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Abstract. In the present work we show by means of explicit construction that three new types
of solutions exist for the one dimensional competitive Lotka-Volterra reaction-diffusion system.
The new solutions constructed are (i) space-time separated solutions, (ii) unbounded solutions,
and (iii) solutions of Gaussian type, with the constructions being based largely on the standard
methods for constructing solutions to the one-dimensional heat equation. From these exact solu-
tions a new and interesting phenomena is found, namely diffusion-induced long-term coexistence
of three species. In addition, the approach to constructing explicit solutions presented here can
readily be applied to other reaction-diffusion systems.

1. Introduction

In the present paper we study solutions to the competitive three species Lotka-
Volterra system, which is a frequently-used model to describe the competition among
three distinct biological species. The system of equations is⎧⎪⎨

⎪⎩
ut = δ1 uxx + u(r1 − l11 u− l12 v− l13w),
vt = δ2 vxx + v(r2 − l21 u− l22 v− l23w), x ∈ R, t > 0,

wt = δ3 wxx + w(r3 − l31 u− c32 v− l33w),
(1.1)

where u(x, t) , v(x, t) and w(x,t) stand for the density of the three distinct species;
δi , ri , lii (i = 1,2,3) , and li j (i, j = 1,2,3) are the diffusion rates, the intrinsic growth
rates, the intra-specific competition rates, and the inter-specific competition rates, which
are all assumed to be positive constants. Under suitable scalings of the dependent and
independent variables, (1.1) can be rewritten as

(LV )

⎧⎪⎨
⎪⎩

ut = uxx +u(1−u−a1v−b1w),
vt = d1 vxx + λ1 v(1−a2u− v−b2w), x ∈ R, t > 0,

wt = d2 wxx + λ2 w(1−a3 u−b3v−w),

where ai , bi (i = 1,2,3) , and di , λi (i = 1,2) are positive constants. Throughout the
remainder of the paper, it is assumed that d1 = d2 = 1 unless otherwise specified.
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In ecology, determining which species will survive in a competitive system is of
fundamental importance. In order to study this problem, we can use traveling wave
solutions, which are solutions of the form

(u(x, t),v(x,t),w(x,t)) = (u(z),v(z),w(z)), z = px−θ t. (1.2)

Here p > 0 is a constant and θ/p represents the wave velocity of the traveling wave.
The sign of the propagation speed θ/p determines which species survive(s) in the
competition among the three species.

When v and w are absent in (LV ) , we obtain the well-known Fisher-KPP (Kol-
mogoroff, Petrovsky, and Piscounoff) equation, i.e.

ut = uxx +u(1−u), x ∈ R, t > 0. (1.3)

Fisher was the first to use (1.3) as a model to describe the propagation of an advanta-
geous gene in a population ([11]).

Following the pioneering work of KPP ([19]) on traveling wave solutions of (1.3),
there have been numerous studies of this special form of solution. We note in particular
that for a specific wave velocity, (1.3) admits an exact traveling wave solution ([1]).
This solution was found by applying Painlevé analysis of ordinary differential equa-
tions. Related results on the existence of traveling wave solutions can be found, for ex-
ample, in [2, 9, 10, 23, 28] and references cited therein. In [9, 10], the existence, unique-
ness (up to a translation), minimum wave speed and global stability of traveling front
solutions for (1.3) were established by employing comparison theorems and a priori es-
timates. Excepting the pure initial value problem in the space (x,t) ∈ (−∞,∞)×(0,∞) ,
the initial-boundary value problem in the space (x,t) ∈ (0,∞)× (0,∞) was also consid-
ered in [2].

For the case where w is absent, (LV ) reduces to the two-species system:{
ut = uxx +u(1−u−a1v),
vt = d1 vxx + λ1 v(1−a2u− v), x ∈ R, t > 0.

