ON THE RAYLEIGH–PLATEAU INSTABILITY.
THE REGULARITY IN H^2_{per}

A. ALRIYABI

(Communicated by Jean-Michel Rakotoson)

Abstract. In this paper, we study the Rayleigh-Plateau instability of a cylindrical pore. We are interested in the model developed by Spencer et al. [20], Kirill et al. [12] and Boutat et al. [3] in absence of the stress. We obtain a nonlinear parabolic PDE of fourth order. We obtain the local existence and uniqueness of the solution of this problem. The global existence of the solution and the convergence to the mean value of the initial data for long time, represent the main results of this work. In this study, we give also a numerical tests in order to validate the theoretical results.

1. Introduction

It is known that a liquid jet, initially of constant radius, is falling vertically under gravity. The liquid length increases and reaches a critical value. At this moment the jet loses its cylindrical shape and it decomposes into a stream of droplets. This phenomenon occurs primarily as a result of surface tension. This effect of surface tension is called Rayleigh-Plateau instability [24, 25, 26]. All the streams fluid contain perturbations, which are small changes in a physical system (such as a stream). These perturbations are sometimes compounded into sinusoidal functions and appear as waves. In the lower section of the wave, where the radius of stream is smaller, the surface tensions creates a higher pressure. At the crest of the wave where the radius is larger, the pressure will be lower. As a result of the pressure difference the amplitude of some waves will increase. It will eventually align waves in what looks like a destructive interference patterns, however they do not cancel each other out. When the waves become large enough, stream will be in a bottleneck and spherical droplets will be formed. The droplets are spherical because the liquid is more stable at a lower energy level and by decreasing the surface area, number of higher energy molecules is decreased and thus lowers the droplets energy. The Rayleigh-Plateau instability quantifies this phenomenon and explains why and how a falling stream of fluid breaks up into smaller packets with the same volume but less surface area.

In this paper, we are interested on a cylindrical and axisymmetric crystalline structure in the case without stress. We study the morphological instabilities at cylindrical pore surface [20], [12]. Such phenomena are observed for example in materials science

Keywords and phrases: Rayleigh-Plateau instability, nonlinear parabolic PDE, thin films.
since the manufacture of materials introduced distributions of pores that affect their mechanical and physical properties. The evolution equation of the surface instability is written in the form (see [3]):

$$\frac{\partial h}{\partial t} = -\frac{1}{h} \frac{\partial}{\partial Z} \left[h \frac{\partial}{\partial Z} \left((1 - \theta \ln(h)) h_{ZZ} - \frac{\theta}{2} h^{-2} h_Z^2 \right) \right],$$ \hspace{1cm} (1.1)

where $\partial h/\partial Z$ (or h_Z), h_{ZZ} are the partial derivatives of h of order one and two, respectively; θ is a physical parameter ($\theta = \sigma_0^2 / \gamma \mu$) which depends on the stress applied to material σ_0, on shear modulus μ and on the free energy of the surface γ. In this work, we consider the absence of stress case ($\sigma_0 = 0$), which is called the Rayleigh-Plateau instability

$$\frac{\partial h}{\partial t} = -\frac{1}{h} \frac{\partial}{\partial x} \left(h \frac{\partial^3 h}{\partial x^3} \right).$$ \hspace{1cm} (1.2)

We are interested in the periodic problem

$$\begin{align*}
\frac{\partial h}{\partial t} &= -\frac{1}{h} \frac{\partial}{\partial x} \left(h \frac{\partial^3 h}{\partial x^3} \right) \quad \text{on} \quad (0, T) \times (0, 1), \\
h(t, \cdot) &= \text{a periodic function on} \quad (0, 1), \\
h(0, \cdot) &= h_0 > 0 \quad \text{is a periodic function given on} \quad (0, 1).
\end{align*}$$ \hspace{1cm} (1.3)

Arguments of longitudinal perturbation of small amplitude of the cylinder and numerical calculations are used in [7, 8, 2] to study the nonlinear equation which governs the morphological change of the cylinder surface. Stability analysis of cylinder surface using linear theory in the case of uniaxial stress is studied in [11, 12]. In [18, 19], the authors study the morphological stability of the surface of a pore under the action of the artificial tension (with zero stress), they show the transformation of cylindrical pores in the spheres and that the distance between the spheres depends on the diffusion of surface and on the diffusion of volume; they also show that the surface becomes unstable if the wavelength is larger than the cylinder circumference. In particular, they analyze the external evolution due to the perturbations of small amplitudes. Some recent interesting studies on thin film equations can be found in [9, 14, 15, 27, 28].

In this study, we use the model developed in [20], [12], the radius of cylinder satisfies a parabolic partial differential equation. Under assumptions of formal asymptotic and with a changes of appropriate scale, we simplify the PDE satisfied by the cylinder radius [3].

Remark 1.1. Equation (1.2) can be written in general form of evolution equations of thin films [10]:

$$\frac{\partial v}{\partial t} = -\frac{\partial}{\partial x} \left(v^n \frac{\partial^3 v}{\partial x^3} + \alpha v^{n-1} \frac{\partial v}{\partial x} \frac{\partial^2 v}{\partial x^2} + \beta v^{n-2} \left(\frac{\partial v}{\partial x} \right)^3 \right),$$ \hspace{1cm} (1.4)

with $n = 0$, $\alpha = -3/2$, $\beta = 3/4$ and $v = h^2$.

2. We introduce, for \(m \in \mathbb{N} \) the periodic Sobolev space \(H^m_{\text{per}}(0, 1) \) by:

\[
H^m_{\text{per}}(0, 1) = \{ u \in H^m(0, 1); \ \forall j \in \{0, 1, \ldots, m - 1\}, \ u^{(j)}(0) = u^{(j)}(1) \},
\]

where \(H^m(0, 1) \) is the usual Sobolev space. We also consider the functional space \(\mathcal{X} \) defined by:

\[
\mathcal{X} = L^2(0, T; H^3_{\text{per}}(\Omega)) \cap L^\infty(0, T; H^1_{\text{per}}(\Omega)).
\]

We endow \(\mathcal{X} \) with the norm:

\[
\| u \|_{\mathcal{X}} = \left[\int_0^T \int_0^1 |u^{(3)}(t, x)|^2 \, dx \, dt + \sup_{t \in (0, T)} \left(\int_0^1 |u'(t, x)|^2 \, dx + \int_0^1 |u(t, x)|^2 \, dx \right) \right]^{\frac{1}{2}}.
\]

For simplicity, we shall assume that \(\Omega = (0, 1), \Omega_T = (0, T) \times (0, 1) \).

