CONTINUOUS DEPENDENCE FOR SOLUTIONS TO 2-D BOUSSINESQ SYSTEM CHANNEL FLOW

YUANFEI LI AND CHANGHAO LIN

(Communicated by Jesús Ildefonso Diaz)

Abstract. This paper considers the 2-D Boussinesq system in a semi-infinite channel. By making use of the earlier work of [19] and some Sobolev inequalities, the continuous dependence on the coefficient of the system is obtained. The authors also show how to bound the total energy.

1. Introduction

The Boussinesq system we consider in this paper takes the form

\[
\begin{align*}
\partial_t u - \mu \Delta u + u \nabla u - \gamma g \theta + \nabla p &= 0, \\
\text{div} u &= 0, \\
\partial_t \theta - \kappa \Delta \theta + u \nabla \theta &= 0.
\end{align*}
\]

Here \(u = (u_1, u_2) \) denotes the velocity of the fluid; \(\theta \) is the temperature; \(p \) is the hydrostatic pressures; \(g = (g_1, g_2) \) is the gravity force; \(\mu \) and \(\kappa \) are kinematic viscosity and thermal conductivity, respectively; \(\gamma \) is a positive constant associated to the coefficient of volume expansion. Without loss of generality, we assume that \(\mu = \kappa = \gamma = 1 \) in this paper.

The Boussinesq model is one of the most useful models in fluid and geophysical fluid dynamics such as atmospheric fronts and ocean circulations (see [21, 27]). In 2001 Majda [20] pointed out that the two-dimensional Boussinesq equations retain some key features of the three-dimensional Euler and Navier-Stokes equations such as the vortex stretching mechanism and the inviscid two-dimensional Boussinesq equations are identical to the Euler equations for three-dimensional axisymmetric swirling flows. For more information about Boussinesq system, we refer readers to Majda’s books [21, 20]. In fact, there have been many papers devoted to the study of the Boussinesq system. The global well-posedness of the 2-D Boussinesq system was obtained by [7, 12]. [6] established the global in time existence of classical solutions to the two-dimensional anisotropic Boussinesq equations with vertical dissipation.

Keywords and phrases: Boussinesq equations, Continuous dependence, Channel flow.

This research is supported by Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (Grant 2013LYM0112) and Huashang College Guangdong University of Finance and Economics Innovative Strong School Project: The Training of Engineering Talents (HS2014CXQX04).
Different from the above papers, we consider the two-dimensional Boussinesq equations in a semi-infinite channel. In fact, a number of papers on channel flow of an incompressible viscous fluid have appeared in the literature. Horgan [11] investigated the stationary Navier-Stokes flow in a channel. Under certain assumptions, the authors proved that the flow tended asymptotically to the fully developed flow. Lin [14] considered the entry flow problem of the transient Stokes in a semi-infinite strip when the mean value of the entry ow is zero and obtained spatial decay estimates for an energy associated with the flow. Lee and Song [13] established exponential decay bounds for a transient magnetohydrodynamic flow in a semi-infinite channel. Song [28, 29] investigated the case of nonzero entry Stokes flow and obtained improved decay results. For more papers, one can see [19, 16, 18] and papers cited therein. Obviously, most of the papers established exponential decay bounds for the solution to two-dimensional equations, but few paper in the literature paid attention to structural stability(or continuous dependence) of two-dimensional Boussinesq equations.

The purpose of the present paper is to derive the continuous dependence of external force. Structural stability questions are fundamental in that one wishes to know whether a small change in a coefficient in the equations will induce a dramatic change in the solution. In the spirit of the earlier work of [19], we derive a second order partial differential inequality which leads to the continue dependence results. Since there is a non-linear term $u \nabla u$ in (1.1), the argument of this paper will be more complicated and the results are interesting. The methods which are used in our paper can be extended to other similar equations.

Throughout this paper, the usual summation convention is employed with repeated Greek subscript summed from 1 to 2. The comma is used to indicate partial differentiation, i.e. $\varphi_{\alpha, \alpha} = \sum_{\alpha=1}^{2} \frac{\partial \varphi_{\alpha}}{\partial x_{\alpha}}$. The paper is structured as follows: In section 2 we formulate the boundary problem with provides the framework investigation. Some auxiliary inequalities are presented in section 3. Section 4 is devote to deriving a basic differential inequality that leads directly to continuous dependence for the solution. Finally, to make the estimate explicit, we derive the total energies in terms of prescribed data in section 5 and section 6, respectively.

2. Formulation

We consider the Boussinesq system with variable viscosity and thermal in a channel in \mathbb{R}^2. The channel is denoted by R which is defined as

$$ R := \{(x_1, x_2) | x_1 \geq 0, 0 \leq x_2 \leq h\}, \quad (2.1) $$

where h is a fixed positive constant, and we also use the notation

$$ L_z := \{(x_1, x_2) | x_1 = z, 0 \leq x_2 \leq h\}. \quad (2.2) $$

We also define

$$ R_z := \{(x_1, x_2) | x_1 \geq z, 0 \leq x_2 \leq h\}. \quad (2.3) $$
The unknown function

The problem (2.10)-(2.13) may be viewed as an inverse problem for determining and hence an inverse problem. Now, we let

\[u_{\alpha,t} - \mu \Delta u_{\alpha} + u_\beta u_{\alpha,\beta} - \gamma g_{\alpha} \theta + p_{,\alpha} = 0, \ in \ \mathbb{R} \times [0, \infty), \]

\[u_{\alpha,\alpha} = 0, \ in \ \mathbb{R} \times [0, \infty), \]

\[\theta, - \kappa \Delta \theta + u_{\alpha} \theta_{,\alpha} = 0, \ in \ \mathbb{R} \times [0, \infty), \]

with the initial-boundary conditions

\[u_{\alpha}(x_1,x_2,0) = \theta(x_1,x_2,0) = 0 \]

\[u_{\alpha}(x_1,0,t) = u_{\alpha}(x_1,h,t) = 0, \ \theta(x_1,0,t) = \theta(x_1,h,t) = 0, \]

\[u_{\alpha}(0,x_2,t) = f_{\alpha}(x_2,t), \ \theta(0,x_2,t) = h(x_2,t), \]

for \(\alpha = 1, 2. \) The boundary functions \(f_{\alpha}(\alpha = 1, 2) \) and \(h \) satisfy the compatibility relationships \(f_{\alpha}(0,t) = f_{\alpha}(h,t) = 0, h(0,t) = h(h,t) = 0. \) If data \(f_{\alpha} \) and \(h \) are small enough in \(L_2 \), bounded solutions will exist in in the interval \([0, T]\). In fact, under the condition \(\int_0^h f_1 dx_2 = \int_0^h h dx_2 = 0 \), the solutions of (2.4)-(2.9) will vanish as \(x_1 \) tends to \(\infty \). However, if \(\int_0^h f_1 dx_2 \neq 0 \) and \(\int_0^h h dx_2 \neq 0 \), we suppose that \((u_1, u_2)\) tend to \((V, 0)\) for sufficiently small data, when \(x_1 \to \infty \), where \(V(x_2,t) \) is the solution of the problem

\[V_t - V_{,22} + P(t) = 0, \quad 0 < x_2 < h, 0 < t < T, \]

\[V(x_2,0) = 0, \quad 0 \leq x_2 \leq h, \]

\[V(0,t) = V(h,t) = 0, \quad 0 \leq t \leq T. \]

The unknown function \(P(t) \) may be determined by

\[\int_0^h V(x_2,t)dx_2 = \int_0^h f_1(x_2,t)dx_2 = Q(t). \]

The problem (2.10)-(2.13) may be viewed as an inverse problem for determining \(P(t) \) and hence \(V(x_2,t) \). It is easy to show that this problem has a unique solution. For interesting, readers can refer to [5] in which Cannon and Zachmann investigated a similar inverse problem. Now, we let

\[w_{\alpha} = u_{\alpha} - V_{,\alpha 1}, \quad q_{,\alpha} = p_{,\alpha} - P(t)_{,\alpha 1}. \]

Then, the boundary-initial value problem (2.4)-(2.9) may be rewritten as

\[w_{\alpha,t} - \mu \Delta w_{\alpha} + (w_\beta + V_{,\beta 1})w_{\alpha,\beta} + w_2 V_{,2}\delta_{\alpha 1} - g_{\alpha} \theta + q_{,\alpha} = 0, \]

\[w_{\alpha,\alpha} = 0, \ in \ \mathbb{R} \times [0, \infty), \]

\[\theta, - \kappa \Delta \theta + w_{\alpha} \theta_{,\alpha} + \theta_{,1}V = 0, \ in \ \mathbb{R} \times [0, \infty), \]
with the initial-boundary conditions

\[w_\alpha(x_1, x_2, 0) = \theta(x_1, x_2, 0) = 0 \]
(2.18)

\[w_\alpha(x_1, 0, t) = u_\alpha(x_1, h, t) = 0, \quad \theta(x_1, 0, t) = \theta(x_1, h, t) = 0, \]
(2.19)

\[w_\alpha(0, x_2, t) = f_\alpha(x_2, t) - V\delta_\alpha, \quad \theta(t, 0, x_2) = h(x_2, t). \]
(2.20)

Under the condition (2.13), it follows that at each instant of time \(t \)

\[\int_{L_0} w_1 dx_2 = 0. \]

Since \((w_1, w_2)\) is divergence-free, we have

\[
\int_{L_0} w_1 dx_2 = \int_{L_0} w_1 dx_2 + \int_0^z \int_{L_0} w_{1,1} dx_2 d\xi \\
= -\int_0^z \int_{L_0} w_{2,2} dx_2 d\xi = 0.
\]

Now, we list some results which have been derived in [19]. These results will be used in the next sections of this paper. In paper [19], the authors defined energy expressions as

\[
E(z, t) = \int_0^t \int_{R_z} w_{\alpha, \beta} w_{\alpha, \beta} dAd\eta + \rho_1 \int_0^t \int_{R_z} w_{\alpha, \eta} w_{\alpha, \eta} dAd\eta \\
+ \int_0^t \int_{R_z} \theta_{\alpha} \theta_{\alpha} dAd\eta + \rho_2 \int_0^t \int_{R_z} \theta_{\eta}^2 dAd\eta \\
= E_1(z, t) + \rho_1 E_2(z, t) + E_3(z, t) + \rho_2 E_4(z, t), \quad (2.21)
\]

and

\[
E_5(z, t) = \int_0^t \int_{R_z} w_{\alpha, \beta} \theta_{\alpha, \beta} dAd\eta, \quad E_6(z, t) = \int_0^t \int_{R_z} \theta_{\alpha} \theta_{\alpha} dAd\eta. \quad (2.22)
\]

In section 4 of [19], the authors proofed

\[
E(z, t) \leq m_1 E(0, t) e^{-m_2 z}, \quad (2.23)
\]

for some computable positive constants \(m_1 \) and \(m_2 \). They named this result as "Spatial decay estimates". To make the estimates explicit, the bounds for \(E_i(0, t), (i = 1, 2, 3, 4, 5, 6) \) were also derived in section 5 of that paper. We write the bounds for \(E_i(0, t), (i = 1, 2, 3, 4, 5, 6) \) as

\[
E_i(0, t) \leq \tilde{Q}_i, \quad (2.24)
\]

where \(\tilde{Q}_i(i = 1, 2, 3, 4, 5, 6) \) are positive constants which only depend on the known data.
In this paper, we continue their work. We want to establish the continuous dependence on \(g_\alpha \). Let \((w_\alpha, \theta, q)\) and \((w_\alpha^*, \theta^*, q^*)\) be solutions of (2.15)-(2.20), but with different coefficients \(g_\alpha \) and \(g_\alpha^* \), respectively. We set
\[
v_\alpha = w_\alpha - w_\alpha^*, \quad T = \theta - \theta^*, \quad \pi = q - q^*, \quad \tau_\alpha = g_\alpha - g_\alpha^*.
\] (2.25)

