that F satisfies (SF3) with σ = θ . Then, there exists some constant C depending
on n, σ , λ and Λ such that μ � C

Rσ+2 .

Next, we will present the extension of comparison Theorem 54 in the context of F
satisfying (SF4) and is independent of x .

THEOREM 57. Suppose that κ < μ , f is a nonpositive upper semi continuous
and g is lower semi continuous with f � g and either f < 0 in Ω or g(x) > 0 on every
points x satisfying f (x) = 0. Suppose that there exist v bounded and nonnegative and
w bounded, respectively satisfying

F(Dv,D2v)+ κv1+σ � f , F(Dw,D2w)+ κ |w|σw � g,

in the viscosity sense, with w � v, on ∂Ω . Then w � v in Ω.
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For the proof of Theorem 57, we refer to Theorem 3.6 [22]. The following corollary is
a consequence of Theorem 57.

COROLLARY 1. Suppose that κ < μ , there exists at most one nonnegative vis-
cosity solution of {

F(Du,D2u)+ κuσ+1 = f in Ω,

u = 0 on ∂Ω,
(6.13)

for f < 0 and continuous.

Once again for the proofs of Proposition 7, Theorem 57 and Corollary 1, we refer
to [22]. There are also some Hölder and Lipschitz regularity results for the viscosity
solution of {

F(Du,D2u) = f in Ω,

u = 0 on ∂Ω,
(6.14)

in Section 4 [22]. Next, we will present some existence results from Section 5 [22]
under certain conditions on F and f . We will consider two separate cases : κ < μ ;
κ = μ.
Let us consider the case κ < μ .

THEOREM 58. Assume that F satisfies (SF4), (SF3). Suppose that f is bounded
and f � 0 on Ω. Then, for κ < μ there exists a nonnegative viscosity solution u of{

F(Du,D2u)+ κuσ+1 = f in Ω,

u = 0 on ∂Ω.
(6.15)

Furthermore, the solution is unique.

For the proof of Theorem 58, we refer to Theorem 5.1 [22]

PROPOSITION 8. Suppose that f is bounded, continuous and nonpositive, and
κ ∈ R . Suppose that there exist w and v � 0, respectively a subsolution and superso-
lution of {

F(Du,D2u)+ κuσ+1 = f in Ω,

u = 0 on ∂Ω,
(6.16)

with w � v . Then there exists a viscosity solution u of (6.16), such that w � u � v .
Moreover, if f < 0 in Ω the solution is unique.

For the proof of Proposition 8, we refer to Proposition 5.2 [22].

PROPOSITION 9. Suppose that F satisfies (SF4), (SF3) with σ = θ . For any
bounded and nonpositive f in Ω, there exists a viscosity solution u of{

F(Du,D2u) = f in Ω,

u = 0 on ∂Ω.
(6.17)

Of course, u is nonnegative by the maximum principle and Hölder continuous.
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For the proof of Proposition 9, we refer to Proposition 5.3 [22].
Let us consider the case κ = μ .

THEOREM 59. Let F satisfy (SF3) and (SF4) with σ = θ . Then, there exists a
viscosity solution u > 0, in Ω of{

F(Du,D2u) = f in Ω,

u = 0 on ∂Ω.
(6.18)

Moreover, u is γ−Hölder continuous for all γ ∈ (0,1) and locally Lipschitz if F sat-
isfies one additional condition given below.
There exists η ∈ ( 1

2 ,1] such that for all |p| = 1, q, |q| < 1
2 , and B ∈ S(n)

|F(q+ p,B)−F(p,B)| � ν|q|η |B|.
For the proof, we refer to Theorem 5.5 [22]. Eigenvalues and eigenfunctions for gen-
eral singular fully nonlinear second order elliptic operator were considered in [23]. I.
Birindelli, F. Demengel considered the operators of the form

G(x,u,Du,D2u) = F(x,Du,D2u)+b(x).Du|Du|σ + c(x)|u|σu, (6.19)

where F is continuous on Ω× (Rn)� × S(n) . Let us also define some conditions that
will be needed in the statement of theorems, below.

(SF6) There exists a continuous function ω̃ , ω̃(0) = 0 such that for all x,y ∈ Ω , p �=
0 ∈ R

n and X ,Y ∈ S(n) satisfy

|F(x, p,X)−F(y, p,X)| � ω̃(ξ |x− y|)|p|σ |X |, for ξ ∈ R.

(SF7) There exists a continuous function ϑ with ϑ(0) = 0 such that

F(x,ξ (x− y),X)−F(y,ξ (x− y),−Y) � ϑ(ξ |x− y|2),
holds for all x,y ∈ R

n, x �= y , whenever X ,Y ∈ S(n) and ξ ∈R satisfy (6.7) with
ξ j = ξ , . Further, assume that b : Ω −→ R

n is a continuous, bounded function
satisfying:

(SF8) Either σ < 0 and b is Hölder continuous with exponent 1 + σ , or σ � 0 and
for all x and y , 〈b(x)−b(y),x− y〉 � 0. As it is clear from the definition of the
operator that the authors are considering the explicit dependence of F on x as
well as the lower order terms. The results of [23] are also general than the results
in [22] in the sense of the definition of μ . In order to avoid the confusion with
the notation we will use μ̃ instead of μ for the operator G .

μ̃ = sup{μ : ∃φ < 0 in Ω, F(x,Dφ ,D2φ)+b(x).Dφ |Dφ |σ +c(x)|φ |σ φ � 0 in Ω}.
(6.20)

In the similar way, one can also define

˜̃μ = sup{μ : ∃φ > 0 in Ω, F(x,Dφ ,D2φ)+b(x).Dφ |Dφ |σ +c(x)|φ |σ φ � 0 in Ω}.
(6.21)
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In [23], the authors also generalised the comparison principle 54.