DEFINITION 1.1. We say that the solution \(h \in L^2(0, T; H^3_{\text{per}}(\Omega)) \) of \((1.3) \) is weak if:

1. \(\frac{1}{h} \frac{\partial h}{\partial x} \frac{\partial^3 h}{\partial x^3} \in L^1(\Omega_T) \).

2. \(h_t \in L^2(0, T; (H^3_{\text{per}}(\Omega))') \).

3. For all \(\varphi \in H^3_{\text{per}}(\Omega) \), we have, in \(\mathcal{D}'(0, T) \), the following equality:

\[
d\frac{d}{dt} \int_0^1 h(t, x) \varphi(x) \, dx = -\int_0^1 h_x \varphi_x \, dx - \int_0^1 \frac{h_x}{h} h_{xxx} \varphi \, dx.
\]

(1.5)

4. \(h(0) = h_0 > 0 \) (given in \(H^1_{\text{per}}(\Omega) \)).

LEMMA 1.1. Suppose that \(h \in \mathcal{X} \), \(h_0 \in C[0, 1] \), and \(h_0 \geq \varepsilon > 0 \). Then, for all local weak solution \(h \) of (1.5), there is a moment \(T_\varepsilon > 0 \), where \(h(t, x) \geq \varepsilon/2, \forall t \in [0, T_\varepsilon] \) and for all \(x \in [0, 1] \).

In equation (1.2), it is appropriate to add the hypotheses (see [3]):

\[
R_0 \leq h \quad \text{and} \quad h/\ell \ll 1.
\]

(1.6)

\(R_0, \ell \) are respectively the radius and the length of the cylinder at the initial state. Thanks to lemma 1.1, we make the change of variable \(h(t, x) = e^{u(t, x)} \). Equation (1.2) becomes under simplified form:

\[
\frac{\partial u}{\partial t} = -u^{(4)} - (5u' u^{(3)} + 9u'^2 u'' + 3u''^2 + 2u'^4),
\]

(1.7)
where \(u^{(k)}(t,x) = \frac{\partial^k u}{\partial x^k}(t,x) \). Therefore, we consider the boundary problem:

\[
\begin{aligned}
\frac{\partial u}{\partial t} &= -u^{(4)} - F(u', u'', u^{(3)}) \quad \text{on } \Omega_T, \\
u(t,.) \text{ is a periodic function on } \Omega, \\
u(0,.) = u_0 = \ln h_0 \text{ is given a periodic function on } \Omega,
\end{aligned}
\]

where

\[
F(u', u'', u^{(3)}) = 5u'u^{(3)} + 9u'^2 u'' + 3u''^2 + 2u'^4.
\]

2. Local Existence

In this section, we prove the existence of solution of Problem (1.8) using Faedo-Galerkin method [13, 22].

Definition 2.1. A function \(u \) defined on \([0,T] \times [0,1]\) is a weak solution of Problem (1.8) if:

\[
\mathcal{P}_0 \left\{ \begin{array}{l}
1. \ u \in L^2(0, T; H^3_{\text{per}}(\Omega)). \\
2. \text{For all } \varphi \in H^3_{\text{per}}(\Omega), \text{ the following equality holds in } \mathcal{D}'(0,T) \\
\quad \frac{d}{dt} \int_0^1 u(t,x) \varphi(x) \, dx + \int_0^1 u''(t,x) \varphi''(x) \, dx + \int_0^1 F(u', u'', u^{(3)}) \varphi(x) \, dx = 0. \\
3. \ u(0,.) = u_0 \in H^1_{\text{per}}(\Omega) \text{ and } \frac{\partial u}{\partial t} \in L^2(0,T; (H^3_{\text{per}}(\Omega))^\prime).
\end{array} \right.
\]

Theorem 2.1. There exists a constant \(\Lambda_0 > 0 \), such that if \(|u'_0|_{L^2(\Omega)} < \Lambda_0 \), then the problem \(\mathcal{P}_0 \) accept a unique global solution \(u \) in \(\mathcal{X} \), such that:

\[
|u_x(t)|_{L^2(\Omega)} \leq C_0 e^{-\nu t}, \quad t > 0,
\]

with \(C_0 > 0, \nu > 0 \) are constants which are independent of \(u_0 \).

Proof of Theorem 2.1

In order to prove theorem 2.1, we proceed in three steps.

First step: In this step, we construct a function \(u_m \) solving the approximated problem on a finite dimensional space.

Let \(\{ \varphi_j, j \in \mathbb{N}^* \} \) be the basis of \(H^1_{\text{per}}(\Omega) \), satisfying:

1. \(\varphi_j \in C^\infty_{\text{per}}(\Omega) = \bigcap_{m \geq 1} H^m_{\text{per}}(\Omega) \).

2. \(\forall \varphi \in H^1_{\text{per}}(\Omega); \quad (\varphi'_j, \varphi'_k)_{L^2(\Omega)} = \mu_j (\varphi_j, \varphi)_{L^2(\Omega)} \); where the sequence \(\mu_j \) converges to \(+\infty \) when \(j \) converges to \(+\infty \) and satisfies \(0 = \mu_1 < \mu_2 \leq \cdots \leq \mu_j \cdot \cdots \).