Then, it is easy to find that \((v_\alpha, T, \pi)\) satisfy
\[
v_\alpha - \Delta v_\alpha + v_\alpha w_{\alpha,\beta} + w_{\beta}^* v_{\alpha,\beta} + V v_\alpha,1 + v_2 V,2 \delta_{\alpha 1} - \tau_\alpha \theta - g_\alpha^* T + \pi_\alpha = 0,
\] (2.26)
\[
v_{\alpha,\alpha} = 0, \text{ in } \mathbb{R} \times [0, \infty),
\] (2.27)
\[
T_t - \Delta T + v_\alpha \theta,\alpha + w_{\alpha}^* T,\alpha + T,1 V = 0, \text{ in } \mathbb{R} \times [0, \infty),
\] (2.28)
with the initial-boundary conditions
\[
v_\alpha(x_1, x_2, 0) = T(x_1, x_2, 0) = 0
\] (2.29)
\[
v_\alpha(x_1, 0, t) = v_\alpha(x_1, h, t) = 0, \quad T(x_1, 0, t) = T(x_1, h, t) = 0,
\] (2.30)
\[
v_\alpha(0, x_2, t) = 0, \quad T(0, x_2, t) = 0.
\] (2.31)

Our main result of this paper may be written as:

Theorem 1. Supposing the known data \(h, f_\alpha \) and \(\kappa, \mu, \gamma \) small enough. Then the solution \((w_\alpha, \theta, p)\) of the initial-boundary value problem (2.15)-(2.20) depends continuously on change in the coefficient \(g_\alpha \), as shown explicitly in inequality (4.38) which derives a relation of the form
\[
\Psi(z,t) \leq \tau^2 L,
\] (2.32)
where \(L \) is an a priori constant and \(\Psi(z,t) \) will be defined in (3.33). In (2.32), we note that \(\tau^2 = \max \{ \tau_\alpha, \tau_\alpha^* \} \).

3. The definition for \(\Psi(z,t) \)

To prove theorem 1, we first seek the definition for \(\Psi(z,t) \). To do this, we introduce a stream function \(\varphi(x_1, x_2, t) \) such that
\[
v_1 = \varphi,2, \quad v_2 = -\varphi,1.
\] (3.1)

We can eliminate the troublesome pressure term \(\pi_\alpha \) in (2.26). The equation (2.26)-(2.28) may be transformed into the following form
\[
(\Delta \varphi)_t - \Delta^2 \varphi - \varphi,\beta \Delta w_{\beta} + w_{\beta}^* (\Delta \varphi),_\beta - \varphi,1 V,22 + V(\Delta \varphi),1 + (\tau_2 \theta),1 - (\tau_1 \theta),2
\]
\[
+ (g_2^* T),1 - (g_1^* T),2 = 0, \text{ in } \mathbb{R} \times [0, \infty),
\] (3.2)
with the initial-boundary conditions

\[
\phi(x_1, x_2, 0) = T(x_1, x_2, 0) = 0, \quad \text{(3.4)}
\]

\[
\begin{cases}
\phi(x_1, 0, t) = \phi(x_1, h, t) = 0, \\
\phi_2(x_1, 0, t) = \phi_2(x_1, h, t) = 0, \\
T(x_1, 0, t) = T(x_1, h, t) = 0,
\end{cases} \quad \text{(3.5)}
\]

\[
\phi(0, x_2, t) = \phi_1(0, x_2, t) = 0, \quad T(0, x_2, t) = 0. \quad \text{(3.6)}
\]

To get the result we want, we must seek definition of \(\Psi(z, t)\). We get our goal in three steps.

Step 1: Definition for \(\Phi_1(z, t)\).

Let \(\phi\) be a solution of (3.2)-(3.6), we start with the integral

\[
\int_0^t \int_{L_z} \phi_1 \phi dx_2 d\eta. \quad \text{(3.7)}
\]

Making use of the divergence theorem, Eq.(3.2) and the initial-boundary conditions and integrating by parts, we have

\[
\int_0^t \int_{L_z} \phi_1 \phi dx_2 d\eta = - \int_0^t \int_{L_z} (\Delta \phi)_\eta \phi dA \eta - \frac{1}{2} \int_0^t \int_{L_z} \phi \phi_\alpha \phi dA |_{\eta=t}
\]

\[
= \int_0^t \int_{R_z} \left[-\Delta^2 \phi - \phi_\beta \Delta w_\beta + w_\beta^*(\Delta \phi)_\beta - \phi_1 V_{22} + V(\Delta \phi)_1 + (\tau_2 \theta)_1 - (\tau_1 \theta)_2 \right.
\]

\[
+ (g_2^* T)_1 - (g_1^* T)_2 \big] \phi dA \eta - \frac{1}{2} \int_{R_z} \phi \phi_\alpha \phi dA |_{\eta=t}, \quad \text{(3.8)}
\]

from which it follows that

\[
\int_0^t \int_{R_z} \phi \phi_\alpha \phi dA \eta + \frac{1}{2} \int_{R_z} \phi \phi_\alpha \phi dA |_{\eta=t}
\]

\[
= - \int_0^t \int_{L_z} \phi_1 \phi dx_2 d\eta + \int_0^t \int_{L_z} \Delta \phi_1 \phi dx_2 d\eta
\]

\[
- \int_0^t \int_{L_z} \phi_{1\alpha} \phi dA dx_2 d\eta + \int_0^t \int_{R_z} [w_\beta^*(\Delta \phi)_\beta - \phi_\beta \Delta w_\beta] \phi dA \eta
\]

\[
+ \int_0^t \int_{R_z} [V(\Delta \phi)_1 - \phi_1 V_{22}] \phi dA \eta
\]

\[
+ \int_0^t \int_{R_z} [(\tau_2 \theta)_1 - (\tau_1 \theta)_2] \phi dA \eta + \int_0^t \int_{R_z} [(g_2^* T)_1 - (g_1^* T)_2] \phi dA \eta. \quad \text{(3.9)}
\]
Integrating by parts, we have
\[
\int_0^t \int_{L_z} \Delta \varphi \phi d\eta - \int_0^t \int_{L_z} \varphi_{1\alpha} \varphi_{,\alpha} dx d\eta = \frac{\partial}{\partial z} \int_0^t \int_{L_z} [\varphi,_{11} \varphi - \varphi_{,\alpha} \varphi_{,\alpha}] dx d\eta,
\]
(3.10)

\[
\int_0^t \int_{R_z} \left[w_{\beta}^*(\Delta \varphi)_{,\beta} - \varphi_{,\beta} \Delta w_{\beta}\right] \phi dA d\eta
\]
\[
= - \int_0^t \int_{L_z} w_1^* \Delta \varphi \phi dx d\eta - \int_0^t \int_{R_z} w_{\beta}^* \Delta \varphi_{,\beta} dA d\eta
\]
\[
+ \frac{1}{2} \int_0^t \int_{L_z} \varphi^2 w_{1,11} dx d\eta + \frac{1}{2} \int_0^t \int_{L_z} \varphi^2 w_{1,22} dx d\eta
\]
\[
= - \int_0^t \int_{L_z} w_1^* \Delta \varphi \phi dx d\eta - \int_0^t \int_{R_z} w_{\beta}^* \Delta \varphi_{,\beta} dA d\eta
\]
\[
- \frac{1}{2} \int_0^t \int_{L_z} \varphi^2 w_{2,12} dx d\eta + \frac{1}{2} \int_0^t \int_{L_z} \varphi^2 w_{1,22} dx d\eta
\]
\[
= - \int_0^t \int_{L_z} w_1^* \Delta \varphi \phi dx d\eta - \int_0^t \int_{R_z} w_{\beta}^* \Delta \varphi_{,\beta} dA d\eta
\]
\[
+ \int_0^t \int_{L_z} \varphi \varphi_{2,1} dx d\eta - \int_0^t \int_{L_z} \varphi \varphi_{,2,1} dx d\eta,
\]
(3.11)
where we have used the fact \(w_{\alpha,\alpha} = 0 \).

\[
\int_0^t \int_{R_z} [V(\Delta \varphi)_{,1} - \varphi_{,1} V_{,22}] \phi dA d\eta = \frac{1}{2} \int_0^t \int_{L_z} V \varphi_{,\alpha} \varphi_{,\alpha} dx d\eta
\]
\[
- \int_0^t \int_{L_z} V \varphi_{1,1} dx d\eta + \int_0^t \int_{R_z} V_{,2} \varphi_{1,2} dA d\eta
\]
\[
= \frac{1}{2} \int_0^t \int_{L_z} V \varphi_{,\alpha} \varphi_{,\alpha} dx d\eta - \frac{\partial}{\partial z} \int_0^t \int_{L_z} V \varphi_{,1} dx d\eta
\]
\[
+ \int_0^t \int_{L_z} V \varphi_{1,1} dx d\eta + \int_0^t \int_{R_z} V_{,2} \varphi_{,1,2} dA d\eta,
\]
(3.12)

\[
\int_0^t \int_{R_z} [(\tau_2 \theta)_{,1} - (\tau_1 \theta)_{,2}] \phi dA d\eta
\]
\[
= - \int_0^t \int_{L_z} \tau_2 \theta \phi dx d\eta - \int_0^t \int_{R_z} \tau_2 \theta \varphi_{1,2} dA d\eta + \int_0^t \int_{R_z} \tau_1 \theta \varphi_{,1,2} dA d\eta.
\]
(3.13)

\[
\int_0^t \int_{R_z} [(g_2^* T)_{,1} - (g_1^* T)_{,2}] \phi dA d\eta
\]
\[
= - \int_0^t \int_{L_z} g_2^* T \phi dx d\eta - \int_0^t \int_{R_z} g_2^* T \varphi_{1,2} dA d\eta + \int_0^t \int_{R_z} g_1^* T \varphi_{,1,2} dA d\eta.
\]
(3.14)
So, we define

$$\Phi_1(z, t) = \int_0^t \int_{R_z} \varphi_{\alpha \beta} \varphi_{\alpha \beta} dA d\eta. \quad (3.15)$$