(1.4)

Much effort has been devoted to studying the existence of traveling wave solutions for
(1.4). See for instance, [8, 12, 14, 15, 16, 17, 18, 20, 21, 26]. In particular, Mimura
and Rodrigo ([24, 25]) constructed exact traveling wave solutions of (1.4) by applying
a judicious ansatz for solutions. However, very little is known about the existence of
nontrivial solutions (i.e. u,v,w > 0) for (LV ) . Under certain assumptions on the pa-
rameters, existence of nontrivial solutions for (LV ) is shown by giving exact traveling
wave solutions as well as numerical simulations ([3, 4]). A question naturally arises:
In addition to traveling wave solutions, does (LV ) admit other classes of solutions?
Motivated by the work of Cherniha and Davydovych (Theorem 3. in [6]), we partially
answer this question affirmatively, i.e. it turns out that, under certain conditions on
the parameters, (LV ) admits space-time separated solutions, unbounded solutions, and
solutions of Gaussian type (Theorem 2.5). By assuming hypotheses (H1) ∼ (H2) in
Theorem 2.1, we are able to construct the three classes of solutions from the solutions
of the heat equation. As a result, in this work we present a completely new approach to
explore solutions of (LV ) , which have not yet been found in the literature.
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In [6], Q-conditional symmetries are employed to find exact solutions, which are
not positive for all x ∈ R and t > 0, of (1.4), while our method is elementary and
can be applied to find positive solutions for (LV ) . All [6, 24, 25] are devoted to in-
vestigating exact solutions of (1.4). The essential difference of their work lies in that
two distinct types of solutions are found, i.e., exact traveling wave solutions are con-
structed in [24, 25] and space-time separated solutions are found in [6], respectively.
For multi-component Lotka-Volterra systems, refer to [22] and [27] for example.

We also propose a question which serves as one motivation for studying (LV ) . In
the absence of diffusion effects, (LV ) becomes the following system of ODEs:

⎧⎪⎨
⎪⎩

ut = u(1−u−a1v−b1w),
vt = v(1−a2u− v−b2w)λ1, t > 0,

wt = w(1−a3 u−b3v−w)λ2,

(1.5)

which in general has eight spatially homogeneous equilibria. Among these equilibria,
we denote by (u�,v�,w�) , with u�,v�,w� > 0, the unique coexistence equilibrium of
the three species if it exists. Except for the coexistence equilibrium (u�,v�,w�) , any of
the other seven equilibria, if they exist, represent a state in which at least one species
is extinct. Assuming the parameters ai,bi(i = 1,2,3) , and λi(i = 1,2) are such that
(u�,v�,w�) is an unstable equilibrium, the solution of (1.5) with any initial condition
u(0),v(0),w(0) > 0 will not eventually tend to (u�,v�,w�) when t approaches infinity.
Now, if diffusion is incorporated into (1.5) in a manner similar to (LV ) , we are led to
the following question: do there exist solutions (u(x,t),v(x,t),w(x,t)) of (LV ) with the
asymptotic behaviour (u(x,t),v(x,t),w(x,t)) → (u�,v�,w�) uniformly in x as t → ∞?
If such a situation occurs, we refer to this phenomenon as diffusion-induced long-term
coexistence. Indeed, we show in this paper that the answer to this question is affirmative
by giving exact solutions of (LV ) . We remark that the coexistence here is proved
only under special perturbations of the initial data. To the author’s knowledge, the
phenomenon related to diffusion-induced coexistence (see also [29]) have not yet been
extensively studied in the literature.

The remainder of this paper is organized as follows. Section 2 is devoted to the
main results (Theorem 2.1 and Theorem 2.5) as well as the proof. For some parameter
regimes, it is shown in Section 3 that diffusion-induced long-term coexistence occurs
for the solutions of (LV ) . We provide in Section 4 an alternative approach, which is
based on a judicious ansatz for solutions, to space-time separated solutions. In Sec-
tion 5, examples are given to illustrate the main theorems. Finally, we conclude the
present paper with some remarks in Section 6.