3. \((\varphi_j, \varphi_k)_{L^2(\Omega)} = \delta_{jk} \); where \(\delta_{jk} \) is the Kronecker symbol.
We set H_m the finite-dimensional space generated by $\{\varphi_1, \varphi_2, \ldots, \varphi_m\}$. P_m denotes the orthogonal projection of $L^2(\Omega)$ into H_m. By the Cauchy–Peano theorem, we can introduce a time $T^* > 0$ and a function $u_m \in C^1([0, T^*]; H_m)$, such that, for all $\psi \in H_m$

$$
\frac{d}{dt} \int_0^1 u_m(t, x) \psi(x) dx + \int_0^1 u''_m(t, x) \psi''(x) dx + \int_0^1 F(u'_m, u''_m, u^{(3)}_m)(t, x) \psi(x) dx = 0,
$$
where

$$
F(u'_m, u''_m, u^{(3)}_m)(t, x) = 5u'_m(t, x)u^{(3)}_m(t, x) + 9u''_m(t, x)u^{(3)}_m(t, x) + 3u''_m(t, x) + 2u'_m(t, x),
$$
with the initial data $u_m(0) = P_m(u_0)$.

Second step: In this step, we give a uniform estimates in m, in space, and in time We need the following lemmas:

Lemma 2.1. There are strictly positive constants Λ_0, c_0, and μ, such that if the initial data satisfies $\sup_{m \geq 1} |u'_m(t)|_{L^2(\Omega)} < \Lambda_0$ (say the norm in H^1_p is small enough), then:

$$
|u'_m(t)|_{L^2(\Omega)} \leq c_0 e^{-\mu t}, \quad \forall t > 0. \tag{2.3}
$$

Proof. In equation (2.2), we set $\psi = -u''_m$. An integration by parts gives:

$$
\frac{1}{2} \frac{d}{dt} \int_0^1 |u''_m(t, x)|^2 dx + \int_0^1 |u^{(3)}_m(t, x)|^2 dx = \int_0^1 F(u', u'', u^{(3)}_m)u''_m dx. \tag{2.4}
$$

Where

$$
I = \frac{1}{2} \int_0^1 u''^3_m(t, x) dx - 3 \int_0^1 u''^3_m(t, x) u^{(3)}_m(t, x) dx := I_1 + I_2. \tag{2.5}
$$

By interpolation inequalities, one has:

$$
|u''_m(t)|_{L^3(\Omega)} \leq c_3 |u'_m(t)|_{L^2(\Omega)}^{\frac{5}{3}} |u^{(3)}_m(t)|_{L^2(\Omega)}^{\frac{7}{3}}.
$$

Applying Young’s inequality, we deduce that

$$
|u''_m(t)|_{L^3(\Omega)}^3 \leq \frac{5^8}{8} |u'_m(t)|_{L^2(\Omega)}^{\frac{20}{7}} + \frac{7}{8} |u^{(3)}_m(t)|_{L^2(\Omega)}^2.
$$

Hence:

$$
|I_1| \leq c_4 |u'_m(t)|_{L^2(\Omega)}^{10} + \frac{7}{8} |u^{(3)}_m(t)|_{L^2(\Omega)}^2. \tag{2.6}
$$

On the other hand, by the Young’s inequality, for all $\varepsilon > 0$, one has:

$$
|I_2| \leq c_8 \int_0^1 |u''_m|^6(t, x) dx + \varepsilon \int_0^1 |u^{(3)}_m|^2(t, x) dx.
$$
Applying interpolation inequalities, one deduces that
\[|I_2| \leq c_\varepsilon |u_m'(t)|_{L^2(\Omega)}^5 |u_m^{(3)}(t)|_{L^2(\Omega)} + \varepsilon \int_0^1 |u_m^{(3)}|^2(t,x)dx. \]

Once again by Young’s inequality, for all \(\varepsilon > 0 \), we have:
\[|I_2| \leq c_\varepsilon |u_m'(t)|_{L^2(\Omega)}^{10} + 2\varepsilon \int_0^1 |u_m^{(3)}|^2(t,x)dx. \] \hspace{1cm} (2.7)

Both inequalities (2.6) and (2.7) give:
\[|I| \leq c_\varepsilon |u_m'(t)|_{L^2(\Omega)}^{10} + (2\varepsilon + \frac{7}{8}) \int_0^1 |u_m^{(3)}|^2(t,x)dx. \]

Therefore, for \(4\varepsilon < \frac{1}{8} \), one has:
\[\frac{d}{dt} |u_m'(t)|_{L^2(\Omega)}^2 + \frac{1}{8} |u_m^{(3)}(t)|_{L^2(\Omega)}^2 \leq c |u_m'(t)|_{L^2(\Omega)}^{10}. \] \hspace{1cm} (2.8)

By Poincaré inequality, there exist a constant \(k > 0 \), such that
\[k|u_m'(t)|_{L^2(\Omega)}^2 \leq \frac{1}{8} |u_m^{(3)}(t)|_{L^2(\Omega)}^2. \]

By relation (2.8), we deduce that:
\[\frac{d}{dt} |u_m'(t)|_{L^2(\Omega)}^2 + k |u_m'(t)|_{L^2(\Omega)}^2 \leq c |u_m'(t)|_{L^2(\Omega)}^{10}. \] \hspace{1cm} (2.9)

Now, multiplying by \(e^{kt} \), one has:
\[\frac{d}{dt} [e^{kt} |u_m'(t)|_{L^2(\Omega)}^2] \leq c e^{-4kt} [e^{kt} |u_m'(t)|_{L^2(\Omega)}^2]^{\frac{5}{2}}. \]

We set \(Z(t) = e^{kt} |u_m'(t)|_{L^2(\Omega)}^2 \) and we integrate between 0 and \(t \):
\[-Z^{-4}(t) + Z^{-4}(0) \leq -\frac{c}{k} (e^{-4kt} - 1) \leq \frac{c}{k}, \quad t > 0. \]

If \(\sup_{m \geq 1} |u_{0m}'|^8_{L^2(\Omega)} < \frac{k}{c} : = \Lambda_0^8 \), then there exist \(c_0 > 0 \) and \(\mu = \frac{k}{2} \) such that:
\[|u_m'(t)|_{L^2(\Omega)} \leq c_0 e^{-\mu t}, \quad \forall t > 0. \] \hspace{1cm} (2.10)

Remark 2.1. From (2.10), we deduce that \(T^* = T \), that is \(u_m \) is a global solution (because \(c_0 \) and \(\mu \) are independent of \(T^* \) and \(m \)).