Combining (3.9)-(3.14), we have

$$\Phi_1(z, t) + \frac{1}{2} \int_{R_z} \varphi_{\alpha} \varphi_{\alpha} dA \mid_{\eta = t} = y_{11}(z, t) + y_{12}(z, t) + y_{13}(z, t), \quad (3.16)$$

where

$$y_{11}(z, t) = \frac{\partial}{\partial z} \int_0^t \int_{L_z} [\varphi_{11} \varphi - \varphi_{\alpha} \varphi_{\alpha} - V \varphi_{1} \varphi] dx_2 d\eta,$$

$$y_{12}(z, t) = \int_0^t \int_{L_z} [-\varphi_{11} \varphi - w_1 \varphi_{\alpha} \varphi + \varphi_{\alpha} w_{1,2} - \varphi_{\alpha} w_{1,2} + \frac{1}{2} V \varphi_{\alpha} \varphi_{\alpha}$$

$$+ V \varphi_{1} \varphi_{1} - V \varphi_{12} \varphi - \tau_2 \theta \varphi - g_2^* T \varphi] dx_2 d\eta,$$

$$y_{13}(z, t) = \int_0^t \int_{R_z} [-w_{\beta} \varphi_{\beta} \varphi_{\alpha} + V_{12} \varphi_{\alpha} \varphi_{\alpha} + \tau_1 \theta \varphi_{\alpha} - \tau_2 \theta \varphi_{\alpha}$$

$$- g_1^* T \varphi_{1} - g_2^* T \varphi_{1}] dA d\eta. \quad (3.17)$$

Step 2: Definition of $\Phi_2(z, t)$. We consider the integral

$$\int_0^t \int_{R_z} \varphi_{\alpha \eta} \varphi_{\alpha \eta} dA d\eta. \quad (3.18)$$

By integrating by parts, using the divergence theorem and the initial-boundary conditions, we have

$$\int_0^t \int_{R_z} \varphi_{\alpha \eta} \varphi_{\alpha \eta} dA d\eta$$

$$= - \int_0^t \int_{L_z} \varphi_{1 \eta} \varphi_{\eta} dx_2 d\eta - \int_0^t \int_{R_z} \varphi_{\eta} (\Delta \varphi) dA d\eta$$

$$= - \frac{1}{2} \frac{\partial}{\partial z} \int_0^t \int_{L_z} \varphi_{\eta}^2 dx_2 d\eta - \int_0^t \int_{R_z} \Delta^2 \varphi dA d\eta - \int_0^t \int_{R_z} \varphi_{\beta} \Delta w_{\beta} - w_{\beta} \Delta \varphi_{\beta} dA d\eta$$

$$+ \int_0^t \int_{R_z} \varphi_{1 \eta} V_{22} - V \Delta \varphi_{22} dA d\eta$$

$$+ \int_0^t \int_{R_z} [(\tau_2 \theta)_{12} - (\tau_1 \theta)_{12}] \varphi_{\eta} dA d\eta$$

$$+ \int_0^t \int_{R_z} [(g_2^* T)_{12} - (g_1^* T)_{12}] \varphi_{\eta} dA d\eta. \quad (3.19)$$

By the divergence theorem, we have

$$- \int_0^t \int_{R_z} \Delta^2 \varphi_{\alpha \eta} dA d\eta$$
\[-\int_0^t \int_{R_z} [\varphi_{,\beta} \Delta w_\beta - w_\beta^* (\Delta \varphi),_\beta] \varphi_{,\eta} dA d\eta \]

\[= \int_0^t \int_{L_z} \varphi_{,\beta} w_{,1 \beta} \varphi_{,\eta} d\eta d\eta + \int_0^t \int_{R_z} \varphi_{,\alpha \beta} w_{,\beta,\alpha} \varphi_{,\eta} dA d\eta \]

\[+ \int_0^t \int_{R_z} \varphi_{,\beta} w_{,\beta,\alpha} \varphi_{,\eta} dA d\eta - \int_0^t \int_{L_z} w_{,\beta,1 \beta} \varphi_{,\eta} dx_2 d\eta \]

\[= \int_0^t \int_{L_z} \varphi_{,\beta} w_{,1 \beta} \varphi_{,\eta} d\eta d\eta + \int_0^t \int_{R_z} \varphi_{,\alpha \beta} w_{,\beta,\alpha} \varphi_{,\eta} dA d\eta \]

\[+ \int_0^t \int_{R_z} \varphi_{,\beta} w_{,\beta,\alpha} \varphi_{,\eta} dA d\eta - \int_0^t \int_{L_z} w_{,\beta,1 \beta} \varphi_{,\eta} d\eta d\eta \]

\[+ \int_0^t \int_{R_z} \varphi_{,\beta} w_{,\beta,\alpha} \varphi_{,\eta} dA d\eta - \int_0^t \int_{L_z} w_{,\beta,1 \beta} \varphi_{,\eta} d\eta d\eta \]

\[= \frac{1}{2} \int_{R_z} \varphi_{,\alpha \beta} \varphi_{,\alpha \beta} dA |_{\eta=t} \]

(3.20)
where we have used that \(\int_0^t \int_{R_\varepsilon} \varphi, \alpha \beta \psi_\varepsilon \alpha \varphi \psi_\varepsilon \psi \alpha dA \eta = 0 \) in view of (3.1).

\[
\int_0^t \int_{R_\varepsilon} [\varphi, \psi_\varepsilon, \alpha \beta \psi_\varepsilon \alpha \varphi \psi \varepsilon \alpha dA \eta \\
= - \int_0^t \int_{R_\varepsilon} \varphi, \psi_\varepsilon, \alpha \beta \psi_\varepsilon \alpha \varphi \psi \varepsilon \alpha dA \eta + \int_0^t \int_{R_\varepsilon} \varphi, \psi_\varepsilon, \alpha \beta \psi_\varepsilon \alpha \varphi \psi \varepsilon \alpha dA \eta,
\]

(3.22)

\[
\int_0^t \int_{R_\varepsilon} [(g^T, \alpha \beta \gamma_\varepsilon \alpha \varphi \gamma_\varepsilon \gamma \alpha dA \eta \\
= - \int_0^t \int_{R_\varepsilon} g^T, \psi_\varepsilon, \alpha \beta \psi_\varepsilon \alpha \varphi \psi \varepsilon \alpha dA \eta + \int_0^t \int_{R_\varepsilon} g^T, \psi_\varepsilon, \alpha \beta \psi_\varepsilon \alpha \varphi \psi \varepsilon \alpha dA \eta.
\]

(3.24)

If we define

\[
\Phi_2(z,t) = \int_0^t \int_{R_\varepsilon} \varphi, \alpha \eta \varphi, \beta \varphi \alpha dA \eta,
\]

(3.25)

and combine (3.19)-(3.24), we conclude that

\[
\Phi_2(z,t) + \frac{1}{2} \int_{R_\varepsilon} \varphi, \alpha \beta \varphi, \alpha \beta dA \eta = y_{21}(z,t) + y_{22}(z,t) + y_{23}(z,t),
\]

(3.26)

where

\[
y_{21}(z,t) = \frac{\partial}{\partial z} \int_0^t \int_{L_\varepsilon} [\varphi, \alpha \varphi, \eta - \frac{1}{2} \varphi^2] dx_2 d\eta,
\]
\[y_{22}(z,t) = \int_0^t \int_{L_z} \left[-2 \varphi_{,1} \alpha \varphi, \eta + \varphi_{,\beta} w_{,\beta} \varphi, \eta + \varphi_{,\beta} \eta w_{,\beta} \varphi, 1 - \varphi_{,\alpha} w_1 \varphi, \alpha + \varphi_{,\beta} w_{,\beta} \eta \varphi, 1 \right. \\
\quad \left. - \frac{1}{2} \varphi_{,\alpha} w_1 \eta \varphi, \alpha - w_{,\beta}^* \varphi, 1 \beta \varphi, \eta - \varphi_{,12} \varphi, \eta V - \tau_2 \varphi, \eta - g_2^* T \varphi, \eta \right] dx_2 d\eta, \]

\[y_{23}(z,t) = \int_{R_z} \varphi_{,\beta} w_{,\beta} \alpha \varphi, \alpha dA | \eta = t \\
\quad + \int_0^t \int_{R_z} \left[- \varphi_{,\alpha} w_{,\beta} \varphi, \alpha \beta + \varphi_{,\beta} \eta w_{,\beta} \Delta \varphi + \varphi_{,\beta} w_{,\beta} \eta \Delta \varphi - w_{,\beta}^* \varphi, \alpha \beta \varphi, \alpha \eta \\
\quad - \varphi_{,1} \varphi_{,2} \eta V_2 + \varphi_{,1} \alpha \varphi, \alpha V + \tau_1 \varphi_{,2} \eta - \tau_2 \varphi_{,1} \eta - g_2^* T \varphi, \eta \right] dA d\eta. \]

(3.27)

Step 3: Definition of \(\Phi_3(z,t) \)

We define

\[\Phi_3(z,t) = \int_0^t \int_{R_z} T \alpha T \alpha dA d\eta. \]

(3.28)

Integrating by parts and using the equation (3.3) and the initial-boundary conditions, we have

\[\Phi_3(z,t) = - \int_0^t \int_{L_z} TT_1 dx_2 d\eta - \int_0^t \int_{R_z} \Delta TT dA d\eta \\
\quad = - \int_0^t \int_{L_z} TT_1 dx_2 d\eta - \int_0^t \int_{R_z} \left[T \eta + \varphi_{,2} T_1 - \varphi_{,1} T_2 - w_{,\alpha} T \alpha + VT_1 \right] T dA d\eta \\
\quad \leq - \frac{\partial}{\partial z} \int_0^t \int_{L_z} T^2 dx_2 d\eta \quad \int_0^t \int_{R_z} \varphi_{,2} T_1 T dA d\eta + \int_0^t \int_{R_z} T \varphi_{,1} T_2 T dA d\eta \\
\quad - \frac{1}{2} \int_0^t \int_{L_z} w_{,1}^* T^2 dx_2 d\eta + \frac{1}{2} \int_0^t \int_{L_z} VT^2 dx_2 d\eta. \]

(3.29)

We conclude that

\[\Phi_3(z,t) \leq y_{31}(z,t) + y_{32}(z,t) + y_{33}(z,t), \]

(3.30)

where

\[y_{31}(z,t) = - \frac{\partial}{\partial z} \int_0^t \int_{L_z} T^2 dx_2 d\eta, \]

\[y_{32}(z,t) = \frac{1}{2} \int_0^t \int_{L_z} \left[- w_{,1}^* T^2 + VT^2 \right] dx_2 d\eta, \]

(3.31)

\[y_{33}(z,t) = \int_0^t \int_{R_z} \left[- \varphi_{,2} T_1 T + \varphi_{,1} T_2 T \right] dA d\eta. \]

Now, we first define
\[\Phi(z,t) = \int_0^t \int_{R_z} \varphi \alpha \beta \varphi_{, \alpha \beta} dA d\eta \]
\[+ \delta \int_0^t \int_{R_z} \varphi \alpha \eta \varphi_{, \alpha \eta} dA d\eta + \int_0^t \int_{R_z} T_{, \alpha} T_{, \alpha} dA d\eta, \quad (3.32) \]

where \(\delta < 1 \) is a positive constant to be determined later. Then, we let
\[\Psi(z,t) = \int_{-\infty}^z \Phi(\xi,t) d\xi. \quad (3.33) \]

Clearly, we find
\[-\frac{\partial}{\partial z} \Psi(z,t) = \Phi(z,t), \quad (3.34) \]

and
\[\frac{\partial^2}{\partial z^2} \Psi(z,t) = \int_0^t \int_{L_z} \varphi \alpha \beta \varphi_{, \alpha \beta} dx_2 d\eta \]
\[+ \delta \int_0^t \int_{L_z} \varphi \alpha \eta \varphi_{, \alpha \eta} dx_2 d\eta + \int_0^t \int_{L_z} \varphi_{, \alpha} \varphi_{, \alpha} dx_2 d\eta. \quad (3.35) \]

In next section, we derive our main results.