2. Main results

The goal of this section is to prove our main results i.e. Theorem 2.1 and Theo-
rem 2.5. In Theorem 2.1, we give a sufficient condition under which solutions of (LV )
are constructed from solutions of the initial value problem for the heat equation. De-
pending on various initial conditions, three new types of solutions, including space-time
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separated solutions, unbounded solutions, and solutions of Gaussian type are found in
Theorem 2.5.

THEOREM 2.1. Assume that d1 = d2 = 1 and that the following hypotheses hold:

(H1): 1− u− a1 v− b1 w, 1− a2 u− v− b2 w, and 1− a3 u− b3 v−w are linearly
dependent, in the sense that there exist constants c1 ,c2 ∈ R with c1 c2 �= 0 such that
c1 (1−u−a1v−b1w)+ c2 (1−a2u− v−b2w)+(1−a3u−b3 v−w) = 0 for u, v , w
∈ R . In other words, the solution of the system⎧⎪⎨

⎪⎩
1−u−a1v−b1w = 0,

1−a2u− v−b2w = 0,

1−a3u−b3 v−w = 0

(2.1)

can be expressed by

(u0,v0,w0) =
( −1+a1

−1+a1a2
+

w0 (b1−a1 b2)
−1+a1a2

,
−1+a2

−1+a1a2
+

w0 (−a2 b1 +b2)
−1+a1a2

,w0

)

with u0,v0,w0 > 0 ;

(H2): f (x) is an arbitrary function which is bounded and continuous, and satisfies for
all x ∈ R the following inequalities:

u0 +
b1−a1 b2

−1+a1a2
f (x) > 0, v0 +

−a2 b1 +b2

−1+a1a2
f (x) > 0, w0 + f (x) > 0. (2.2)

Then (LV ) admits a positive solution of the form

u(x, t) = u0 +
b1−a1b2

−1+a1a2

1√
4π t

∫ ∞

−∞
e−

(x−ξ )2
4 t f (ξ )dξ , (2.3a)

v(x, t) = v0 +
−a2 b1 +b2

−1+a1a2

1√
4π t

∫ ∞

−∞
e−

(x−ξ )2
4 t f (ξ )dξ , (2.3b)

w(x,t) = w0 +
1√
4π t

∫ ∞

−∞
e−

(x−ξ )2
4 t f (ξ )dξ . (2.3c)

Proof. The key step in the proof consists in constructing a solution of (LV ) by
means of the representation formula for the initial value problem of the heat equation.
Under (H1) , this can be achieved by making a suitable translation of the solution for
(LV ) and applying an appropriate ansatz for the translated solution. (H2) then guaran-
tees the positivity of the constructed solution.

The proof is elementary. We first translate the solution of (LV ) by introducing the
new variables (ũ, ṽ, w̃) = (ũ(x,t), ṽ(x,t), w̃(x,t)) as

u(x, t) = ũ(x, t)+u0, v(x,t) = ṽ(x,t)+ v0, w(x,t) = w̃(x,t)+w0. (2.4)
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A direct computation yields that ũ(x,t) satisfies

ũt = ũxx +(ũ+u0)(−ũ−a1 ṽ−b1 w̃+1−u0−a1 v0−b1 w0)
= ũxx +(ũ+u0)(−ũ−a1 ṽ−b1 w̃). (2.5)

The last equality is true due to (H1) . Similarly, ṽ(x,t) and w̃(x,t) satisfy respectively,

ṽt = ṽxx +(ṽ+ v0)(−a2 ũ− ṽ−b2 w̃) (2.6)

and
w̃t = w̃xx +(w̃+w0)(−a3 ũ−b3 ṽ− w̃). (2.7)

Since we assume (H1) , −ũ−a1 ṽ−b1 w̃ , −a2 ũ− ṽ−b2 w̃ , and −a3 ũ−b3 ṽ− w̃ are
linearly dependent and the solution of