Lemma 2.2. There exist a constant \(c(u_0) > 0 \) independent of \(T \), such that:
\[\int_0^T \int_0^1 |u_m^{(3)}|^2(\tau,x)d\tau dx \leq c(u_0). \] \hspace{1cm} (2.11)
Proof.
We integrate the inequality (2.8) between 0 and \(T \):
\[
\int_{0}^{1} |u_m'|^2(T,x)dx + \frac{1}{8} \int_{0}^{T} \int_{0}^{1} |u_m^{(3)}|^2(\tau,x)d\tau d\tau \leq c \int_{0}^{T} |u_m|_{L^2(\Omega)}^0 d\tau + \int_{0}^{1} |(P_mu_0)'|^2 dx.
\] (2.12)
Hence
\[
\frac{1}{8} \int_{0}^{T} \int_{0}^{1} |u_m^{(3)}|^2(\tau,x)d\tau d\tau \leq c \int_{0}^{T} e^{-10\mu\tau} d\tau + |u_0|_{H^2_{per}(\Omega)}^2 \leq \frac{c}{10\mu} (1 - e^{-10\mu T}) + |u_0|_{H^2_{per}(\Omega)}^2.
\] (2.13)
Therefore
\[
\int_{0}^{T} \int_{0}^{1} |u_m^{(3)}|^2(\tau,x)d\tau d\tau \leq c(u_0), \quad \text{independent of } T.
\] (2.14)

LEMMA 2.3. There exists a constant \(C(u_0) \) independent of \(T \), such that:
\[
\left| \int_{0}^{1} u_m(t,x) \, dx \right| \leq C(u_0), \quad \forall t \in [0,T].
\] (2.15)

Proof.
In (2.2), we take \(\psi = 1 \):
\[
\frac{d}{dt} \int_{0}^{1} u_m(t,x) \, dx + \int_{0}^{1} F(u_m'(t,x),u_m''(t,x),u_m^{(3)}(t,x)) \, dx = 0.
\] (2.16)
An integration by parts (2.16) gives:
\[
\frac{d}{dt} \int_{0}^{1} u_m(t,x) \, dx = 2 \int_{0}^{1} u_m''(t,x) \, dx - 2 \int_{0}^{1} u_m^{(4)}(t,x) \, dx.
\] (2.17)
We integrate (2.17) between 0 and \(t \):
\[
\int_{0}^{1} u_m(t,x) \, dx = 2 \int_{0}^{t} \int_{0}^{1} u_m''(\tau,x) \, d\tau d\tau - 2 \int_{0}^{t} \int_{0}^{1} u_m^{(4)}(\tau,x) \, d\tau d\tau + \int_{0}^{1} u_{0m}(x) \, dx.
\] (2.18)
From which:
\[
\left| \int_{0}^{1} u_m(t,x) \, dx \right| \leq 2 \int_{0}^{T} \int_{0}^{1} |u_m''|^2(\tau,x) \, d\tau d\tau + 2 \int_{0}^{T} \int_{0}^{1} |u_m^{(4)}|^2(\tau,x) \, d\tau d\tau + \int_{0}^{1} u_{0m}(x) \, dx
\] (2.19)
We have:
\[
\int_{0}^{T} \int_{0}^{1} |u_m''|^2(\tau,x) \, d\tau d\tau \leq \int_{0}^{T} \int_{0}^{1} |u_m^{(3)}|^2(\tau,x) \, d\tau d\tau \leq c_1(u_0).
\] (2.20)
On the other hand, by the interpolation inequalities, one has:
\[|u_m'(t)|_{L^4(\Omega)}^4 \leq c |u_m(t)|_{L^2(\Omega)}^3 |u_m''(t)|_{L^2(\Omega)}^2, \]
(2.21)

Applying the Young’s inequality, we deduce:
\[|u_m'(t)|_{L^4(\Omega)}^4 \leq \alpha |u_m'(t)|_{L^2(\Omega)}^6 + c_\alpha |u_m''(t)|_{L^2(\Omega)}^2, \quad \forall \alpha > 0. \]
(2.22)

Hence:
\[\int_0^T |u_m(t)|_{L^4(\Omega)}^4 \, dt \leq \alpha \int_0^T |u_m(t)|_{L^2(\Omega)}^6 \, dt + c_\alpha \int_0^T |u_m(t)|_{L^2(\Omega)}^2 \, dt \]
(2.23)

Since:
\[\left| \int_0^1 (P_m u_0) \, dx \right| \leq \int_0^1 |P_m u_0|^2 \, dx \leq |u_0|_{L^2(\Omega)} < \infty, \]
(2.24)

therefore:
\[\left| \int_0^1 u_m(t,x) \, dx \right| \leq C(u_0), \quad \forall t \in [0,T]. \]
(2.25)

Remark 2.2. We know from Poincare-Sobolev inequality (see for instance [4, 21]), that for all \(v \in H^1(\Omega) \), we can write:
\[|v|_{L^2(\Omega)} \leq c \left(\int_0^1 v \, dx + |v'|_{L^2(\Omega)} \right). \]

Then, thanks to lemmas 2.1 and 2.3, there exists a constant \(c_1(u_0) > 0 \), independent of \(T \), such that:
\[|u_m(t)|_{L^2(\Omega)} \leq c_1(u_0). \]
(2.26)

Proposition 2.2. (The uniforme estimates in \(m \)). We have the following assertions:

1. For all \(\alpha \geq 1 \), there exists a constant \(c_\alpha(u_0) > 0 \), such that:
\[\sup_{m \geq 1} |u_m|_{L^\infty(0,T;L^\alpha(\Omega))} \leq c_\alpha(u_0) < +\infty. \]