4. Continuous dependence on the coefficients \(g_{\alpha} \)

In this section, to derive continuous dependence results we will use the basic inequalities which have been derived in section 3. In addition, we will also frequently use the following well-known inequalities:

1. If \(\omega(x_2) \in C^1(0,h) \) and \(\omega(0) = \omega(h) = 0 \), then
\[\int_{L_z} \omega^2 dx_2 \leq \frac{h^2}{\pi^2} \int_{L_z} \omega_{, \alpha}^2 dx_2. \quad (4.1) \]

2. If \(\omega(x_2) \in C^2(0,h) \) and \(\omega(0) = \omega_2(0) = \omega(h) = \omega_2(h) = 0 \), then
\[\int_{L_z} \omega_{, \alpha}^2 dx_2 \leq \frac{h^2}{4 \pi^2} \int_{L_z} \omega_{, \alpha \beta}^2 dx_2. \quad (4.2) \]

3. If \(\omega(x_2) \in C^2(0,h) \) and \(\omega(0) = \omega_2(0) = \omega(h) = \omega_2(h) = 0 \), then
\[\int_{L_z} \omega^2 dx_2 \leq \left(\frac{2}{3} \right)^4 \frac{h^4}{\pi^4} \int_{L_z} \omega_{, \alpha \beta}^2 dx_2. \quad (4.3) \]

For proofs of these inequalities see Refs \([10, 22]\). In addition to (4.1)-(4.3), we also use some Sobolev inequality in \(R_z \times [0,T] \) which have been widely used in the study of
Navier-Stokes equations or Boussinesq equations (see e.g. Refs.\[19, 23, 24, 25, 26\]). Let ω satisfying the condition in (2) and $\lim_{x_1 \to \infty} \omega(x_1,x_2,t) = 0$, i.e.,

$$\int_{Rz} \omega^4 dA \leq \int_{Rz} \omega^2 dA \int_{Rz} \omega_\alpha \omega_\alpha dA,$$

(4.4)

$$\max_{(0,t)} \int_{Rz} \omega^4 dA \leq 36 \int_0^t \int_{Rz} \omega_\alpha \omega_\alpha dAd\eta \int_0^t \int_{Rz} \omega^2_\eta dAd\eta.$$

(4.5)

In (4.4) and (4.5), if the function ω satisfy the additional homogeneous boundary condition, then the following inequalities hold

$$\int_{Rz} \omega^4 dA \leq \frac{1}{2} \int_{Rz} \omega^2 dA \int_{Rz} \omega_\alpha \omega_\alpha dA,$$

(4.6)

$$\max_{(0,t)} \int_{Rz} \omega^4 dA \leq 18 \int_0^t \int_{Rz} \omega_\alpha \omega_\alpha dAd\eta \int_0^t \int_{Rz} \omega^2_\eta dAd\eta.$$

(4.7)

The proofs for inequalities (4.4)-(4.7) may be found in paper [15]. In addition to inequalities (4.1)-(4.7), we derive the following inequalities which will be used in this paper. Let ω satisfy the additional homogeneous boundary condition and

$$\lim_{x_1 \to \infty} \omega(x_1,x_2,t) = 0,$$

we observe that

$$\omega^3 = 3 \int_0^{x_2} \omega^2 w_{s,s} ds = -3 \int_0^{h} \omega^2 w_{s,s} ds,$$

$$\omega^3 = 3 \int_0^{\infty} \omega^2 w_{\xi} d\xi.$$

So,

$$|\omega|^3 \leq \frac{3}{2} \int_0^h \omega^2 |w_{s,s}| ds,$$

and

$$|\omega|^3 \leq 3 \int_\xi^{\infty} \omega^2 |w_{\xi}| d\xi.$$

Thus, we have

$$\int_{Rz} \omega^6 dA \leq \frac{9}{4} \int_{Rz} \omega^4 dA \int_{Rz} \omega_\alpha \omega_\alpha dA \leq \frac{9h^2}{4\pi^2} \left(\int_{Rz} \omega_\alpha \omega_\alpha dA \right)^3,$$

where we have used (4.1) and (4.4). We also note that

$$\int_0^h \omega^4 dA = -4 \int_{Rz} \omega^3 \omega_1 dA$$
\begin{align*}
\Psi(z,t) + \frac{1}{2} \delta & \int_{z}^{\infty} \int_{R_{\xi}} \phi_{,\alpha\beta} \phi_{,\alpha\beta} dA_{\xi} + \frac{1}{2} \int_{z}^{\infty} \int_{R_{\xi}} \phi_{,\alpha} \phi_{,\alpha} dA_{\xi} \leq J_1 + J_2 + J_3, \quad (4.9)
\end{align*}

where

\begin{align*}
J_1 &= \int_{0}^{t} \int_{L_{z}} [\phi_{,\alpha\alpha} + \frac{1}{2} \delta \phi_{,\eta}^{2} + T^{2} - \phi_{,\eta\xi} \phi_{,\eta\eta} - \delta \phi_{,\eta\xi} \phi_{,\eta\eta}] dx_{2} d\eta, \\
J_2 &= \int_{z}^{\infty} \left[y_{12}(\xi,t) + \delta y_{22}(\xi,t) + y_{32}(\xi,t) \right] d\xi, \quad (4.10) \\
J_3 &= \int_{z}^{\infty} \left[y_{13}(\xi,t) + \delta y_{23}(\xi,t) + y_{33}(\xi,t) \right] d\xi.
\end{align*}

Making use of the Schwarz’s inequality, (4.1), (4.2), (4.3) and the Arithmetic-Geometric mean inequality, we have

\begin{align*}
J_1 &\leq \frac{h^{2}}{\pi^{2}} \int_{0}^{t} \int_{L_{z}} \phi_{,\alpha\beta} \phi_{,\alpha\beta} dx_{2} d\eta + \frac{h^{2}}{2\pi^{2}} \delta \int_{0}^{t} \int_{L_{z}} \phi_{,\alpha\eta} \phi_{,\alpha\eta} dx_{2} d\eta \\
&\quad + \frac{h^{2}}{2\pi^{2}} \int_{0}^{t} \int_{L_{z}} T_{,\alpha} T_{,\alpha} dx_{2} d\eta + \frac{4h^{2}}{9\pi^{2}} \left(\int_{0}^{t} \int_{L_{z}} \phi_{,11}^{2} dx_{2} d\eta \right) \frac{1}{2} \left(\int_{0}^{t} \int_{L_{z}} \phi_{,22}^{2} dx_{2} d\eta \right) \frac{1}{2} \\
&\quad + \frac{h}{\pi} \delta \left(\int_{0}^{t} \int_{L_{z}} \phi_{,11}^{2} dx_{2} d\eta \right) \frac{1}{2} \left(\int_{0}^{t} \int_{L_{z}} \phi_{,22}^{2} dx_{2} d\eta \right) \frac{1}{2} \\
&\leq k_{1} \frac{\partial^{2}}{\partial z^{2}} \Psi(z,t), \quad (4.11)
\end{align*}

where

\begin{align*}
k_{1} = \frac{h^{2}}{\pi^{2}} + \frac{h^{2}}{2\pi^{2}} \delta + \frac{2h^{2}}{9\pi^{2}} + \frac{h}{2\pi} \delta. \quad (4.12)
\end{align*}

Next, we seek a bound for \(J_2 \). Making use of the Schwarz’s inequality, (3.1)-(3.5), (2.24), and the Arithmetic-Geometric mean inequality again, we obtain
\[
\begin{align*}
+ \max_{t} \left(\int_{R_{z}} (w_{1}^{4}) dA \right) & \left(\int_{0}^{t} \int_{R_{z}} \Phi^{4} dA d\eta \right)^{\frac{1}{4}} \left(\int_{0}^{t} \int_{R_{z}} (\Delta \Phi)^{2} dA d\eta \right)^{\frac{1}{2}} \\
+ \max_{t} \left(\int_{R_{z}} \Phi^{4} dA \right) & \left(\int_{0}^{t} \int_{R_{z}} \Phi_{2}^{4} dA d\eta \right)^{\frac{1}{4}} \left(\int_{0}^{t} \int_{R_{z}} w_{2,1}^{2} dA d\eta \right)^{\frac{1}{2}} \\
+ \max_{t} \left(\int_{R_{z}} \Phi^{4} dA \right) & \left(\int_{0}^{t} \int_{R_{z}} \Phi_{2}^{4} dA d\eta \right)^{\frac{1}{4}} \left(\int_{0}^{t} \int_{R_{z}} w_{1,2}^{2} dA d\eta \right)^{\frac{1}{2}} \\
+ \frac{h^{2}}{2\pi^{2}} |V|_{\text{max}} & \left(\int_{0}^{t} \int_{R_{z}} \Phi_{2,\alpha} \Phi_{2,\alpha} dA d\eta \right) + \frac{h^{2}}{\pi^{2}} |V|_{\text{max}} \left(\int_{0}^{t} \int_{R_{z}} \Phi_{2,\alpha}^{2} dA d\eta \right)^{\frac{1}{2}} \\
+ \frac{4h^{3} \tau}{\pi^{3}} & \left(\int_{0}^{t} \int_{R_{z}} \Theta_{2}^{2} dA d\eta \right)^{\frac{1}{2}} \left(\int_{0}^{t} \int_{R_{z}} \Phi_{2,\alpha}^{2} dA d\eta \right)^{\frac{1}{2}} \\
+ \frac{4h^{3} g^{*}}{\pi^{3}} & \left(\int_{0}^{t} \int_{R_{z}} T_{2}^{2} dA d\eta \right)^{\frac{1}{2}} \left(\int_{0}^{t} \int_{R_{z}} \Phi_{2,\alpha}^{2} dA d\eta \right)^{\frac{1}{2}} \\
\leq & \frac{2h^{2}}{9\pi^{2}} \left(\int_{0}^{t} \int_{R_{z}} \Phi_{2,1}^{2} dA d\eta \right) + \left[\frac{2h^{2}}{9\pi^{2}} + \frac{2(1 + g^{*})h^{3}}{9\pi^{3}} \right] \left(\int_{0}^{t} \int_{R_{z}} \Phi_{2,\alpha}^{2} dA d\eta \right) \\
& + \frac{2}{3} \sqrt{\frac{6h^{3}}{\pi^{3}} Q_{1}^{4} \bar{Q}_{2}^{4}} \left(\int_{0}^{t} \int_{R_{z}} \Phi_{2,\alpha} \Phi_{2,\alpha} dA d\eta \right) \\
& + \frac{2}{3} \sqrt{\frac{6h^{3} Q_{1}}{\pi^{3}}} \left(\int_{0}^{t} \int_{R_{z}} \Phi_{2,\alpha} \Phi_{2,\alpha} dA d\eta \right) \\
& + \frac{h^{2}}{2\pi^{2}} |V|_{\text{max}} \left(\int_{0}^{t} \int_{R_{z}} \Phi_{2,\alpha} \Phi_{2,\alpha} dA d\eta \right) + \frac{h^{2}}{\pi^{2}} |V|_{\text{max}} \left(\int_{0}^{t} \int_{R_{z}} \Phi_{2,\alpha}^{2} dA d\eta \right) \\
& + \frac{2h^{3} \tau^{2}}{9\pi^{3}} \left(\int_{0}^{t} \int_{R_{z}} \Theta_{2}^{2} dA d\eta \right) + \frac{2h^{3} g^{*}}{9\pi^{3}} \left(\int_{0}^{t} \int_{R_{z}} T_{2}^{2} dA d\eta \right),
\end{align*}
\]

where

\[
\tau^{2} = \max\{\tau_{\alpha} \tau_{\alpha}\}, \quad (g^{*})^{2} = \max\{g_{\alpha}^{*} g_{\alpha}^{*}\}.
\]