THEOREM 60. Suppose that F satisfies (SF3), (SF7) and for all x ∈ Ω, p ∈ R
n \

{0}, M,N ∈ S(n) with N � 0,

F(x, p,N +M) � F(x, p,M),

and suppose that b is a bounded continuous function and satisfies (SF8). Let f and
g be respectively, upper and lower semicontinuous functions. Suppose that β is some
continuous function on R

+ such that β (0) = 0 . Suppose that w > 0 in Ω lower semi-
continuous and v upper semicontinuous functions satisfying

F(x,Dw,D2w)+b(x).Dw(x)|Dw|α −β (w) � f ,

and

F(x,Dv,D2v)+b(x).Dv(x)|Dv|α −β (v) � g,

respectively in the viscosity sense. Suppose that β is increasing on R
+ and f � g or

β is nondecreasing and f < g. If w � v on ∂Ω, then w � v in Ω .

The proof of above theorem follows in two steps. For the proof, we refer to Theorem 1
[23]. Next, we state the strong maximum principle.

THEOREM 61. Suppose that F satisfies (SF3) with σ = θ , b and c are contin-
uous, bounded and b satisfies (SF8). Let v be a non-negative lower semicontinuous
viscosity supersolution of

F(x,Dv,D2v)+b(x).Dv|Dv|σ + c(x)vσ+1 � 0. (6.22)

Then either v ≡ 0 or v > 0 in Ω .

For the proof, we refer to Theorem 2 [23]. There is also a Höpf type result, for the
statement and proof, we refer to Corollary 1 [23].

THEOREM 62. Let Ω be a bounded domain in R
n . Suppose that F satisfies

(SF4), (SF7) and for x ∈ Ω, p ∈ R
n \ {0}, M,N ∈ S(n) with N � 0

F(x, p,N +M) � F(x, p,M),

and that b and c are continuous and b satisfies (SF8). Suppose that κ < ˜̃μ and that
w is a viscosity sub solution of

F(x,Dw,D2w)+b(x).Dw|Dw|σ + c(x)|w|σ w+ κ |w|σw � 0 in Ω,

with w � 0 on ∂Ω , then w � 0 in Ω.
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PROPOSITION 10. Suppose that F satisfies (SF4) and (SF3) with σ = θ , b and
c are bounded; furthermore let c be nonpositive in Ω . Then there exists a function v
which is a nonnegative viscosity super solution of{

F(x,Dv,D2v)+b(x).Dv|Dv|σ + c(x)|v|σv � −1 in Ω,

v = 0 on ∂Ω.
(6.23)

For the proof, we refer to Proposition 7 [23].

THEOREM 63. Suppose that F satisfies (SF4) and (SF3) with σ = θ and that b
and c are continuous with c � 0 .
(i) If f is a bounded continuous, f � 0 on Ω , then there exists a nonnegative viscosity
solution u of {

F(x,Du,D2u)+b(x).Du|Du|σ+1 + c(x)uσ+1 = f in Ω,

u = 0 on ∂Ω.
(6.24)

(ii) For any bounded continuous function with f < −M < 0 for some positive constant

M and any 0 � c0 �
(

M
‖c‖L∞(Ω)

) 1
1+σ

, there exists u a non negative solution of

{
F(x,Du,D2u)+b(x).Du|Du|σ+1 + c(x)uσ+1 = f in Ω,

u = c0 on ∂Ω.
(6.25)

For the proof, we refer to Theorem 6 [23].

THEOREM 64. Suppose that F satisfies (SF3), (SF7) and for all x ∈ Ω, p ∈ R
n \

{0}, M,N ∈ S(n) with N � 0,

F(x, p,N +M) � F(x, p,M).

Let b be a bounded, continuous and satisfies (SF8), and μ < ˜̃μ .
(i) If f is bounded, continuous, and f � 0 on Ω , then there exists a nonnegative
viscosity solution u of{

F(x,Du,D2u)+b(x).Du|Du|σ +(c(x)+ μ)uσ+1 = f in Ω,

u = 0 on ∂Ω.
(6.26)

(ii) For any bounded, continuous function f with f < −M < 0, for some positive con-

stant M and any 0 � c0 �
(

M
‖c‖L∞(Ω)

) 1
1+σ

, there exists a nonnegative viscosity solution

of {
F(x,Du,D2u)+b(x).Du|Du|σ+1 + c(x)uσ+1 = f in Ω,

u = c0 on ∂Ω.
(6.27)
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For the proof, we refer to Theorem 7 [23]. The next theorem gives the existence of
eigenfunction and justifies that ˜̃μ is an eigenvalue of the operator defined by (6.19).

THEOREM 65. Suppose that F satisfies (SF4), (SF3) and (SF7) and that b,c are
bounded, continuous and b also satisfies (SF8). Then there exists 0 < φ in Ω such that
φ is a viscosity solution of{

F(x,Dφ ,D2φ)+b(x).Dφ |Dφ |σ +(c(x)+ ˜̃μ)|φ |σ+1φ = 0 in Ω,

φ = 0 on ∂Ω.
(6.28)

For the proof of Theorem 65, we refer to Theorem 8 [23]. Note that in the proof of
Theorem 65, I. Birindelli, F. Demengel, have used the fact that Ω is C2 . Later on,
the same authors proved the existence of the eigenvalue and eigenfunction for same
operator in more general bounded domain which satisfies the uniform exterior cone
condition, which we will present below. In order to state the precise results of [24], we
need to define two functions which satisfy certain conditions.