− ũ−a1 ṽ−b1 w̃ = 0, −a2 ũ− ṽ−b2 w̃ = 0, −a3 ũ−b3 ṽ− w̃ = 0 (2.8)

can be expressed in terms of w̃ by

ũ =
b1−a1 b2

−1+a1a2
w̃, ṽ =

−a2 b1 +b2

−1+a1a2
w̃. (2.9)

We use (2.9) as the ansatz for solutions of (2.5), (2.6), and (2.7). The problem is then
reduced to solving the heat equation

w̃t = w̃xx, x ∈ R, t > 0. (2.10)

It is known that the bounded solution of the initial value problem for the heat equation
can be uniquely represented by the convolution formula

w̃(x,t) =
1√
4π t

∫ ∞

−∞
e−

(x−ξ )2
4 t f (ξ )dξ . (2.11)

Here f (x) is the initial condition w̃(x,0) = f (x) , which is assumed to be bounded and
continuous. We note that the representation formula (2.11) remains valid for unbounded
f (x) which satisfy the growth condition | f (x)| � K eε x2

, for some positive constants K
and ε . Some examples of such f can be seen in Proposition 2.3. The positivity of the
constructed solutions follows immediately from (H2) and the elementary result

1√
4π t

∫ ∞

−∞
e−

(x−ξ )2
4 t dξ = 1, (2.12)

for any x ∈ R and t > 0.
To explain the biological meaning of (H1) , for convenience let g1 = 1−u−a1 v−

b1 w , g2 = 1− a2 u− v− b2w and g3 = 1− a3 u− b3 v−w . Then g1 , g2 and g3 are
the ”net” birth rates of the three species. Therefore, the relationship among the net birth
rates of the three species u , v , and w are related by c1 g1 + c2 g2 + g3 = 0. This is a
balance among the three species in some sense.
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We remark that, due to (H1) , the solutions obtained in Theorem 2.1 are linearly
dependent. In [5], such idea was also used for the two-component Lotka-Volterra sys-
tem. Also, (H1) means that (LV ) under consideration contains infinite number of
steady-state points, which form a straight line. Note that Theorem 2.1 can also be
proved with the aid of Rouché-Capelli Theorem, which allows us to compute the num-
ber of solutions to a system of linear algebraic equations.

By means of Theorem2.1, our attention turns to the following initial value problem
for the heat equation: {

ωt = ωxx, x ∈ R, t > 0,

ω(x,0) = f (x), x ∈ R.
(2.13)

As simple consequences of the Poisson formula (2.11) and the fact that for μ ∈ R ,∫ ∞

−∞
e−x2

cos(2μ x)dx =
√

π e−μ2
, (2.14)

we find for various initial conditions f (x) solutions of (2.13), including space-time
separated solutions, unbounded solutions, and solutions of Gaussian type.

PROPOSITION 2.2. (Space-Time Separated Solutions) Suppose that As , ps , Ac ,
pc are non-zero constants. Then

(i) When f (x) = As sin(ps x) , a solution of (2.13) is given by

ω(x,t) = As e
−p2

s t sin(ps x). (2.15)

(ii) When f (x) = Ac cos(pc x) , a solution of (2.13) is given by

ω(x,t) = Ac e−p2
c t cos(pc x). (2.16)

PROPOSITION 2.3. (Unbounded Solutions) Suppose that Bs , qs , Bc , qc are non-
zero constants. Then

(i) When f (x) = Bs e−λs x sin(qs x) , a solution of (2.13) is given by

ω(x,t) = Bs e
−λs x+(λ 2

s −q2
s )t sin(qs x−2qs λs t). (2.17)

(ii) When f (x) = Bc e−λc x cos(qc x) , a solution of (2.13) is given by

ω(x,t) = Bc e−λc x+(λ 2
c −q2

c)t cos(qc x−2qc λc t). (2.18)