Using the Young’s inequality for \(a > 0, \) and \(b > 0, \text{i.e.,} \)

\[
ab \leq \frac{a^{p}}{p} + \frac{a^{q}}{q}, \quad \frac{1}{p} + \frac{1}{q} = 1, \quad p, q > 0.
\]

in the fourth term on the right of (4.13), we have

\[
\int_{z}^{\infty} y_{12}(\xi, t) d\xi \leq k_{2} \left(-\frac{\partial}{\partial z} \Psi(z, t) \right) + \frac{2h^{3} \tau^{2}}{9\pi^{3}} \int_{0}^{t} \int_{R_{z}} \Theta_{2}^{2} dA d\eta
\]

where

\[
k_{2} = \frac{2h^{2}}{9\pi^{2}} + \frac{3h^{2}}{2\pi^{2}} |V|_{\text{max}} + \frac{2(1 + g^{*})h^{3}}{9\pi^{3}} + 2 \sqrt{\frac{6h^{3}}{3 \pi^{3}}} \sqrt{Q_{1}} \sqrt{Q_{2}} + \frac{3}{2\delta} \sqrt{\frac{6h^{3} Q_{1}}{\pi^{3}}}.\]
Similar to the derivations of (4.15), we may have

\[
\int_{z}^{\infty} y_{22}(\xi, t) d\xi \leq k_{3}(-\frac{\partial}{\partial z} \Psi(z, t)) + \frac{h^{2} \tau^{2}}{2\pi^{2}} \int_{0}^{t} \int_{R_{z}} \theta_{2}^{2} dAd\eta, \\
\int_{z}^{\infty} y_{32}(\xi, t) d\xi \leq k_{4}(-\frac{\partial}{\partial z} \Psi(z, t)),
\]

where

\[
k_{3} = [1 + \sqrt{6Q_{1}} \sqrt{\frac{h}{\pi}} + \sqrt{\frac{3h}{2\pi}} \sqrt{Q_{1} Q_{2}} + \frac{h}{2\pi} + \frac{h^{2}(1 + g^{*})}{2\pi^{2}}] \frac{1}{\delta},
\]

\[
k_{4} = \frac{h^{2}}{2\pi^{2}} \sqrt{\frac{Q_{1}}{\pi}} + \frac{h^{2}}{2\pi^{2}} |V|_{\max}.
\]

Combining (4.15)-(4.17), we have

\[
J_{2} \leq (k_{2} + k_{3} \delta + k_{4})(-\frac{\partial}{\partial z} \Psi(z, t)) + \left[\frac{2h^{3}}{9\pi^{3}} + \frac{h^{2} \delta}{2\pi^{2}} \tau^{2} \int_{0}^{t} \int_{R_{z}} \theta_{2}^{2} dAd\eta \right].
\]

Now, we derive bound for J_{3}. We first seek bounds for $y_{i3}(z, t), (i = 1, 2, 3)$. Making use of the Schwarz’s inequality, (3.1)-(3.5) and the Arithmetic-Geometric mean inequality again, we obtain

\[
y_{13}(z, t) \leq \max_{(0, z)} \left(\int_{R_{z}} (w_{\beta}^{*} w_{\beta}^{*})^{2} dA \right)^{\frac{1}{2}} \left(\int_{0}^{t} \int_{R_{z}} (\varphi_{,\beta} \varphi_{,\beta})^{2} dAd\eta \right)^{\frac{1}{2}} \left(\int_{0}^{t} \int_{R_{z}} (\Delta \varphi)^{2} dAd\eta \right)^{\frac{1}{2}} \\
+ |V_{2}|_{\max} \frac{h^{2}}{\sqrt{2}\pi} \left(\int_{0}^{t} \int_{R_{z}} \theta_{2}^{2} dAd\eta \right)^{\frac{1}{2}} \left(\int_{0}^{t} \int_{R_{z}} \theta_{2}^{2} dAd\eta \right)^{\frac{1}{2}} \\
+ \frac{h^{2} \tau}{\sqrt{2}\pi^{2}} \left(\int_{0}^{t} \int_{R_{z}} \theta_{2}^{2} dAd\eta \right)^{\frac{1}{2}} \left(\int_{0}^{t} \int_{R_{z}} \theta_{2}^{2} dAd\eta \right)^{\frac{1}{2}} \\
+ \frac{h^{2} \tau}{\pi^{2}} \left(\int_{0}^{t} \int_{R_{z}} \theta_{2}^{2} dAd\eta \right)^{\frac{1}{2}} \left(\int_{0}^{t} \int_{R_{z}} \theta_{2}^{2} dAd\eta \right)^{\frac{1}{2}} \\
+ \frac{h^{2} \tau}{\sqrt{2}\pi^{2}} \left(\int_{0}^{t} \int_{R_{z}} \theta_{2}^{2} dAd\eta \right)^{\frac{1}{2}} \left(\int_{0}^{t} \int_{R_{z}} \theta_{2}^{2} dAd\eta \right)^{\frac{1}{2}} \\
+ \frac{h^{2} \tau}{\pi^{2}} \left(\int_{0}^{t} \int_{R_{z}} \theta_{2}^{2} dAd\eta \right)^{\frac{1}{2}} \left(\int_{0}^{t} \int_{R_{z}} \theta_{2}^{2} dAd\eta \right)^{\frac{1}{2}} \\
\leq \sqrt{\frac{6h}{\pi}} \frac{1}{\sqrt{Q_{1} Q_{2}}} \int_{0}^{t} \int_{R_{z}} \varphi_{,\alpha\beta} \varphi_{,\alpha\beta} dAd\eta \\
+ |V_{2}|_{\max} \frac{h^{2}}{2\sqrt{2}\pi^{2}} + \frac{h^{2}}{2\sqrt{2}\pi^{2}} + \frac{2 \sqrt{2} h^{2} g^{*}}{2\pi^{2}} \left[\int_{0}^{t} \int_{R_{z}} \varphi_{,22}^{2} dAd\eta \\
+ |V_{2}|_{\max} \frac{h^{2}}{2\sqrt{2}\pi^{2}} + \frac{h^{2}}{2\pi^{2}} + \frac{h^{2} g^{*}}{2\pi^{2}} \left[\int_{0}^{t} \int_{R_{z}} \varphi_{,12}^{2} dAd\eta \right]
\]
Since \(w_\beta \) vanish at \(x_2 = 0, h \), we have
\[
w_\beta w_\beta = 2 \int_0^{x_2} w_\beta w_{\beta,2} dx_2 = -2 \int_{x_2}^h w_\beta w_{\beta,2} dx_2.
\]
which leads to
\[
w_\beta w_\beta \leq \int_0^h |w_\beta w_{\beta,2}| dx_2 \leq \left(\int_0^h w_\beta w_{\beta} dx_2 \right)^\frac{1}{2} \left(\int_0^h w_{\beta,2} w_{\beta,2} dx_2 \right)^\frac{1}{2}
\]
\[
\leq \frac{h}{\pi} \int_0^h w_{\beta,2} w_{\beta,2} dx_2.
\]
We now use this result to bound \(y_{23}(z,t) \). For the first term of (3.27), using Schwarz’s inequality and (4.8) we have
\[
- \int_0^t \int_{R_z} \varphi_{,\alpha\eta} w_\beta \varphi_{,\alpha\beta} dA d\eta
\]
\[
\leq \int_0^t \left(\int_z^{\infty} \int_{L_{\xi}} \varphi_{,\alpha\eta} \varphi_{,\alpha\eta} w_\beta w_\beta dA \right)^\frac{1}{2} \left(\int_{R_z} \varphi_{,\alpha\beta} \varphi_{,\alpha\beta} dA \right)^\frac{1}{2} d\eta
\]
\[
\leq \frac{h}{\pi} \int_0^t \left(\int_z^{\infty} \int_{L_{\xi}} w_{\beta,2} w_{\beta,2} dx_2 \int_{L_{\xi}} \varphi_{,\alpha\eta} \varphi_{,\alpha\eta} d\eta d\xi \right)^\frac{1}{2} \left(\int_{R_z} \varphi_{,\alpha\beta} \varphi_{,\alpha\beta} dA \right)^\frac{1}{2} d\eta
\]
\[
\leq \frac{h \sqrt{h}}{\pi} \int_0^t \left(\int_z^{\infty} \left(\int_{L_{\xi}} w_{\beta,2} w_{\beta,2} d\xi \right)^2 dx_2 \right)^\frac{1}{2} \left(\int_{R_z} \varphi_{,\alpha\eta} \varphi_{,\alpha\eta} d\eta d\xi \right)^\frac{1}{2}
\]
\[
\leq \frac{8 \sqrt{2} h^2}{\pi^2} \int_0^t \left(\int_{R_z} w_{\beta,2} w_{\beta,2} dA \right)^\frac{1}{2} \left(\int_{R_z} \varphi_{,\alpha\eta} \varphi_{,\alpha\eta} dA \right)^\frac{1}{2} \left(\int_{R_z} \varphi_{,\alpha\beta} \varphi_{,\alpha\beta} dA \right)^\frac{1}{2} d\eta.
\]
Thus, as the derivation of (4.23) and using (4.1) and (4.4) we have
\[
y_{23}(z,t) \leq \left(\int_{R_z} (\varphi_{,\beta} \varphi_{,\beta})^2 dA \right)^\frac{1}{2} \left(\int_{R_z} w_{\beta,\alpha} w_{\beta,\alpha} dA \right)^\frac{1}{2} |\eta = t
\]
\[
+ \frac{8 \sqrt{2} h^2}{\pi^2} \int_0^t \left(\int_{R_z} w_{\beta,\alpha} w_{\beta,\alpha} dA \right)^\frac{1}{2} \left(\int_{R_z} \varphi_{,\alpha\eta} \varphi_{,\alpha\eta} dA \right)^\frac{1}{2}
\]
\[
\cdot \left(\int_{R_z} \varphi_{,\alpha\beta} \varphi_{,\alpha\beta} dA \right)^{\frac{1}{2}} d\eta \\
+ \sqrt{\frac{h}{\pi}} Q_2^\frac{1}{2} Q_5^\frac{1}{4} \int_0^t \int_{R_z} \varphi_{,\alpha\beta} \varphi_{,\alpha\beta} dA d\eta \\
+ \frac{h}{\pi} |V_{max}^2| \left(\int_0^t \int_{R_z} \varphi_{,1\alpha}^2 dA d\eta \right)^{\frac{1}{2}} \left(\int_0^t \int_{R_z} \varphi_{,1\eta}^2 dA d\eta \right)^{\frac{1}{2}} \\
+ |V_{max}| \left(\int_0^t \int_{R_z} \varphi_{,1\alpha} \varphi_{,1\alpha} dA d\eta \right)^{\frac{1}{2}} \left(\int_0^t \int_{R_z} \varphi_{,\alpha\eta} \varphi_{,\alpha\eta} dA d\eta \right)^{\frac{1}{2}} \\
+ \frac{h}{\pi} \tau \left(\int_0^t \int_{R_z} \theta_z^2 dA d\eta \right)^{\frac{1}{2}} \left(\int_0^t \int_{R_z} \varphi_{,2\eta}^2 dA d\eta \right)^{\frac{1}{2}} \\
+ \frac{h}{\pi} \tau \left(\int_0^t \int_{R_z} \theta_z^2 dA d\eta \right)^{\frac{1}{2}} \left(\int_0^t \int_{R_z} \varphi_{,2\eta}^2 dA d\eta \right)^{\frac{1}{2}} \\
+ \frac{h}{\pi} g^* \left(\int_0^t \int_{R_z} T_{2z}^2 dA d\eta \right)^{\frac{1}{2}} \left(\int_0^t \int_{R_z} \varphi_{,2\eta}^2 dA d\eta \right)^{\frac{1}{2}} \\
+ \frac{h}{\pi} g^* \left(\int_0^t \int_{R_z} T_{2z}^2 dA d\eta \right)^{\frac{1}{2}} \left(\int_0^t \int_{R_z} \varphi_{,2\eta}^2 dA d\eta \right)^{\frac{1}{2}} \\
\leq \frac{1}{2} \int_{R_z} \varphi_{,\alpha\beta} \varphi_{,\alpha\beta} dA |\eta = \tau| + \frac{1}{2} \widehat{Q}_1 \int_{R_z} \varphi_{,\alpha\beta} \varphi_{,\alpha\beta} dA |\eta = \tau| \\
+ \frac{h\tau^2}{\pi} \int_0^t \int_{R_z} \theta_z^2 dA d\eta + \frac{h g^*}{\pi} \int_0^t \int_{R_z} T_{2z}^2 dA d\eta \\
+ \left[\frac{1}{2} \sqrt{\frac{72h^7}{\pi^5}} E_7^\frac{1}{2} (0, \tau) + \sqrt{\frac{h}{\pi}} Q_2^\frac{1}{2} Q_5^\frac{1}{4} + \frac{h}{2\pi} |V_{max}^2| \right] \left(\int_0^t \int_{R_z} \varphi_{,\alpha\beta} \varphi_{,\alpha\beta} dA d\eta \right) \\
+ \left[\frac{1}{2} \sqrt{\frac{72h^7}{\pi^5}} E_7^\frac{1}{2} (0, \tau) + \frac{h}{2\pi} |V_{max}^2| + \frac{1}{2} |V_{max}| \right] \left(\int_0^t \int_{R_z} \varphi_{,\alpha\eta} \varphi_{,\alpha\eta} dA d\eta \right) + \frac{h}{2\pi} (1 + g^*) \left(\int_0^t \int_{R_z} \varphi_{,\alpha\eta} \varphi_{,\alpha\eta} dA d\eta \right). \tag{4.24}
\]