(SF5)

⎧⎪⎪⎨⎪⎪⎩
For i = 1, 2, let hi : Ω×R −→ R such that hi(.,t) ∈ L∞(Ω) for all t,

hi(x, .) is non-increasing and continuous for all x ∈ Ω, hi(x,0) = 0

and lim
t→∞

h2(x,t)
tσ+1 = 0.

(6.29)

Whenever hi satisfy (6.29), we say that it satisfy (SF5). In [24], I. Birindelli and F.
Demengel proved the following existence theorem.

THEOREM 66. Suppose that μ < inf{μ̃, ˜̃μ} where ˜̃μ and μ̃ are given by (6.21)
and (6.20), respectively. Suppose further that h1(x,t) and h2(x,t) satisfy (SF5), F and
b satisfy (SF4), (SF3), (SF6), (SF7) and (SF8), respectively. Then for g ∈ W 2,∞(∂Ω)
and f ∈C(Ω), there exists a solution u of{

F(x,Du,D2u)+b(x).Du|Du|σ +(c(x)+ μ)|u|σu+h1(x,u) = f (x)+h2(x,u) in Ω,

u = g on ∂Ω.

(6.30)

The proof of Theorem 66 follows by the several steps consisting of theorems and propo-
sitions. For details, we refer to Theorem 1.1 [24]. We would like to state the theorems
and propositions in the steps of proof of the Theorem 66. In the next, we will assume
that F , h , b , c satisfy the same conditions as in the above theorem, unless otherwise
stated.

THEOREM 67. Let Ω be a bounded domain of R
n . Suppose that F satisfies

(SF4), (SF3) with σ = θ and (SF7) and that b and c are continuous and b satisfies
(SF8). Suppose also that h is a continuous function such that h(x, .) is nonincreasing,
h(x,0) = 0. Suppose that κ < ˜̃μ and that w is a viscosity subsolution of

F(x,Dw,D2w)+b(x).Dw|Dw|σ +(c(x)+ κ)|w|σw+h(x,w) � 0 in Ω,
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and w � 0 on ∂Ω , then w � 0 in Ω. If κ < μ̃ and v is a supersolution of

F(x,Dv,D2v)+b(x).Dv|Dv|σ +(c(x)+ κ)|v|σv+h(x,v) � 0 in Ω

and v � 0 on ∂Ω then, v � 0 in Ω.

THEOREM 68. Suppose that F satisfies (SF4), (SF3) with σ = θ , and (SF7) and
that b and c are bounded, continuous and b satisfies (SF8). Suppose that h is such
that, for all x ∈ Ω, t → −h(x,t)

tσ+1 is nonodecreasing on R
+. Suppose that κ < ˜̃μ , f � 0,

f is upper semicontinuous and g is lower semicontinuous with f � g.
If w is an upper semicontinuous subsolution of

F(x,Dw,D2w)+b(x).Dw|Dw|σ +(c(x)+ κ)|w|αw+h(x,w) � g in Ω,

and v is a non-negative lower semicontinuous supersolution of

F(x,Dv,D2v)+b(x).Dv|Dv|σ +(c(x)+ κ)|v|σv+h(x,v) � f in Ω,

such that w � v on ∂Ω, then w � v in Ω in each of the following two cases:
(1) If v > 0 on Ω and either f < 0 in Ω, or if f (x) = 0 then g(x) > 0.

(2) if v > 0 in Ω, f < 0 and f < g on Ω.

For the proof of Theorem 67 and Theorem 11, we refer to Theorem 2 and Theorem 3
[24], respectively.

PROPOSITION 11. Let q < σ , η > 0 and κ > 0. Then there exists ε > 0 and
M > 0, such that for any continuous function f satisfying 0 > f (x) > −ε, there exist
two solutions u and v of{

F(x,Du,D2u)+b(x).Du|Du|σ −βu1+q + μu1+σ = f (x) in Ω,

u = M on ∂Ω.
(6.31)

with u � M � v, u �≡ M and v �≡ M.

For the proof, we refer to Proposition 1 [24].

PROPOSITION 12. Suppose that g ∈ W 2,∞(∂Ω) , h : Ω×R −→ R is such that
h(x, .) is non increasing, continuous and f ∈ L∞. Then there exists a viscosity solution
u of {

F(x,Du,D2u)+b(x).Du|Du|σ +h(x,u) = f (x) in Ω,

u = g on ∂Ω.
(6.32)

For the proof, we refer to Proposition 2 [24].

PROPOSITION 13. Suppose that g∈W 2,∞(∂Ω) , and that h : Ω×R−→ R is such
that, h(x, .) is non increasing continuous and m ∈ R

+ . Then there exists a viscosity
subsolution w of{

F(x,Dw,D2w)+b(x).Dw|Dw|σ +h(x,w) � m in Ω,

w = g on ∂Ω.
(6.33)
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PROPOSITION 14. Suppose that m > 0, g ∈ W 2,∞(∂Ω) and h : Ω ×R −→ R

is such that h(x, .) is non increasing and continuous. Then there exists a viscosity
supersolution v of (6.32) with f ≡−m.

For the proof of (13) and (14), we refer to Proposition 3 and Proposition 4 [24], respec-
tively.
Next, there is regularity result for the solution to (6.32) with h = 0.

THEOREM 69. Suppose that g ∈ W 2,∞(∂Ω), then every viscosity solutions to
(6.32) with h ≡ 0 satisfies:

|u(x)−u(y)|� C|x− y|γ ∀ x,y ∈ Ω,

for any γ ∈ (0,1) , where C is a constant depending on γ, ‖g‖W2,∞(∂Ω) and ‖ f‖L∞(Ω).