2. For all \(r \geq 2 \) and \(k \in [1,\infty[\) which satisfy the condition
\[\frac{k}{4} - \frac{k}{2r} \leq 2, \]
(2.27)

there exists a constant \(c_{k,r}(u_0) > 0 \), such that:
\[\sup_{m \geq 1} |u'_m|_{L^k(0,T;L^r(\Omega))} \leq c_{k,r}(u_0) < +\infty. \]
3. For all \(\bar{r} \geq 2 \) and \(\bar{k} \in [1, \infty[\) which satisfy the condition
\[
\frac{3\bar{k}}{4} - \frac{\bar{k}}{2\bar{r}} \leq 2;
\]
there exists a constant \(c_{\bar{k}, \bar{r}}(u_0) > 0 \), such that:
\[
\sup_{m \geq 1} |u''_m|_{L^\infty(0, T; L^r(\Omega))} \leq c_{\bar{k}, \bar{r}}(u_0) < +\infty.
\]

Third step. (Time-Derivative Estimats) By the obtained estimates, we deduce that \(u_m \) remains in a bounded set of \(L^2(0, T; H^3_{\text{per}}(\Omega)) \cap L^\infty(0, T; H^4_{\text{per}}(\Omega)) \). For all \(\psi \in H^3_{\text{per}}(\Omega) \), we take the function \(P_m \psi \) as a test function:
\[
\int_0^1 \frac{\partial u_m}{\partial t}(t, x)(P_m \psi(x)) \, dx = -\int_0^1 u''_m(t, x)(P_m \psi(x)) \, dx - 2\int_0^1 u'_m(t, x)(P_m \psi(x)) \, dx + 3\int_0^1 u'_m(t, x)(P_m \psi(x)) \, dx - 3\int_0^1 u''_m(t, x)(P_m \psi(x)) \, dx.
\]
Applying the Hölder’s inequality, one has:
\[
\left| \int_0^1 \frac{\partial u_m}{\partial t}(t, x)(P_m \psi(x)) \, dx \right| \leq |u''_m(t)|_{L^2(\Omega)} |(P_m \psi)'|_{L^2(\Omega)} + 2|u'_m(t)|_{L^4(\Omega)} |P_m \psi|_{L^2(\Omega)} + 3|u'_m(t)|_{L^6(\Omega)} |(P_m \psi)''|_{L^2(\Omega)} + 2|P_m \psi|_{H^4(\Omega)} u''(t)|_{L^2(\Omega)} + 5|P_m \psi|_{H^4(\Omega)} u'_m(t)|_{L^2(\Omega)} u''(t)|_{L^2(\Omega)}.
\]
We have:
\[
\int_0^1 \frac{\partial u_m}{\partial t}(t, x)(P_m \psi(x)) \, dx = \int_0^1 P_m(\frac{\partial u_m}{\partial t}(t, x)) \psi(x) \, dx = \int_0^1 \frac{\partial u_m}{\partial t}(t, x) \psi(x) \, dx,
\]
and since \(|P_m \psi|_{H^k(\Omega)} \leq c_1 \|(P_m \psi)'|_{L^2(\Omega)} \) and \(\|(P_m \psi)'|_{L^2(\Omega)} \leq c_2 |\psi|_{H^3_{\text{per}}(\Omega)} \), where \(k = 0, 1, 2 \), then:
\[
\left| \int_0^1 \frac{\partial u_m}{\partial t}(t, x) \psi(x) \, dx \right| \leq c_3 Y(u'_m(t), u''_m(t), u^{(3)}_m(t)) |\psi|_{H^3_{\text{per}}(\Omega)},
\]
with
\[
Y(u'_m(t), u''_m(t), u^{(3)}_m(t)) = |u''_m(t)|_{L^2(\Omega)} + |u'_m(t)|_{L^4(\Omega)} + |u'_m(t)|_{L^6(\Omega)} + |u''(t)|_{L^2(\Omega)} + |u'_m(t)|_{L^2(\Omega)} |u^{(3)}_m(t)|_{L^2(\Omega)}.
\]
Hence:
\[
\int_0^T \frac{\partial u_m}{\partial t}(t)|_{H^3_{\text{per}}(\Omega)} \, dt \leq c_3 \int_0^T Y^2(u'_m(t), u''_m(t), u^{(3)}_m(t)) \, dt.
\]
By (2.3), we find \(\sup_{t \geq 0} |u_m'(t)|_{L^2(\Omega)} \leq c_0 \). Then:

\[
Y^2(u_m'(t), u_m''(t), u_m^{(3)}(t)) \leq c_4 \left(|u_m''(t)|_{L^8(\Omega)}^8 + |u_m'(t)|_{L^6(\Omega)}^6 \right) + |u_m'(t)|_{L^4(\Omega)}^4 + |u_m^{(3)}(t)|_{L^2(\Omega)}^2.
\]

(2.34)

We have:

\[
\int_0^T |u_m''(t)|_{L^2(\Omega)}^2 \, dt \leq c \int_0^T |u_m^{(3)}(t)|_{L^2(\Omega)}^2 \, dt \leq c(u_0), \quad \text{(by (2.11)).}
\]

(2.35)

On the other hand, for \(k = r = 8 \) or \(k = r = 6 \), the condition (2.27) is valid. Then \(|u_m''|_{L^r(\Omega)} \) remains in a bounded set of \(L^1([0,T]) \), with \(n = 6,8 \). In the same way, the condition (2.28) remains valid for \(\bar{k} = 4 \) and \(\bar{r} = 2 \), which affirms that \(|u_m''|_{L^2(\Omega)} \) remains also in a bounded set of \(L^1([0,T]) \). Then, \(Y^2(u_m', u_m'', u^{(3)}) \) remains in a bounded set of \(L^1([0,T]) \). Hence \(\frac{\partial u_m}{\partial t} \) remains in a bounded set of \(L^2(0,T; (H^3_{per}(\Omega))') \) when \(m \to +\infty \).

Remark 2.3. We have \(u_m(0) \xrightarrow{m \to +\infty} u(0) \) in \(H^1_{per}(\Omega) \). Since

\[
u_m(0) = \overline{P_m u}_0 \xrightarrow{m \to +\infty} u_0,
\]

then \(u(0) = u_0 \) in the meaning of \(H^1_{per}(\Omega) \).