Making use of the method of [19](see section 5 of that paper), an upper bound for \(\int_{R_z} w_{,\alpha} w_{,\alpha} dA \) in terms of known data can be obtained. In (4.24), we have noted that

\[
\int_{R_z} w_{,\alpha} w_{,\alpha} dA |\eta = \tau| \leq \widehat{Q}_1,
\]

and we use the notation

\[
E_7(0, \tau) = \int_0^t \int_{R_z} w_{,\alpha} w_{,\alpha} dA d\eta. \tag{4.25}
\]
The upper bound for $E_7(0,t)$ will be derived in section 6. Using the Young inequality (4.14) in (4.22), we have

$$y_{23}(z,t) \leq k_6 \Phi(z,t) + \frac{h \tau^2}{\pi} \int_0^t \int_{R_z} \theta_2^2 dA d\eta + \frac{1}{2} \hat{Q}_1 \int_{R_z} \varphi_\alpha \varphi_\alpha dA |_{\eta=t}, \quad (4.26)$$

where

$$k_6 = \frac{1}{2} \sqrt{\frac{72h^7}{\pi^5}} E_7^\frac{1}{2}(0,t) + \sqrt{\frac{h^2}{\pi} Q_2^{\frac{1}{2}} Q_5^{\frac{1}{2}} + \frac{h}{2\pi} |V_2|_{\max} + \frac{1}{2} |V|_{\max} + \frac{h}{2\pi}(1 + g^*). \quad (4.27)$$

Using (4.1) and (4.4), we have

$$y_{33} \leq k_7 \Phi(z,t), \quad (4.28)$$

where

$$k_7 = 2 \sqrt{\frac{6h}{\pi}} \Phi^\frac{1}{2}(0,t).$$

Combining (4.10)_3, (4.20), (4.26) and (4.28), we conclude that

$$J_3 \leq (k_5 + \delta k_6 + k_7) \Psi(z,t) + \left(\frac{h^2}{\pi^2} + \frac{h}{\pi} \right) \tau^2 \int_0^t \int_0^\infty \int_{R_{\xi}} \theta_2^2 dA d\xi d\eta + \frac{1}{2} \delta \hat{Q}_1 \int_0^\infty \int_{R_{\xi}} \varphi_\alpha \varphi_\alpha dA d\xi |_{\eta=t}. \quad (4.29)$$

From (2.21) and (2.23), we derive

$$\int_0^t \int_{R_z} \theta_2^2 dA d\eta \leq m_1 E(0,t) e^{-m_2 z}, \quad (4.30)$$

Inserting (4.11), (4.19), (4.29) and (4.30) into (4.9) and choosing $\delta \leq \min\{1, \hat{Q}_1^{-1}\}$, we have

$$\Psi(z,t) \leq \frac{\partial^2}{\partial z^2} \Psi(z,t) - \tilde{k}_1 \frac{\partial}{\partial z} \Psi(z,t) + \tilde{k}_2 \Psi(z,t) + \tau^2 \tilde{k}_3 e^{-m_2 z}, \quad (4.31)$$

where

$$\tilde{k}_1 = \frac{1}{k_1} (k_2 + k_3 \delta + k_4), \quad \tilde{k}_2 = \frac{1}{k_1} (k_5 + \delta k_6 + k_7),\quad \tilde{k}_3 = \frac{1}{k_1} \left[\frac{2h^3}{9\pi^3} + \frac{h^2 \delta}{2\pi^2} + \frac{h^2}{\pi^2 m_2} + \frac{h}{m_2 \pi} \right] m_1 E(0,t). \quad (4.32)$$

The definitions of $\tilde{k}_i, (i = 1, 3)$ and \tilde{k}_2 involve $|V|_{\max}$, $|V_2|_{\max}$, $\Phi(0,t)$ and $E_7(0,t)$. We note that the bounds for $|V|_{\max}$ and $|V_2|_{\max}$ are well studied in Section 5 of [15]. While, the bounds for $\Phi(0,t)$ and $E_7(0,t)$ will be proved in section 5 and section 6.
of this paper, respectively. We require \(h, \delta \) or/and the data small enough such that \(1 - \tilde{k}_2 > 0 \). This requirement may be viewed as a Reynolds number type of restriction on our problem. From (4.31), we obtain an inequality of the form

\[
\frac{\partial^2}{\partial z^2} \Psi(z, t) - \tilde{k}_1 \frac{\partial}{\partial z} \Psi(z, t) - \tilde{k}_2 \Psi(z, t) \geq -\tau^2 \tilde{k}_3 e^{-m_2 z},
\]

where \(\tilde{k}_2 = 1 - \hat{k}_2 > 0 \). From (4.33) it follows that

\[
\left(\frac{\partial}{\partial z} - a \right) \left(\frac{\partial}{\partial z} \Psi(z, t) + b \Psi(z, t) \right) \geq -\tau^2 \tilde{k}_3 e^{-m_2 z},
\]
or

\[
\frac{\partial}{\partial z} \left[e^{-az} \left(\frac{\partial}{\partial z} \Psi(z, t) + b \Psi(z, t) \right) \right] \geq -\tau^2 \tilde{k}_3 e^{-(a + m_2)z},
\]

where

\[
a = \frac{\tilde{k}_1 + \sqrt{\tilde{k}_1^2 + 4k_2}}{2}, \quad b = \frac{-\tilde{k}_1 + \sqrt{\tilde{k}_1^2 + 4k_2}}{2}.
\]

An integration of (4.34) from \(z \) to \(\infty \) leads to

\[
\frac{\partial}{\partial z} \Psi(z, t) + b \Psi(z, t) \leq \tau^2 \frac{1}{a + m_2} \tilde{k}_3 e^{-m_2 z},
\]

or

\[
\frac{\partial}{\partial z} \left[\Psi(z, t) e^{bz} \right] \leq \tau^2 \frac{1}{m_2} \tilde{k}_3 e^{(b - m_2)z}.
\]

Integrating (4.36) from 0 to \(z \), we have

\[
\Psi(z, t) \leq \Psi(0, t) e^{-bz} + \tau^2 \frac{1}{(a + m_2)(b - m_2)} \tilde{k}_3 \left(e^{-m_2 z} - e^{-bz} \right).
\]

In order to make the estimate (4.37) explicit, one requires the upper bound for \(\Psi(0, t) \). Such a bound will be derived in section 5 of this paper. Using (5.20), (4.37) can be rewritten as

\[
\Psi(z, t) \leq \tau^2 C e^{-bz} + \tau^2 \frac{1}{(a + m_2)(b - m_2)} \tilde{k}_3 \left(e^{-m_2 z} - e^{-bz} \right).
\]

For finite \(t \), then (4.38) establishes continuous dependence on the coefficients \(g_\alpha \). So, we have proofed the theorem 1.
5. Bounds for $\Psi(0,t)$

To make (4.37) explicit, we have to derive bounds for $\Psi(0,t)$. From (4.35), we have

$$b\Psi(0,t) \leq -\frac{\partial}{\partial z} \Psi(0,t) + \tau^2 \frac{1}{a + m_2} \kappa_3.$$ \hspace{1cm} (5.1)

So, we only need to bound $-\frac{\partial}{\partial z} \Psi(0,t)$. In view of (3.31) and (3.34), we have

$$-\frac{\partial}{\partial z} \Psi(0,t) = \int_0^t \int_{R_0} \varphi_{\alpha \beta} \varphi_{\alpha \beta} d\eta + \delta \int_0^t \int_{R_0} \varphi_{\alpha \eta} \varphi_{\alpha \eta} d\eta + \int_0^t \int_{R_0} T_\alpha T_\alpha d\eta$$

$$\quad = \int_0^t \int_{R_0} V_{\alpha \beta} V_{\alpha \beta} d\eta + \delta \int_0^t \int_{R_0} V_{\alpha \eta} V_{\alpha \eta} d\eta + \int_0^t \int_{R_0} T_\alpha T_\alpha d\eta$$

$$\quad = \Phi_1(0,t) + \delta \Phi_2(0,t) + \Phi_3(0,t).$$ \hspace{1cm} (5.2)

Now, we began to bound each $\Phi_i(0,t), (i = 1, 2, 3)$. Multiplying (2.26) with v_α and integrating by parts, we have

$$\int_0^t \int_{R_0} V_{\alpha \eta} - \Delta v_\alpha + v_\beta w_{\alpha \beta} + w_\beta^* v_{\alpha \beta}$$

$$\quad + V v_{\alpha 1} + v_2 V_2 \vartheta_1 - v_\alpha \theta - g_\alpha^* T + \pi_\alpha d\eta = 0. \hspace{1cm} (5.3)$$