THEOREM 70. Suppose κ < μ1 = min{μ̃ , ˜̃μ} . Then for all g, f ∈ R
+ there exist

viscosity solutions u � 0 u � 0 of⎧⎪⎨⎪⎩
F(x,Du,D2u)+b(x).Du|Du|σ +(c(x)+ κ)|u|σ u +h1(x, u) = − f (x)

+h2(x, u) in Ω,

u = g on ∂Ω.

(6.34)

and⎧⎪⎨⎪⎩
F(x,Du,D2u)+b(x).Du|Du|σ +(c(x)+ κ)|u|σ u+h1(x,u) = f (x)

+h2(x,u) in Ω,

u = −g on ∂Ω,

(6.35)

respectively.

For the proof of Theorems (69) and (70), we refer to Theorem 4 and Theorem 5 [24],
respectively. As after Theorem 65, we had mentioned that the authors have also proved
the existance of eigenvalue and eigenfunction for the singular fully nonlinear operator
in case of non-smooth domains which satisfy the uniform exterior cone condition. Here,
we will consider that problem. Note that if a domain is C2, then it satisfies the uniform
exterior cone condition. Let us consider the operator

F(x,Du,D2u)+b(x).Du|Du|σ +(c(x)+ μ)|u|σu,

with F satisfying (SF4), (SF3) with σ = θ , (SF6) and (SF7) and b , c are bounded and
continuous functions on Ω and in addition to this b also satisfies (SF8).

THEOREM 71. Suppose that Ω satisfies the exterior cone condition and F sat-
isfies (SF3) with σ = θ , (SF4), (SF6) and (SF7) and b is continuous and bounded
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functions on Ω and in addition to this b also satisfies (SF8). There exists u0 a nonneg-
ative viscosity solution of{

F(x,Du,D2u)+b(x).Du|Du|σ = −1 in Ω,

u = 0 on ∂Ω,
(6.36)

which is Hölder continuous.

Further, the solution of above above theorem also satisfies:
(i) ∀ δ , there exists K , a compact set in Ω such that supΩ\K |u0| � δ ,
(ii) ∀M > 0, there exists K some compact subset of Ω, large enough, such that

˜̃μ(Ω−K) > M.

For the proof of Theorem 71, we refer to Proposition 3.2 [25]. Theorem 71 will be the
first step in the proof of the maximum principle and the construction of the principal
eigenfunction in non-smooth bounded domains. The global barrier approach is given
in following proposition.

PROPOSITION 15. For all z ∈ ∂Ω, there exists a continuous function Wz on Ω ,
such that Wz(z) = 0, Wz > 0 in Ω\ {z} which is supersolution of (6.36).

For the proof of Proposition 15, we refer to Proposition 3.3 [25]. The next proposition
deals with the Hölder regularity of a sequence of bounded solutions of equation similar
to (6.36).

PROPOSITION 16. Let Hj be a sequence of bounded open regular sets such that
Hj ⊂ Hj ⊂ Hj+1, j � 1 whose union equals Ω. Let u j be a sequence of bounded
solutions of {

F(x,Duj,D
2u j)+b(x).Duj|Duj|σ = f j in Hj,

u j = 0 on ∂Hj,
(6.37)

with f j uniformly bounded in Hj . Then, for γ ∈ (0,1) , there exists C independent of
j such that

|u j(x)−u(y)|� C|x− y|γ ,
for all x,y ∈ Ω.

For the details about γ and the proof of Proposition 16, we refer to Proposition 3.6 [25].

COROLLARY 2. Given f ∈ C(Ω), there exists a γ -Hölder continuous viscosity
solution of {

F(x,Du,D2u)+b(x).Du|Du|σ = f in Ω,

u = 0 on ∂Ω,
(6.38)

with

|u(x)| � ‖ f‖
1

1+σ
L∞ sup{u0(x),−u′0(x)}.

Further, if f � 0, u � 0, and if f � 0, u � 0 .
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For more information about u′0 and proof, we refer to Remark 3.7 and Corollary 3.8
[25], respectively. The authors in [25], proved the following maximum principle.

PROPOSITION 17. Let β (x, .) be a nondecreasing continuous function such that
β (x,0) = 0. Suppose also that w is upper semicontinuous, bounded above and satisfies

F(x,Dw,D2w)+b(x).Dw|Dw|σ −β (x,w) � 0, (6.39)

with limsupw(x j) � 0 for all x j → ∂Ω. Then w � 0 in Ω.

For the proof, we refer to Proposition 3.14 [25]. Now we take the main result which is
generalisation of (65) in the domain which satisfy the exterior cone condition.

THEOREM 72. Let Ω be a bounded domain which satisfies the uniform exterior
cone condition, F and b satisfy conditions mentioned above. There exists a positive
function φ satisfying{

F(x,Dφ ,D2φ)+b(x).Dφ |Dφ |σ +(c(x)+ ˜̃μ)φσ+1 = 0 in Ω,

φ = 0 on ∂Ω,
(6.40)

which is Hölder continuous.

In the last section of [25], the authors also gave some other maximum principle under
certain conditions on F , b and Ω, which we are going to state below. Let us first define

μe = sup{ ˜̃μ(Ω′) Ω ⊂⊂ Ω′, Ω′ is C2 and bounded }

and

μ = sup{μ , ∃ φ > 0 in Ω, F(x,Dφ ,D2φ)+b(x).Dφ |Dφ |σ +(c(x)+ μ)φσ+1 � 0}.