Since \(u_m \) belongs to a bounded set of \(L^\infty(0,T; H^1_{per}(\Omega)) \), \(\frac{\partial u_m}{\partial t} \) remains in a bounded set of \(L^2(0,T; (H^3_{per}(\Omega))') \) when \(m \to +\infty \), and using the identification

\[
H^1_{per}(\Omega) \subset L^2(\Omega) \cong (L^2(\Omega))' \subset (H^3_{per}(\Omega))',
\]

we deduce, by the Aubin–Lions theorem, that \(u_m \) converges in \(\mathcal{C}([0,T]; L^2(\Omega)) \). Therefore, by the previous estimates, there exists a subsequence of \(u_m \) which is denoted also by \(u_m \) and a function \(u \), such that:

(a) \(\frac{\partial u_m}{\partial t} \xrightarrow{m \to +\infty} \frac{\partial u}{\partial t} \) in \(L^2(0,T; (H^3_{per}(\Omega))') \)–weak.

(b) \(u_m \xrightarrow{m \to +\infty} u \) in \(L^2(0,T; H^3_{per}(\Omega)) \)–weak.

(c) \(u_m \xrightarrow{m \to +\infty} u \) weak \(L^\infty(0,T; H^1_{per}(\Omega)) \)–weak star.

(d) \(u_m \xrightarrow{m \to +\infty} u \) strongly in \(\mathcal{C}([0,T]; L^2(\Omega)) \).

(e) \(u \) is a weak solution of the problem (1.8).
Remark 2.4. Under similar conditions of the main theorem 2.1, if \(u_0 \) is fixed in \(H^s_{\text{per}}(\Omega) \), \(s < 3 \), We can take the space \(H^s_{\text{per}}(\Omega) \) as a pivot space:

\[
H^3_{\text{per}}(\Omega) \subset H^s_{\text{per}}(\Omega) \cong (H^s_{\text{per}}(\Omega))' \subset (H^3_{\text{per}}(\Omega))',
\]

with continuous and dense injections, then, we have

\[
u_m \to u \text{ in } C([0,T];H^s_{\text{per}}(\Omega))
\] .

Corollary 2.1. (of Theorem 2.1) There are two constants \(c > 0, \mu > 0 \), such that, for all \(x \in [0,1] \), one has:

\[
|u(x,t) - \bar{u}(t)|_\infty \leq c e^{-\mu t}, \quad t > 0,
\]

where \(\bar{u}(t) = \int_0^1 u(t,x)dx \).

Proof. For all \(x \in [0,1] \), by the interpolation inequalities and the estimation (2.3), we deduce that:

\[
|u(x,t) - \bar{u}(t)|_\infty \leq c |u(x,t) - \bar{u}(t)|_{L^2(\Omega)}^{1/2} |u_x(t)|_{L^2(\Omega)}^{1/2} \leq c e^{-\mu t}, \quad t > 0.
\]

3. Uniqueness

We show in this section the uniqueness of the solution of the system (1.8) on the space \(\mathcal{X} \).

Theorem 3.1. The problem (1.8), has at most one solution \(u \in \mathcal{X} \), with the initial data \(u(0) = u_0 \in H^1_{\text{per}}(\Omega) \).

Proof. Let \(u_1, \ u_2 \in \mathcal{X} \) be two solutions of (1.8) and we set \(\delta u = u_1 - u_2 \). Since \(u_1 \) and \(u_2 \) satisfy the equation (1.7), then, making the difference between the two equations, multiplying the resulting equation by \((\delta u)'' \) and integrating between 0 and 1, one has:

\[
\frac{1}{2} \frac{d}{dt} \int_0^1 (|\delta u'|^2(t,x)dx + \int_0^1 (|\delta u|^{(3)}(t,x))^2 dx = P_1 + P_2 + P_3 + P_4,
\]

with

\[
\begin{align*}
P_1 &= 5 \int_0^1 (u_1(t,x)u_1^{(3)}(t,x) - u_2(t,x)u_2^{(3)}(t,x))(\delta u)''(t,x)dx, \\
P_2 &= 9 \int_0^1 (u_1^2(t,x)u_1''(t,x) - u_2^2(t,x)u_2''(t,x))(\delta u)''(t,x)dx, \\
P_3 &= 3 \int_0^1 (u_1^{n2}(t,x) - u_2^{n2}(t,x))(\delta u)''(t,x)dx, \\
P_4 &= 2 \int_0^1 (u_1^4(t,x) - u_2^4(t,x))(\delta u)''(t,x)dx.
\end{align*}
\]
We can rewrite the term P_1 under the following form:

$$P_1 = 5 \int_0^1 (\delta u)'(t,x)u_1^{(3)}(t,x)(\delta u)''(t,x)dx + 5 \int_0^1 u_2'(t,x)(\delta u)^{(3)}(t,x)(\delta u)''(t,x)dx = P_{11} + P_{12}.$$

To estimate the term P_{11}, we use the interpolation inequalities and the estimation (2.3). Since $\int_0^1 (\delta u)''(t,x)dx = 0$, then

$$|(\delta u)''(t,x)| \leq \int_0^1 |(\delta u)^{(3)}(t,x)|dx \leq |(\delta u)^{(3)}(t)|_{L^2(\Omega)}. \tag{3.3}$$

Thus, by the Cauchy–Schwarz and Young inequalities, and for all $\varepsilon > 0$, one has:

$$|P_{11}| \leq 5|(\delta u)^{(3)}(t)|_{L^2(\Omega)} \int_0^1 |(\delta u)'(t,x)||u_1^{(3)}(t,x)|dx$$

$$\leq c_1(\delta u)^{(3)}(t)|_{L^2(\Omega)} \left(\int_0^1 |u_1^{(3)}(t,x)|^2dx \right)^{\frac{1}{2}} \left(\int_0^1 |(\delta u)'(t,x)|^2dx \right)^{\frac{1}{2}}$$

$$\leq c_\varepsilon \left(\int_0^1 |u_1^{(3)}(t,x)|^2dx \right)^{\frac{1}{2}} \left(\int_0^1 |(\delta u)'(t,x)|^2dx \right)^{\frac{1}{2}} + \frac{\varepsilon}{8} \int_0^1 |(\delta u)^{(3)}(t,x)|^2dx$$

$$= c_2 u_1^{(3)}(t)|_{L^2(\Omega)} |(\delta u)'(t)|_{L^2(\Omega)} + \frac{\varepsilon}{8} \int_0^1 |(\delta u)^{(3)}(t,x)|^2dx. \tag{3.4}$$