Integrating (5.3) by parts and following the derivation of previous sections, we compute

$$\int_0^t \int_{R_0} v_\alpha v_\alpha d\eta |_{\eta = t} + \int_0^t \int_{R_0} v_\alpha \beta v_\alpha \beta d\eta$$

$$\leq \frac{h}{\eta} \left(\int_0^t \int_{R_0} w_{\alpha \beta} w_{\alpha \beta} d\eta \right)^{\frac{1}{2}} \left(\int_0^t \int_{R_0} v_\alpha \beta v_\alpha \beta d\eta \right)^{\frac{1}{2}}$$

$$\quad + |V_2| \max \frac{h^2}{\pi^2} \left(\int_0^t \int_{R_0} v_{\alpha 2} v_{\alpha 2} d\eta \right)^{\frac{1}{2}} \left(\int_0^t \int_{R_0} v_{\alpha 2} v_{\alpha 2} d\eta \right)^{\frac{1}{2}}$$

$$\quad + \frac{h^2}{\pi^2} \tau \left(\int_0^t \int_{R_0} \vartheta_2 \vartheta_2 d\eta \right)^{\frac{1}{2}} \left(\int_0^t \int_{R_0} \vartheta_2 \vartheta_2 d\eta \right)^{\frac{1}{2}}$$

$$\quad + \frac{h^2}{\pi^2} \tau g^* \left(\int_0^t \int_{R_0} T_2 T_2 d\eta \right)^{\frac{1}{2}} \left(\int_0^t \int_{R_0} T_2 T_2 d\eta \right)^{\frac{1}{2}}, \hspace{1cm} (5.4)$$

where we have used the fact

$$\int_0^t \int_{R_0} w_{\alpha \beta}^* v_\alpha v_\beta d\eta = 0, \int_0^t \int_{R_0} V v_\alpha v_\alpha d\eta = 0, \int_0^t \int_{R_0} \pi_\alpha v_\alpha d\eta = 0.$$ \hspace{1cm} (5.5)

Now, we multiplying (2.28) with T to obtain

$$\int_0^t \int_{R_0} [T, \eta - \Delta T + v_\alpha \theta, \alpha + w_\alpha^* T, \alpha + T_1 V] T d\eta = 0 \hspace{1cm} (5.6)$$
from which it follows that

\[
\begin{aligned}
\int_0^t \int_{\mathcal{R}} T_\alpha T_\alpha dA \, d\eta &\leq \int_0^t \int_{\mathcal{R}} v_\alpha \theta_\alpha T \, dA \, d\eta \\
&\leq \tilde{Q}_3 \frac{h}{\pi} \left(\int_0^t \int_{\mathcal{R}} T_\alpha T_\alpha dA \, d\eta \right)^{\frac{1}{2}} \left(\int_0^t \int_{\mathcal{R}} v_\alpha \beta v_\alpha \beta dA \, d\eta \right)^{\frac{1}{2}},
\end{aligned}
\]

(5.7)

where we have used the fact

\[
\begin{aligned}
&\int_0^t \int_{\mathcal{R}} w_\alpha^* T_\alpha T \, dA \, d\eta = 0, \quad \int_0^t \int_{\mathcal{R}} VT_1 T \, dA \, d\eta = 0.
\end{aligned}
\]

So,

\[
\int_0^t \int_{\mathcal{R}} T_\alpha T_\alpha dA \, d\eta \leq \tilde{Q}_3 \frac{h^2}{\pi^2} \int_0^t \int_{\mathcal{R}} v_\alpha \beta v_\alpha \beta dA \, d\eta.
\]

(5.8)

Inserting this inequality into (5.4), we conclude

\[
\Phi_1(0, t) \leq \tau^2 C_1,
\]

(5.9)

where

\[
C_1 = \frac{h^2}{\pi^2} \frac{1}{1 - \sqrt{\frac{h}{\pi} Q_1^2} - |V_2|_{\text{max}} \frac{h^2}{\pi^2} - \frac{h^2}{\pi^2} g^*}.
\]

(5.10)

In (5.10), we also require \(h \) and/or the data small enough such that the denominator of \(C_1 \) is positive. Under this condition, it is easy from (5.4) to find that

\[
\int_{\mathcal{R}} v_\alpha v_\alpha dA |_{\eta = t} \leq 2 \tau^2 \frac{h^2}{\pi^2}.
\]

(5.11)

In light of (5.8), we have

\[
\Phi_3(0, t) \leq \tau^2 C_3 \tilde{Q}_3 \frac{h^2}{\pi^2}
\]

(5.12)

Now, we derive bound for \(\Phi_2(0, t) \). To do this, we multiply (2.26) with \(v_\alpha, \eta \) to obtain

\[
\begin{aligned}
\int_0^t \int_{\mathcal{R}} \left[v_\alpha, \eta - \nabla v_\alpha + v_\beta w_{\alpha, \beta} + w_\alpha^* v_\alpha \beta \\
+ V v_{\alpha, 1} + v_2 V_2 \delta_\alpha - \tau_\alpha \theta - g_\alpha^* T + \pi_\alpha \right] v_\alpha, \eta \, dA \, d\eta = 0.
\end{aligned}
\]

(5.13)

We compute

\[
- \int_0^t \int_{\mathcal{R}} v_\beta w_{\alpha, \beta} v_\alpha, \eta \, dA \, d\eta = \int_0^t \int_{\mathcal{R}} v_\beta w_\alpha v_\alpha \beta, \eta \, dA \, d\eta
\]
Inserting (5.14) into (5.13) and using the derivation of previous section, we have

\[
\frac{1}{2} \int_{R_0} v_{\alpha, \beta} v_{\alpha, \beta} dA|_{\eta=t} + \int_0^t \int_{R_0} v_{\alpha, \eta} v_{\alpha, \eta} dA d\eta
\leq \sqrt{\frac{h}{\pi}} \left(\left(\int_{R_0} w_{\alpha, \beta} w_{\alpha, \beta} dA \right) \right)^{\frac{1}{2}} \left(\left(\int_{R_0} v_{\beta} v_{\beta} dA \right) \right)^{\frac{1}{2}} \left(\left(\int_{R_0} v_{\alpha, \beta} v_{\alpha, \beta} dA \right) \right)^{\frac{1}{2}} |_{\eta=t}
+ \frac{3}{\pi} \int_0^t \int_{R_0} w_{\alpha, \beta} w_{\alpha, \beta} dA d\eta
+ \frac{1}{\pi} \int_0^t \int_{R_0} v_{\alpha, \beta} v_{\alpha, \beta} dAd\eta
\]

By Young's inequality (4.14) and the AG mean inequality, from (5.15) we have

\[
\frac{1}{2} \int_{R_0} v_{\alpha, \beta} v_{\alpha, \beta} dA|_{\eta=t} + \int_0^t \int_{R_0} v_{\alpha, \eta} v_{\alpha, \eta} dA d\eta
\leq \frac{1}{4} \epsilon_1^{-3} \sqrt{\frac{h}{\pi}} \int_{R_0} v_{\beta} v_{\beta} dA|_{\eta=t}
+ \frac{3}{4} \epsilon_1 \sqrt{\frac{h}{\pi}} \int_{R_0} v_{\alpha, \beta} v_{\alpha, \beta} dA|_{\eta=t} + \frac{3}{2} \epsilon_2 E_7^{\frac{1}{2}}(0, t) \int_0^t \int_{R_0} v_{\alpha, \beta} v_{\alpha, \beta} dAd\eta
+ \frac{3 \epsilon_2}{2} \sqrt{\frac{72h^7}{\pi^5}} E_7^\eta(0, t) \int_0^t \int_{R_0} v_{\alpha, \beta} v_{\alpha, \beta} dAd\eta
+ \frac{1}{2} \epsilon_3 |V|_{\max} \int_0^t \int_{R_0} v_{\alpha, \eta} v_{\alpha, \eta} dAd\eta
+ \frac{1}{2} \epsilon_3 \epsilon_2 |V|_{\max} \int_0^t \int_{R_0} v_{\alpha, \eta} v_{\alpha, \eta} dAd\eta
\]
which have been used in section 5 of [19]. For convenience, we adopt the following notations:

\[C = \left(\frac{\sqrt{72h^2}}{5h} \right)^3 E_7^{-\frac{1}{2}} (0, t), \quad \varepsilon_1 = \frac{1}{5 |V|_{\text{max}}}, \quad \varepsilon_2 = \frac{\pi}{5h}, \quad \delta_0 = \frac{\pi}{5g^6 h}, \]

and making use of (5.9), (5.11) and (5.12), we obtain

\[\int_0^t \int_{R_0} v_{\alpha, \eta} v_{\alpha, \eta} dA d\eta \leq \tau^2 C_2, \quad (5.18) \]

where

\[C_2 = \left(\frac{\sqrt{72h^2}}{5h} \right)^3 E_7^{-\frac{1}{2}} (0, t) + \frac{2h}{\pi} \tilde{Q}_1 \tilde{Q}_5^{-\frac{1}{2}} + \frac{1}{\varepsilon_2} |V|_{\text{max}} + \frac{1}{\varepsilon_4} |V_{\eta}|_{\text{max}} \frac{h}{\pi} C_1 \]

\[+ \frac{h^2}{\pi^2} \varepsilon_1^{-3} \sqrt{\frac{h}{\pi}} \tilde{Q}_1^{\frac{1}{2}} + \frac{h}{\varepsilon_5 \pi} \tilde{Q}_3 + g^6 C_1 Q_3 \frac{h^3}{\varepsilon_6 \pi^3}. \quad (5.19) \]

Combining (5.9), (5.12) and (5.18), we conclude that

\[\Phi(0, t) \leq \tau^2 C, \quad (5.20) \]

where \(C = C_1 + C_2 \delta + C_1 \tilde{Q}_3 \frac{h^2}{\pi^2} \). The bound for \(\Psi(0, t) \) of data follows (5.1), which makes (4.37) explicit.