They proved that μe = μ and it is an eigenvalue in the sense that there exists some
φe > 0, which satisfies{

F(x,Dφe,D
2φe)+b(x).Dφe|Dφe|σ +(c(x)+ μe)φσ+1

e = 0 in Ω,

φe = 0 on ∂Ω.
(6.41)

Let us state the maximum principle.

PROPOSITION 18. For μ < μ , if w is a viscosity subsolution of

F(x,Dw,D2w)+b(x).Dw|Dw|σ +(c(x)+ μ)wσ+1 � 0, (6.42)

satisfying w(x) � 0 on ∂Ω, then w � 0 in Ω.

In the next proposition, the authors stated that μe is an eigenvalue of (6.41) and also
proved that μ̃ = μe . Further, they also proved the following Proposition.



Differ. Equ. Appl. 8, No. 2 (2016), 135–205. 191

PROPOSITION 19. Let μ < μe, then for any continuous nonpositive function f
there exists a viscosity solution u of{

F(x,Du,D2u)+b(x).Du|Du|σ +(c(x)+ μ)uσ+1 = f in Ω,

u = 0 on ∂Ω.
(6.43)

Further, u � 0 and is Hölder continuous.

7. Regularity of the Viscosity solution

There are various ways to demonstrate the existence of solutions to PDEs. Out of
these methods, one is the method of continuity which is applied once some estimates for
the solutions up to the boundary are available (in the classical sense). For the method
of continuity in the context of the existence of the classical solutions to fully nonlinear
elliptic equations, we refer to Section 17.2 [85] and Section 1.2.3 [41]. Below, we
will present some regularity and estimates for the viscosity solutions to fully nonlinear
elliptic equations. One of the major contributions in the direction of obtaining the
regularity of the classical solutions to fully nonlinear elliptic equations was made by
the Krylov and Safonov in [113, 114], by obtaining the estimate for the solutions to
the non-divergence form elliptic operators with measurable coefficients and of course,
Aleksandrov-Bakelman-Pucci maximum principle was applied for the same. These
results collectively presented in Chapter 9 [85], see also [142, 143, 152, 44]. With the
help of estimate obtained by Krylov and Safonov, regularity of the classical solutions
to fully nonlinear elliptic equations was obtained by L. C Evans and N. V. Krylov in
two independent works [65] and [111, 112], respectively. The authors proved that the
Hessian of the solutions of

F(D2u) = 0, (7.1)

are Hölder continuous under the assumption of convexity of F in D2u. The main idea
of the proof was to differentiate (7.1) twice in the direction |e| = 1 and to show that
∂ 2u
∂e2 is a subsolution of

−ai, j ∂ 2

∂xi∂x j

(∂ 2u
∂e2

)
� 0, (7.2)

where

ai, j =
∂F(D2u(x))

∂ ( ∂ 2u
∂xi∂x j

)
,

by using the fact that F is a concave. Further, since (7.2) is a linear equation in the
non-divergence form with measurable coefficients so the Cα -estimates can be obtained
as a consequence of Krylov-Safonov Harnack inequality, see [113, 114].

THEOREM 73. When the operator F is concave or convex, then classical solu-
tions of F(D2u) = 0 satisfy the following C2,α estimate

‖u‖C2,α(B 1
2
) � C(‖u‖L∞(B1)

+ |F(0)|). (7.3)
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The above theorem also remains true if we replace classical solution by the “viscosity
solution”. For the proof, we refer to Theorem 6.6 [36]. Next, we would like to present
the generalised maximum principle for viscosity solutions for fully nonlinear elliptic
equations, also known as Alexandrov-Bakelman-Pucci(ABP inequality). This inequal-
ity in the context of the viscosity solutions first of all appeared in [35] for Pucci maximal
operator, see Lemma 1 [35]. We are taking slightly general form than [45]. In order to
present the statement of ABP-inequality, we need some notations. For u ∈C(Ω) , we
define the upper contact set of u as follows:

Γ+(u) = {x ∈ Ω : ∃ p ∈ Rn such that u(y) � u(x)+ 〈p,y− x〉 for y ∈ Ω}
and

{u > 0} = {x ∈ Ω | u(x) > 0}.
There exists a constant C = C(λ ,γ,n) depending only on the quantities indicated such
that if f ∈ Ln(Ω)∩C(Ω) , 0 � γ, and u ∈C(Ω) is a C -viscosity solution of

P−
λ ,Λ(D2u)− γ|Du|� f (x) on {0 < u}, (7.4)

then
sup

Ω
u � sup

∂Ω
u+ +diam(Ω)C(λ ,γ,n)‖ f +‖Ln(Γ+(u+)).

Similarly, if u is a C -viscosity solution of

f (x) � P+
λ ,Λ(D2u)+ γ|Du| on {u < 0} (7.5)

then
sup

Ω
u− � sup

∂Ω
u− +diam(Ω)C(λ ,γ,n)‖ f−‖Ln(Γ+(u−)).

For the proof, we refer to Appendix A [45]. There are many consequences of the ABP-
estimates, for example, the following maximum principle in small domains. Suppose
that u ∈C(Ω) satisfies{

P−
λ ,Λ(D2u)− γ|Du|− δ |u|�0 in {u > 0}

u �0 on ∂Ω
(7.6)

Then there exists a constant ε > 0, depending only on n,γ,δ ,λ and diam(Ω), such
that |Ω|< ε implies that u � 0 in Ω. For the details about the ABP maximum principle
and related results for linear and fully nonlinear elliptic equations, see [88, 20, 31, 40,
136]. Now we would like to present the generalisation of the Krylov-Safonov Harnack
inequality to the fully nonlinear elliptic operators in the viscosity sense. It was proved
by L. Wang in [162] and further extended by J. Busca and B. Sirakov in [29]. Here we
have taken the result from [150].