In the same way, using also the interpolation inequalities, and for all $\varepsilon > 0$, we deduce that:

$$|P_{12}| \leq c_3 u_2'(t)|_\infty \int_0^1 |(\delta u)^{(3)}(t,x)||\delta u''(t,x)|dx$$

$$\leq c_\varepsilon c_3 |u_2'(t)|_\infty |(\delta u)''(t)|_{L^2(\Omega)} + \frac{\varepsilon}{24} \int_0^1 |(\delta u)^{(3)}(t,x)|^2dx$$

$$\leq c_4 |u_2'(t)|_\infty |(\delta u)'(t)|_{L^2(\Omega)} |(\delta u)^{(3)}(t,x)|_{L^2(\Omega)} + \frac{\varepsilon}{24} \int_0^1 |(\delta u)^{(3)}(t,x)|^2dx$$

$$\leq c_5 u_2'(t)|_\infty |(\delta u)'(t)|_{L^2(\Omega)} + \frac{\varepsilon}{8} \int_0^1 |(\delta u)^{(3)}(t,x)|^2dx. \tag{3.5}$$

Then,

$$|P_1| \leq f_1(t)|(\delta u)'(t)|_{L^2(\Omega)} + \frac{\varepsilon}{4} \int_0^1 |(\delta u)^{(3)}(t,x)|^2dx, \quad \forall \varepsilon > 0, \tag{3.6}$$

with, $f_1(t) = c_5 \left(|u_1^{(3)}(t)|_{L^2(\Omega)} + |u_2'(t)|_\infty \right)$. We show that $f_1 \in L^1([0,T])$. Thanks to proposition 2.2, with $k = 4$ et $r = \infty$, we deduce that $|u_2'|_\infty \in L^1([0,T])$, and since $u_1 \in L^2(0,T;H^3_{per}(\Omega))$, then $f_1 \in L^1([0,T])$.

An integration by parts allows us to write the term P_2 under the following form:

$$P_2 = -3 \int_0^1 \left(u_1^{(3)}(t,x) - u_2^{(3)}(t,x) \right)(\delta u)^{(3)}(t,x)dx$$

$$= \int_0^1 \left(u_1'(t,x) - u_2'(t,x) \right) \left(u_1^2(t,x) + u_1'(t,x)u_2'(t,x) + u_2'^2(t,x) \right)(\delta u)^{(3)}(t,x)dx.$$
Applying the Young inequality for $\varepsilon > 0$, one has:

\[
|P_2| \leq c_6 \left(|u'_1(t)|_\infty^2 + |u'_1(t)|_\infty |u'_2(t)|_\infty + |u'_2(t)|_\infty^2 \right) \int_0^1 |(\delta u)'(t,x)|(\delta u)^{(3)}(t,x)dx \\
\leq c_7 \left(|u'_1(t)|_\infty^2 + |u'_2(t)|_\infty^2 \right) \int_0^1 |(\delta u)'(t,x)|(\delta u)^{(3)}(t,x)dx \\
\leq c_8 \left(|u'_1(t)|_\infty^4 + |u'_2(t)|_\infty^4 \right) \int_0^1 |(\delta u)'(t,x)|^2 dx + \frac{\varepsilon}{4} \int_0^1 |(\delta u)^{(3)}(t,x)|^2 dx.
\]

Thus,

\[
|P_2| \leq f_2(t)(\delta u)'(t)_{L^2(\Omega)}^2 + \frac{\varepsilon}{4} \int_0^1 |(\delta u)^{(3)}(t,x)|^2 dx, \quad \forall \varepsilon > 0, \tag{3.7}
\]

with $f_2(t) = c_8 \left(|u'_1(t)|_\infty^4 + |u'_2(t)|_\infty^4 \right)$. Applying proposition 2.2, with $k = 4$ and $r = \infty$, one has $f_2 \in L^1([0,T])$.

We can write the term P_3 as following:

\[
P_3 = 3 \int_0^1 \left(u''_1(t,x) + u''_2(t,x) \right) \left(u''_1(t,x) - u''_2(t,x) \right) (\Delta u)^''(t,x)dx \\
= 3 \int_0^1 \left(u''_1(t,x) + u''_2(t,x) \right) (\Delta u)^''(t,x)dx. \tag{3.9}
\]

By the interpolation inequalities, we deduce that:

\[
|P_3| \leq c_9 \left(|u''_1(t)|_\infty + |u''_2(t)|_\infty \right) \int_0^1 |(\Delta u)^''(t,x)|^2 dx \\
\leq c_{10} \left(|u''_1(t)|_\infty + |u''_2(t)|_\infty \right) ((\Delta u)'(t)_{L^2(\Omega)} |(\Delta u)^{(3)}(t)|_{L^2(\Omega)). \tag{3.10}
\]

Then, the Young inequality gives us

\[
|P_3| \leq f_3(t)(\delta u)'(t)_{L^2(\Omega)}^2 + \frac{\varepsilon}{4} \int_0^1 |(\delta u)^{(3)}(t,x)|^2 dx, \quad \forall \varepsilon > 0, \tag{3.11}
\]

with

\[
f_3(t) = c_{11} \left(|u''_1(t)|_\infty + |u''_2(t)|_\infty \right)^2 \leq c_{12} \left(|u''_1(t)|_\infty^2 + |u''_2(t)|_\infty^2 \right).
\]

Applying proposition 2.2, with $\bar{k} = 2$ and $\bar{r} = \infty$, we deduce that $f_3 \in L^1([0,T])$.