PROPOSITION 2.4. (Solutions of Gaussian Type) Suppose that f (x) = Ce−ν x2
,

where C and ν are positive constants. Then a solution of (2.13) is given by

ω(x,t) =
C√

1+4 t ν
e−

ν
1+4 t ν x2

. (2.19)
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REMARK 2.1. Proposition 2.3 can be viewed as an extension of Proposition 2.2
in the sense that when λs = λc = 0, Proposition 2.3 becomes Proposition 2.2. Elemen-
tary techniques are used to prove Proposition 2.2, Proposition 2.3, and Proposition 2.4.
However, we note that the three propositions can also be shown by employing the prop-
erties of the Fourier transform. By taking real and imaginary parts, Proposition 2.3
follows from the Fourier transform (with a imaginary shift) of the Gaussian with a
translation, while the property that the Fourier transform of e−ξ 2

is itself yields Propo-
sition 2.4.

As an immediate consequence of combining the results of Theorem 2.1, Proposi-
tion 2.2, Proposition 2.3, and Proposition 2.4, we obtain the following theorem.

THEOREM 2.5. Assume that d1 = d2 = 1 and hypotheses (H1) ∼ (H2) in Theo-
rem 2.1 hold. Then

(i) (space-time separated solutions) if f (x) = As sin(ps x) , where As and ps are
non-zero constants, then (LV ) admits the solution⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(x,t) = u0 + b1−a1b2−1+a1a2
As e−p2

s t sin(ps x),

v(x,t) = v0 + −a2 b1 +b2−1+a1a2
As e−p2

s t sin(ps x),

w(x,t) = w0 +As e−p2
s t sin(ps x),

(ii) (unbounded solutions) if f (x) = Bs e−λs x sin(qs x) , where Bs and qs are non-
zero constants, then (LV ) admits the solution⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(x, t) = u0 + b1−a1 b2−1+a1a2
Bs e−λs x+(λ 2

s −q2
s )t sin(qs x−2qs λs t),

v(x, t) = v0 + −a2 b1 +b2−1+a1a2
Bs e−λs x+(λ 2

s −q2
s )t sin(qs x−2qs λs t),

w(x, t) = w0 +Bs e−λs x+(λ 2
s −q2

s )t sin(qs x−2qs λs t),

(iii) (solutions of Gaussian type) if f (x) = Ce−ν x2
, where C and ν are positive

constants, then (LV ) admits the solution

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(x,t) = u0 + b1−a1 b2−1+a1a2
C√

1+4 tν
e−

ν
1+4 t ν x2

,

v(x,t) = v0 + −a2 b1 +b2−1+a1a2
C√

1+4 t ν
e−

ν
1+4 tν x2

,

w(x,t) = w0 + C√
1+4 tν

e−
ν

1+4 t ν x2
,

Proof. The theorem follows immediately from Theorem 2.1, Proposition 2.2, Propo-
sition 2.3, and Proposition 2.4. We note that it is clear that for case (ii) , f (x) =
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Bs e−λs x sin(qs x) can not satisfy (H2) in Theorem 2.1. However, the result of (ii)
remains valid with the solution being negative for some x ∈ R , t > 0.

We note that both (i) and (ii) in Theorem 2.5 remain valid if sin is replaced by
cos. In particular, the solution in case (ii) takes negative values for some x ∈ R,t > 0.
This fact will be made clear in Section 5.

3. Diffusion-induced long-term coexistence

In this section, diffusion-induced long-term coexistence is shown to occur. We first
consider (1.5). In order to analyze the stability of the equilibria of (1.5), we linearize
the system around (u0,v0,w0) , obtaining⎛

⎝ ut

vt

wt

⎞
⎠ = L (u0,v0,w0)

⎛
⎝ u

v
w

⎞
⎠ , (3.1)

where u0 , v0 , w0 ∈ R and the linearized operator L (u0,v0,w0) is defined by

L (u0,v0,w0) =

⎛
⎝ fu(u0,v0,w0) fv(u0,v0,w0) fw(u0,v0,w0)

gu(u0,v0,w0) gv(u0,v0,w0) gw(u0,v0,w0)
hu(u0,v0,w0) hv(u0,v0,w0) hw(u0,v0,w0)

⎞
⎠ , (3.2)

where f = u(1− u− a1 v− b1 w) , g = λ1 v(1− a2 u− v− b2 w) , and h = λ2 w(1−
a3 u− b3 v−w) . We prove the following lemma, which is related to the sign of the
eigenvalues of L (u0,v0,w0) .