THEOREM 74. Suppose that u ∈C(Ω) , f ∈C(Ω)∩Ln(Ω) and u � 0 in Ω and{
P+

λ ,Λ(D2u)+ δ |Du|+ δ0|u| �−| f | in Ω

P+
λ ,Λ(D2u)+ δ |Du|+ δ0|u| �| f | in Ω.

(7.7)
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Then for any compact subset K of Ω,

sup
K

u � C(inf
K

u+‖u‖Ln(Ω)),

where the constant C depends only on Ω, K, n, Λ, λ , δ and δ0.

For the proof, we refer to Theorem 3.6 [150]. The next result concerns with the interior
Hölder regularity of the viscosity solutions of fully nonlinear elliptic PDEs. Such type
of the result in the context of the viscosity solution first of all appeared in Section VII.1
[98]. These results are also appeared in [80, 162]. We have taken the following interior
Hölder estimate from [80] (Theorem 5.21).

THEOREM 75. Assume that f ∈C(Ω)∩Ln(Ω) and u ∈C(Ω) satisfies Equation
7.7. Then there is a constant α > 0 depending only on n, δ , δ0, Λ such that for any
Ω′ ⊂⊂ Ω,

‖u‖Cα(Ω′) � C(‖u‖L∞(Ω) +‖u‖Ln(Ω)),

where C depends only on n, δ , δ0,Λ,diam(Ω) and dist(Ω′,∂Ω).

N. Winter proved the boundary Hölder regularity for the viscosity solutions of fully
nonlinear elliptic PDEs. The author proved the weak Harnack Inequality at the bound-
ary, see Theorem 1.9 [165] and combined the above interior Hölder regularity for the
viscosity solutions to obtain the following boundary Cα estimate.

THEOREM 76. Assume that Ω satisfies a uniform exterior cone condition, f ∈
C(Ω)∩ Ln(Ω), and φ ∈ Cγ (∂Ω) . Suppose further that u ∈ C(Ω) satisfies Equation
(7.7) with u = φ on ∂Ω . Then there exists a constant α > 0 depending only on
n, γ, Λ, δ and exterior cone condition such that

‖u‖Cα(Ω) � C(‖u‖L∞(Ω) +‖φ‖Cγ (∂Ω) +‖u‖Ln(Ω)), (7.8)

where C depends only on n, γ,Λ, δ , δ0 and diam(Ω).

See also [15] for the Cα -regularity of the viscosity solutions. Let us state the global
C1,α estimate for the viscosity solution which first of all appeared in [157].

THEOREM 77. Assume F satisfies (SC1) and (A) (given below at Theorem 39),
and Ω is smooth. Suppose that u is a viscosity solution of{

F(x,u,Du,D2u) =0 in Ω,

u =φ on ∂Ω,
(7.9)

where φ ∈C1,τ(∂Ω). Then u ∈C1,ν(Ω) for some ν > 0 depending only on n,Λ,ν,τ ,
and we have the estimate

‖u‖C1,ν(Ω) � C(‖u‖L∞(Ω) +‖φ‖1,γ), (7.10)

where C depends on n,Λ,δ ,γ,ωK ,α and Ω.
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For the proof, we refer to Lemma 3.1 and Theorem 3.2 [157]. The following theorem
is a consequence of Theorem 3 [35].

THEOREM 78. Assume that Ω ⊂R
n is a smooth bounded domain and F satisfies

(SC1) and (A), below Theorem 39, and F is also concave or convex in M . Suppose
that f ∈Cτ(Ω) for some τ > 0, and u is a viscosity solution of the equation

F(x,u,Du,D2u) = f in Ω. (7.11)

Then u ∈C2,α
loc (Ω) for some α > 0.

Interior W 2,p estimates in [35] for the viscosity solutions of concave, uniformly elliptic
equations were extended to include the gradient term and first order term by A. Świech,
in [156]. In the proof, he first obtained the gradient estimate and used this to prove
Theorem 13.

THEOREM 79. Assume that Ω ⊂ R
n is a smooth bounded domain, p � n, and

F satisfies (SC1) and (A) (given below in Theorem 39). Further, F concave or con-
vex in M , and F(0,0,0,x) ≡ 0. Suppose that f ∈ Lp(Ω) , φ ∈ W 2,p(Ω) and u is an
Lp−viscosity solution of the following Dirichlet problem{

F(x,u,Du,D2u) = f in Ω,

u =φ on ∂Ω.
(7.12)

Then u ∈W 2,p(Ω), and we have the estimate

‖u‖W2,p(Ω) � C(‖u‖L∞(Ω) +‖φ‖W2,p(Ω) +‖ f‖Lp(Ω)),

where C = C(n,λ ,Λ,δ ,γ, p,Ω) .

For the proof, we refer to Theorem 4.6 [165]. Let us recall the ABP-estimate for singu-
lar or degenerate fully nonlinear equations. In [56], authors proved the ABP-estimate
for singular or degenerate fully nonlinear elliptic equations of the form

F(Du,D2u)+b(x).Du|Du|σ + c(x)|u|σu = f in Ω, (7.13)

where σ > −1. In this case, the proof of ABP-estimate is based on the regularization
procedures (sub-convolution and standard mollification).