Finally, we can write the term P_4 as:

\[
P_4 = 2 \int_0^1 (\Delta u)''(t,x)(\Delta u)'(t,x) (u'_1(t,x) + u'_2(t,x)) (u''_1(t,x) + u''_2(t,x))dx,
\]

then

\[
|P_4| \leq c_{13} \left(|u'_1(t)|_\infty + |u'_2(t)|_\infty \right) \left(|u''_1(t)|_\infty + |u''_2(t)|_\infty \right) \int_0^1 (\Delta u)''(t,x)(\Delta u)'(t,x)dx. \tag{3.12}
\]
Thus,

$$|P_4| \leq f_4(t)|\delta u(t)|^2_{L^2(\Omega)} + \frac{\varepsilon}{4} \int_0^1 |(\delta u)^{(3)}(t,x)|^2 dx, \quad \forall \varepsilon > 0,$$

(3.13)

with

$$f_4(t) = c_{14}(|u_1'(t)|_\infty + |u_2'(t)|_\infty)^2(|u_1'(t)|_\infty^2 + |u_2'(t)|_\infty^2).$$

Hence

$$f_4(t) \leq c_{15}(|u_1'(t)|_\infty^6 + |u_2'(t)|_\infty^6).$$

By using proposition 2.2, with $k = 6$ and $r = \infty$, we deduce that $f_4 \in L^1([0,T])$. Therefore $f := \sum_{i=1}^4 f_i \in L^1([0,T])$. For $\varepsilon < 1$, the estimations (3.6), (3.8), (3.11), and (3.13) allow us to write

$$\frac{d}{dt} \int_0^1 |(\delta u)'(t,x)|^2 dx \leq cf(t)|\delta u(t)|^2_{L^2(\Omega)},$$

(3.14)

Setting $G(t) = |(\delta u)'(t)|^2_{L^2(\Omega)}$, one has:

$$\left(\frac{d}{dt}
ight)^t G(t) \leq cf(t) G(t).$$

(3.15)

The Gronwall inequality gives:

$$G(t) \leq G(0) \exp \left(c \int_0^t f(\tau) d\tau\right) = 0.$$

Therefore $u_1 = u_2$, then the solution (1.8) is unique in \mathcal{X}.

4. Numerical Validation

In this section we review the numerical verification of previous theoretical study. We use pseudo-spectral method conjugated with an exponential scheme that breaks down to a classical forward Euler time scheme, for zero wave number [23].

4.1. Spatial discretization

We consider the periodic problem (1.3), where $h(x,t)$ supposed 2π-periodic. Eq. (1.3) can be written in the form

$$\frac{\partial h}{\partial t} + \mathcal{L}(h) = \mathcal{N}(h)$$

(4.1)

where \mathcal{L} and \mathcal{N} are respectively the linear and nonlinear operators of (1.3), i.e.,

$$\mathcal{L} \equiv \frac{\partial^4}{\partial x^4}$$

(4.2)

and

$$\mathcal{N}(h) = -h^{-1}h'(h^{(3)}).$$

(4.3)
The periodic boundary conditions and given initial data yield

\[
\begin{align*}
 h(0,t) &= h(2\pi,t), \quad t \in \mathbb{R}_+ \\
 h(x,0) &= h_0(x), \quad x \in (0,2\pi).
\end{align*}
\]

The solution of (1.3) is approximated as a truncated series in the Fourier basis functions \(\{(\Phi_k)_{k \in \mathbb{Z}}, \quad \Phi_k(x) \equiv e^{ikx}\} \):

\[
h_N(x,t) = P_N(h(x,t)) = \sum_{k \in \mathbb{I}_N} \hat{h}_k(t)\Phi_k(x),
\]

where \(\mathbb{I}_N = [1 - \frac{N}{2}, \frac{N}{2}] \); the \(\hat{h}_k \) are the spectral coefficients. We require the orthogonality of the residue for all functions of \(S_N \) who make up the vectorial space generated by \((\Phi_k)_{k \in \mathbb{Z}} \). In Fourier space, we can write

\[
\frac{\partial \hat{h}_k}{\partial t} = \mathcal{L}_k \hat{h}_k + \mathcal{N}_k,
\]

where \(\mathcal{N}_k \) is the \(k \)-th Fourier coefficient of the nonlinear term of (4.1).

4.2. Time discretization

To approach the solution of (1.3), we adopt a pseudo-spectral method which is associated with an exponential scheme in time [23]. Let \(\delta t = t_{n+1} - t_n \) be the time step (constant) then we obtain the exponential scheme in time

\[
\hat{h}_k^{n+1} = \hat{h}_k^n \exp(\mathcal{L}_k \delta t) + \mathcal{N}_k \frac{\exp(\mathcal{L}_k \delta t) - 1}{\mathcal{L}_k}.
\]

This scheme is based on a discrete version of the “variation of constants method”. The nonlinear term \(\mathcal{N}_k \) is calculated at each step time in the direct space then in the Fourier space by a fast discrete transform.

Figure 1: On the left, solution \(h(x,t) \) of system (1.3) with the initial data \(h_0(x) = 0.01 + 0.001 \sin(x) \) and for \(\delta t = 10^{-2} \) and \(N = 8192 \). On the right, solution (1.3) of \(h_0(x) = 2 + 0.01 \sin(3x) - 0.003 \sin(x) \). The initial solution is given by a dotted line. We obtain the convergence of the solution to the mean value of the initial data.
Figure 2: On the left, solution $h(x,t)$ of system (1.3) with the initial data $h_0(x) = 1.5 + 0.05\sin^3 (x)$ and for $\delta t = 10^{-3}$ and $N = 8192$. On the right, solution (1.3) for $h_0(x) = 1 + 0.03\cos^3 (x) - 0.03\cos (x)$. The initial solution is given by a dotted line. Again we obtain the convergence of the solution to the mean value of the initial data.

Remark

I would like to draw your attention that this article is a part of my thesis [1].

Acknowledgements. The author would like to express his gratitude to Professor J.M. Rakotoson for helpful discussions, ideas and remarks.

REFERENCES

(Received April 1, 2016)