6. Bound for \(E_7 (0, t) \)

In this section, we seek bound for \(E_7 (0, t) \). To do this, we follow the methods which have been used in section 5 of [19]. For convenience, we adopt the following notations:

\[E_1 (w_\alpha) = \int_0^t \int_{R_0} w_{\alpha, \beta} w_{\alpha, \beta} dA d\eta, \quad E_7 (w_\alpha) = \int_0^t \int_{R_0} w_{\alpha, \beta} w_{\alpha, \beta} dA d\eta. \quad (6.1) \]

We let

\[\chi_\alpha = u_\alpha - \psi_\alpha, \quad \tilde{\chi}_\alpha = \psi_\alpha - V \delta_\alpha, \quad (6.2) \]

\[\sigma_\alpha = p_\alpha - \rho_\alpha, \quad \tilde{\sigma}_\alpha = \rho_\alpha - P(t) \delta_\alpha. \quad (6.3) \]
Clearly,
\[w_\alpha = \chi_\alpha + \hat{\chi}_\alpha, \quad q_\alpha = \sigma_\alpha + \hat{\sigma}_\alpha. \] (6.4)

The functions \((\psi_\alpha, \rho)\) are solutions to the initial boundary value problems
\[
\psi_{\alpha,t} - \Delta \psi_\alpha + \rho_\alpha = 0, \quad \text{in} \; \mathbb{R} \times (0, T), \\
\psi_{\alpha,\alpha} = 0, \quad \text{in} \; \mathbb{R} \times (0, T), \\
\psi_\alpha(x_1, x_2, 0) = 0, \quad \text{in} \; \mathbb{R}, \\
\psi_\alpha(x_1, 0, t) = \psi_\alpha(x_1, h, t) = 0, x > 0, 0 \leq t < T, \\
\psi_\alpha(0, x_2, t) = f_1(x_2, t), x > 0, 0 \leq t < T. \] (6.5)

Then, \((\chi_\alpha, y, \sigma)\) satisfy
\[
\chi_{\alpha,t} - \Delta \chi_\alpha + u_{\beta} u_{\alpha, \beta} - g_\alpha \theta + \sigma_\alpha = 0, \quad \text{in} \; \mathbb{R} \times (0, T), \\
\chi_{\alpha,\alpha} = 0, \quad \text{in} \; \mathbb{R} \times (0, T), \\
\chi_\alpha(x_1, x_2, 0) = 0, \quad \text{in} \; \mathbb{R}, \\
\chi_\alpha(x_1, 0, t) = \chi_\alpha(x_1, h, t) = 0, \\
\chi_\alpha(0, x_2, t) = 0, x > 0, 0 \leq t < T. \] (6.6)

From (5.29) of [19], we have known that
\[
\int_0^t \int_{R_0} \chi_{\alpha, \beta} \chi_{\alpha, \beta} dA d\eta \leq Q_1^2, \] (6.7)

which will be used in the following computation. By the triangle inequality, we have
\[
E_{\gamma}^{\frac{1}{2}}(0, t) \leq \hat{E}_{\gamma}^{\frac{1}{2}}(0, t) + \hat{E}_{{\gamma}}^{\frac{1}{2}}(0, t), \] (6.8)

where
\[
\hat{E}_{\gamma}^{\frac{1}{2}}(0, t) = \int_0^t \int_{R_0} \chi_{\alpha, \beta} \chi_{\alpha, \beta} dA d\eta, \] (6.9)
\[
\hat{E}_{\gamma}^{\frac{1}{2}}(0, t) = \int_0^t \int_{R_0} \hat{\chi}_{\alpha, \beta} \hat{\chi}_{\alpha, \beta} dA d\eta. \] (6.10)

The bound for \(\hat{E}_\gamma(0, t)\) may be obtained by following the arguments of [17]. So, we only need to establish bound for \(\hat{E}_\gamma(0, t)\). To do this, we use (6.8) to have
\[
\int_0^t \int_{R_0} \chi_{\alpha, \beta} \chi_{\alpha, \beta} dA d\eta \leq Q_1^2. \] (6.11)

Noting that \(\chi_{\alpha, \beta}\) vanish at \(x_1 = 0\) and integrating by parts, we obtain
\[
\frac{1}{2} \int_{R_0} \chi_{\alpha, \beta} \chi_{\alpha, \beta} dA |_{\eta = 1} + \int_0^t \int_{R_0} \chi_{\alpha, \beta} \chi_{\alpha, \beta} dA d\eta
\]
Similarly, we also have
\[
\int_0^t \int_{R_0} u_{\beta,2} u_{a,2} \chi_{\alpha,\beta} dAd\eta + \int_0^t \int_{R_0} u_{\beta,2} u_{a,2} \chi_{\alpha,\beta} dAd\eta - \int_0^t \int_{R_0} g_{\alpha} \theta \chi_{\alpha,22} dAd\eta
\]
\[
= \int_0^t \int_{R_0} (\chi_\beta + \psi_\beta)(\chi_\alpha + \psi_\alpha) \chi_{\alpha,\beta} dAd\eta
\]
\[
+ \int_0^t \int_{R_0} (\chi_\beta + \psi_\beta)(\chi_\alpha + \psi_\alpha) \chi_{\alpha,\beta} dAd\eta - \int_0^t \int_{R_0} g_{\alpha} \theta \chi_{\alpha,22} dAd\eta. \quad (6.12)
\]

Using the Schwarz inequality, (4.1) and (4.8), we have
\[
\int_0^t \int_{R_0} (\chi_\beta + \psi_\beta)(\chi_\alpha + \psi_\alpha) \chi_{\alpha,\beta} dAd\eta
\]
\[
\leq \left(\int_0^t \int_{R_0} (\chi_{\beta,2} \chi_{\beta,2})^2 dAd\eta \right)^{\frac{1}{2}}
\]
\[
\cdot \left(\int_0^t \int_{R_0} (\chi_\alpha \chi_\alpha)^2 dAd\eta \right)^{\frac{1}{4}} \left(\int_0^t \int_{R_0} (\chi_{\alpha,2} \chi_{\alpha,2})^2 dAd\eta \right)^{\frac{1}{4}}
\]
\[
+ \left(\int_0^t \int_{R_0} (\chi_{\beta,2} \chi_{\beta,2})^2 dAd\eta \right)^{\frac{1}{4}} \left(\int_0^t \int_{R_0} (\psi_\alpha \psi_\alpha)^2 dAd\eta \right)^{\frac{1}{4}}
\]
\[
\cdot \left(\int_0^t \int_{R_0} (\chi_{\alpha,2} \chi_{\alpha,2})^2 dAd\eta \right)^{\frac{1}{4}}
\]
\[
+ \left(\int_0^t \int_{R_0} (\psi_{\beta,2} \psi_{\beta,2})^2 dAd\eta \right)^{\frac{1}{4}} \left(\int_0^t \int_{R_0} (\psi_\alpha \psi_\alpha)^2 dAd\eta \right)^{\frac{1}{4}}
\]
\[
\cdot \left(\int_0^t \int_{R_0} (\chi_{\alpha,2} \chi_{\alpha,2})^2 dAd\eta \right)^{\frac{1}{4}}
\]
\[
\leq \frac{h}{\sqrt{2\pi}} Q_0^2 \tilde{E}_7^\frac{3}{4}(0,t) + \frac{h}{\sqrt{2\pi}} Q_1^\frac{1}{4} E_1^\frac{3}{4} (\psi_\alpha) \tilde{E}_7^\frac{3}{4}(0,t)
\]
\[
+ \sqrt{\frac{h}{2\pi}} Q_1^\frac{1}{4} E_1^\frac{3}{4} (\psi_\alpha) \tilde{E}_7^\frac{3}{4}(0,t) + \sqrt{\frac{h}{2\pi}} E_1^\frac{1}{4} (\psi_\alpha) \tilde{E}_7^\frac{1}{4}(0,t). \quad (6.13)
\]

Similarly, we also have
\[
\int_0^t \int_{R_0} (\psi_\beta)(\chi_\alpha + \psi_\alpha) \chi_{\alpha,\beta} dAd\eta
\]
\[
\leq \frac{h}{\sqrt{2\pi}} Q_0^\frac{1}{4} E_1^\frac{3}{4} (\psi_\alpha) \tilde{E}_7^\frac{3}{4}(0,t) + \sqrt{\frac{h}{2\pi}} Q_1^\frac{1}{4} E_1^\frac{3}{4} (\psi_\alpha) \tilde{E}_7^\frac{3}{4}(0,t)
\]
\[
+ \sqrt{\frac{h}{2\pi}} E_1^\frac{1}{4} (\psi_\alpha) \tilde{E}_7^\frac{1}{4}(0,t), \quad (6.14)
\]
and
\[
- \int_0^t \int_{R_0} g_\alpha \theta \chi_{\alpha,2\beta} dA d\eta \leq \left(\int_0^t \int_{R_0} g_\alpha g_\alpha \theta^2 dA d\eta \right)^{\frac{1}{2}} \left(\int_0^t \int_{R_0} \chi_{\alpha,2\beta} \chi_{\alpha,2\beta} dA d\eta \right)^{\frac{1}{2}} \leq \frac{h^2}{\pi} g Q_3^T E_7^T (0,t),
\]
(6.15)

where
\[
g^2 = \max \{ g_\alpha g_\alpha \},
\]
(6.16)

and we have used the fact
\[
\int_0^t \int_{R_0} \chi \chi_{\alpha,2\beta} \chi_{\alpha,2\beta} dA d\eta = 0.
\]

Inserting (6.13)-(6.15) into (6.12) and using the Young inequality (4.14), we obtain
\[
\tilde{E}_7 (0,t) \leq \frac{h}{\sqrt{2} \pi} Q_1^T E_7^T (0,t) + \frac{2h}{\sqrt{2} \pi} Q_1^T E_1^T (\psi_\alpha) E_7^T (0,t) + \frac{h}{\sqrt{2} \pi} g Q_3^T E_7^T (0,t)
\]
\[
+ 2 \sqrt{\frac{h}{\pi}} Q_1^T (\psi_\alpha) E_1^T (\psi_\alpha) E_7^T (0,t) + 2 \sqrt{\frac{h}{\pi}} Q_1^T (\psi_\alpha) E_3^T (\psi_\alpha) \tilde{E}_7^T (0,t) + \frac{h}{\sqrt{2} \pi} g Q_3^T \tilde{E}_7^T (0,t)
\]
\[
\leq \frac{1}{\varepsilon_1^3} \frac{h}{4 \sqrt{2} \pi} Q_1^T + \varepsilon_1 \frac{3h}{4 \sqrt{2} \pi} \tilde{E}_7^T (0,t) + \frac{1}{\varepsilon_2^3} \frac{h}{2 \sqrt{2} \pi} E_1^T (\psi_\alpha) Q_1
\]
\[
+ \varepsilon_2 \frac{3h}{2 \sqrt{2} \pi} E_1^T (\psi_\alpha) \tilde{E}_7^T (0,t) + \varepsilon_3 \frac{h}{2 \pi \varepsilon_3} Q_1^T E_1^T (\psi_\alpha) E_1^T (\psi_\alpha) + \varepsilon_3 \frac{h}{2 \pi \varepsilon_4} E_1^T (\psi_\alpha) E_1^T (\psi_\alpha)
\]
\[
+ \varepsilon_3 \frac{h^2}{2 \pi \varepsilon_5} g^2 Q_3^T + \frac{1}{2} (\varepsilon_3 + \varepsilon_4 + \varepsilon_5) \tilde{E}_7^T (0,t),
\]
(6.17)

where \(\varepsilon_i, (i = 1, 2, 3, 4, 5) \) are positive constants. Choosing
\[
\varepsilon_1 = \frac{\sqrt{2} \pi}{6h}, \quad \varepsilon_2 = \frac{\sqrt{2} \pi}{12h} E_1^{-\frac{1}{2}} (\psi_\alpha), \quad \varepsilon_3 = \varepsilon_4 = \varepsilon_5 = \frac{1}{6},
\]
(6.18)

inequality (6.17) yields that
\[
\tilde{E}_7 (0,t) \leq \frac{1}{\varepsilon_1^3} \frac{h}{4 \sqrt{2} \pi} Q_1^T + \frac{1}{\varepsilon_2^3} \frac{h}{\sqrt{2} \pi} E_1^T (\psi_\alpha) Q_1
\]
\[
+ \frac{h}{\pi \varepsilon_3} Q_1^T E_1^T (\psi_\alpha) E_1^T (\psi_\alpha) + \frac{h}{\pi \varepsilon_4} E_1^T (\psi_\alpha) E_1^T (\psi_\alpha) + \frac{h^2 g^2 Q_3^T}{\varepsilon_5 \pi^2},
\]
(6.19)

From (6.8), we conclude that \(E_7 (0,t) \) can be bounded by known data.
REFERENCES