THEOREM 80. Let us consider Equation (7.13), where F is continuous and satis-
fying (SF1) and (SF4) with σ = θ , and additionally with σ >−1, c � 0, and |b|, |c|�
γ , there exists C =C(n,α,λ ,γ,diam(Ω)) such that for any u∈C(Ω) viscosity subsolu-
tion (resp., supersolution) of (7.13) in {x ∈ Ω | 0 < u(x)} (resp., {x ∈ Ω | 0 > u(x)}),
satisfies

sup
Ω

u � sup
∂Ω

u+ +C.diam(Ω)‖ f−‖
1

1+σ
Ln(Γ+(u+)),(

resp., sup
Ω

u � sup
∂Ω

u− +C.diam(Ω)‖ f +‖
1

1+σ
Ln(Γ+(u−))

)
.
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For the proof of (80), we refer to Theorem 1 [56]. One of the most important application
of Theorem 80 is the following maximum principle in a small domain without any
restriction on the sign of c . Such a type of result has been widely used in [19].

COROLLARY 3. Under the hypotheses of Theorem 80 except any restriction on
the sign of c, there exists C =C(n,σ ,λ ,γ,diam(Ω)) , ε > 0, such that for any u∈C(Ω)
viscosity subsolution of (7.13), with c � ε, we have

sup
Ω

u � sup
∂Ω

u+ +C.diam(Ω)‖ f−‖
1

1+σ
Ln(Γ+(u+)).

For the proof of Theorem 80 and its Corollary 3, we refer to Theorem 1 and Corollary
2 [56]. Next, we will present Harnack inequality which is a consequence of the ABP-
estimate (39).

THEOREM 81. Assume σ ∈ (−1,0) and F satisfies (SF1) and (SF4) with σ = θ .
If u ∈C(Ω) is a nonnegative viscosity solution of (7.13), with b, c and f continuous
functions in Ω , then for every Ω′ ⊂⊂ Ω we have

sup
Ω′

u � C
(
inf
Ω′ u+‖u‖

1
1+σ
Ln(Ω′)

)
,

where the constant C depends on λ ,Λ,σ ,b,c,n,Ω′ and Ω.

THEOREM 82. Assume the hypotheses of Theorem 81 and additionally that Ω is
bounded and satisfies a uniform exterior cone condition, the functions b, c and f are
continuous in Ω , c � 0 and φ ∈Cσ (∂Ω) , σ ∈ (0,1) , then equation{

F(Du,D2u)+b(x).Du|Du|σ + c(x)|u|σu = f in Ω,

u =φ on ∂Ω.
(7.14)

possesses at least one solution. Moreover, there are constants C > 0 and β ∈ (0,1)
such that

‖u‖Cβ (Ω) �
(‖φ‖Cσ (∂Ω) +‖u‖

1
1+α
Ln(Ω)

)
.

For the proof of Theorems 81 and 82, we refer to Theorem 1.1 and 1.2 [57], respec-
tively. See, also Section 4 [90], Section 3 [26]. In [26], authors obtained the Harnack
inequality in the two dimensional case and using the other Harnack inequality obtained
in [57, 90], they also obtained the positive eigenfunction for singular fully nonlinear
elliptic PDEs in the unbounded domain.

7.1. Regularity for nonconvex fully nonlinear equations

Let us consider the following Dirichlet problem{
F(D2u) = f in Ω,

u =φ on ∂Ω,
(7.15)
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where Ω is a unit ball in R
n . We have seen that when F is convex or concave then in

view of Evans-Krylov regularity theorem, every viscosity solutions of (7.15) coincides
with classical solutions. However, for the general F, the problem of the coincidence
of viscosity solutions of (7.15) with the classical solutions remains open. In [137], N.
Nadirashvili and S. Vl ădut proved that there is a nonconvex smooth F for which the
Dirichelt problem (7.15) have a viscosity solution that is not a classical solution. The
precise result of [137] is the following.

THEOREM 83. Suppose that Ω ⊂ R
12 is a unit ball and φ = ω on ∂Ω . Then

there exists a smooth uniformly elliptic F such that the Dirichlet problem (7.17) has no
classical solution.

For the details about ω and proof of Theorem 83, we refer to Theorem 1 and its Corol-
lary [137], see also [141]. Note that under the uniform ellipticity conditions on F ,
existence of the viscosity solutions to (7.17) is guaranteed. So in this context, there
is one question that comes naturally, under what condition weaker than the convexity
on F , solutions of (7.17) are classical?. The first attempt to understand the regularity
of solution to nonconvex (nonconcave) fully nonlinear elliptic PDEs was made by X.
Cabrè and L. A Caffarelli in [32]. The authors proved interior C2,α regularity results as
well as the existence of C2,α solutions for a class of nonconvex fully nonlinear elliptic
equations F(D2u,x) = f (x), for x ∈ B1 ⊂ R

n . They considered the following type of
nonconvex fully nonlinear elliptic operator⎧⎪⎨⎪⎩

F(M) =min{F∩(M),F∪(M)} for all M ∈ S(n),
F(0) =0, F∩(M) and F∪(M) are uniformly elliptic,

F∩(M) is concave and F∪(M) is convex.

(7.16)

THEOREM 84. Let u ∈ C2(B1) be a solution of F(D2u) = 0 in B1 ⊂ R
n , where

F is of the form (7.16). Then u ∈C2,α(B1/2) and

‖u‖C2,α (B1/2)
� C‖u‖L∞(B1),

where 0 < α < 1 and C is constant depending on n,λ ,Λ .

Note that the interior C2,α estimate obtained in Theorem 84 is valid for the C2 solu-
tions. The following theorem tells about the existence of the classical solutions to the
Dirichlet problem associated with F defined by (7.16).

THEOREM 85. Let F be of the form (7.16). Then there exists a constant α ∈ (0,1)
depending on n,λ ,Λ such that for every α ∈ (0,α) , f ∈Cα(B1) and φ ∈C(∂B1) , the
following Dirichlet problem {

F(D2u) = f in B1,

u =φ on ∂B1
(7.17)
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admits a unique solution u ∈C2,α(B1)∩C(B1) . Moreover, one have

‖u‖C2,α(B1/2)
� C

(
‖ f‖Cα (B1)

+‖φ‖L∞(∂B1)

)
,

for some constant Cα depending on n,λ ,Λ and α. For the proofs of Theorem 84 and
85, we refer to Theorem 1.1 and 1.2 [32], respectively.

In [32], L. A. Caffarelli, X. Cabré also obtained W 2,p estimate for the solutions of Equa-
tion (7.17). In fact, they stated the following result, which is a corollary of Theorems
84 and 85.

THEOREM 86. Let u ∈C(B1) be a viscosity solution of

F(D2u) = f in B1, (7.18)

where f is a continuous function in B1 and F is an operator of the form (7.16). Then:
(i) If f ∈ Cα(B1) for some 0 < α < α, where α ∈ (0,1) is a constant depending on
n,λ ,Λ , then u ∈C2,α(B1) and

‖u‖C2,α(B1/2)
� C

(
‖u‖L∞(B1) +‖ f‖Cα (B3/4)

)
,

for some constant C depending on n,λ ,Λ and α.
(ii) If f ∈ Lp(B1) and n � p < ∞, then u ∈W 2,p(B1/2) and

‖u‖W2,p(B1/2)
� Cα

(
‖u‖L∞(B1) +‖ f‖Lp(B1)

)
,

for some constant Cα depending on n,λ ,Λ and p.

For the proof of Theorem 86, we refer to Corollary 1.3 [32]. Next, we would like to
present the result of O. Savin [153], in which he considered more general operator de-
pending on gradient and zero-th order term, which states that if F is uniformly elliptic
in a neighbourhood of the origin and F(x,0,0,0) ≡ 0, then there exists a constant C
depending on F such that if u is a solution to Equation 7.15 with mentioned F and
f = 0 and ‖u‖L∞(B1) � C then u ∈C2,α(B 1

2
) and satisfies the following estimate

‖u‖C2,α(B 1
2
) � δ .

For the details, we refer to,[153] and for proof of Theorem 1.3, see [153]. Further, using
this result and estimate obtained in [119], S. N. Armstrong, L. E. Silvestre and C. K.
Smart [7] obtained the C2,α -estimate for the solution outside a closed set (say C ), and
also proved that this set has the Housedorff dimension less than n− γ for some γ > 0
depending on λ ,Λ,n and closed set C. This closed set is the singular set of the solution,
that is, at each point x ∈C solution fails to be C2,α in any neighbourhood of that point.
The precise statement of the theorem is as follows.
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THEOREM 87. Suppose that F in (7.15) is uniformly elliptic and differentiable
with uniformly continuous derivative and f = 0 . Let u∈C(Ω) be the viscosity solution
of (7.15) in Ω then there is constant γ > 0 depending on λ , Λ,n and closed set C such
that u ∈C2,α(Ω\C) for every 0 < α < 1 .

For the proof, we refer to Theorem 1 [7]. In the same paper, the authors have also made
some comments on γ , and W 2,γ estimates are obtained in [119]. In view of [153], C.
Imbert and L. Silvestre [91], obtained the Hölder estimate for the solution of elliptic
equation with large gradient. In fact, they defined the following Pucci type operator

P+(D2u,Du) =

{
−λ ∑ei>0 ei + Λ∑ei<0 ei + Λ|Du|, if |Du| � t

+∞, otherwise

and

P−(D2u,Du) =

{
−Λ∑ei>0 ei + λ ∑ei<0 ei + λ |Du| if |Du| � t

−∞, otherwise

and proved that any u : B1 −→ R, satisfying P−(D2u,Du) � C and P+(D2u,Du) �
−C in that ball and ‖u‖L∞(B1) � C then u ∈ Cα(B 1

2
) and also satisfies the estimate

‖u‖Cα(B 1
2
) � CK, where K is another constant. For the proof, we refer to Theorem

1.1 [91], see also Theorem 1.3 [91] for the Harnack’s inequality. Next, we would like to
present the results of [106], in which J. Kovats considered Isaac’s operator, which were
not covered in [32]. Let us consider the following Issac’s operator

F(D2u) = Δu+
(∂ 2u

∂x2
1

)+ −
(∂ 2u

∂x2
2

)−
= 0. (7.19)

Note that, F given by Equation 7.19 can not be written in the form (7.16), for details,
see Example 1 [106]. In fact, the author considered the Isaac’s operators which satisfy
the minmax principle i.e,

F(M) = max
α∈A

min
β∈B

[trace(Aαβ M)] for all M ∈ S(n), (7.20)

where A and B are compact subsets of R
n, and prove the following theorem.

THEOREM 88. Let u ∈ C2(Ω) be a solution of Equation 7.19 in a bounded do-
main Ω of R

n . Then ∀ x0 ∈ Ω such that Br(x0) ⊂ Ω and any 0 < p < ∞ ,

‖D2u‖Lp(B7/8(x0)) � Cr−2+ n
p ‖u‖L∞(Br(x0)),

where C is a constant depending n, p.

For the proof of Theorem 88, we refer to Theorem 1 [106]. The author in [106] also
proved the interior W 2,p estimate for the C2 solutions to the equations F = 0, where
F is given by (7.20), for the details, see Theorem 2 [106]. In this direction, there are
also regularity results for the solutions to Hessian equation, see [138, 139, 140].
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Prépublications de l’université de Cergy-Pontoise.
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