LEMMA 3.1. Assume that (H1) and (H2) in Theorem 2.1 hold and let

κ0 = u0 w0 (a2 b1−b2) c2 λ2 + v0 λ1 (u0−u0 a1 a2−w0 (b1−a1 b2) c1 λ2) ; (3.3)

κ1 = u0 + v0 λ1−w0 (b1 c1 +b2 c2) λ2. (3.4)

Then

(i) one eigenvalue of L (u0,v0,w0) is zero;

(ii) the other two eigenvalues of L (u0,v0,w0) satisfy the quadratic equation

μ2 + κ1 μ + κ0 = 0; (3.5)

(iii) at least one eigenvalue of L (u0,v0,w0) has positive real part if and only if

{
κ0 < 0

}∪{
κ0 = 0,κ1 < 0

}∪{
κ0 > 0,κ1 � −2

√
k0

}
. (3.6)

Proof. By definition, the three eigenvalues of L (u0,v0,w0) satisfy the cubic equa-
tion det

(
L (u0,v0,w0)− μI

)
= 0, where I is the identity matrix in R

3 . To prove the
desired result, it suffices to show det

(
L (u0,v0,w0)

)
= 0. Under (H1) , we have for



LI-CHANG HUNG, Differ. Equ. Appl. 8, No. 4 (2016), 501–520. 509

some c1 , c2 ∈ R , c1 c2 �= 0, c1 (1− u− a1v− b1w)+ c2 (1− a2u− v− b2w)+ (1−
a3 u−b3 v−w) = 0, for u,v,w ∈ R . This gives

h = −w
(
c1 (1−u−a1v−b1w)+ c2 (1−a2u− v−b2w)

)
λ2, (3.7)

and therefore
hu = w(c1 + c2 a2)λ2, hv = w(c1 a1 + c2)λ2, (3.8)

hw = −(
c1 (1−u−a1v−b1w)+ c2 (1−a2u− v−b2w)

)
λ2 +w(c1 b1 + c2 b2)λ2.

(3.9)
A straightforward calculation also yields

fu = 1−2u−a1v−b1w, fv = −a1 u, fw = −b1 u, (3.10)

gu = −λ1 a2 v, gu = (1−a1u−2v−b2w)λ1, gw = −λ1 b2 v. (3.11)

Because of (H1) , we have

det
(
L (u0,v0,w0)

)
(3.12)

= det

⎛
⎝ fu fv fw

gu gv gw

hu hv hw

⎞
⎠

∣∣∣∣∣
(u,v,w)=(u0,v0,w0)

= det

⎛
⎝ −u0 −a1 u0 −b1 u0

−λ1 a2 v0 −λ1 v0 −λ1 b2 v0

w0 (c1 + c2 a2)λ2 w0 (c1 a1 + c2)λ2 w0 (c1 b1 + c2 b2)λ2

⎞
⎠

= det

⎛
⎝ 1 a1 b1

a2 1 b2

c1 + c2a2 c1 a1 + c2 c1 b1 + c2 b2

⎞
⎠ λ1 λ2 u0 v0 w0

= det

⎛
⎝ c1 c1 a1 c1 b1

c2 a2 c2 c2 b2

c1 + c2a2 c1 a1 + c2 c1 b1 + c2 b2

⎞
⎠ λ1 λ2 u0 v0 w0 (c1 c2)−1

= 0.

This proves the assertion of (i) . Using Mathematica software, we find the cubic
equation that the eigenvalues of L (u0,v0,w0) satisfy, i.e.

0 = det
(
L (u0,v0,w0)− μ I

)
= det

⎛
⎝ −u0− μ −a1 u0 −b1 u0

−λ1 a2 v0 −λ1 v0− μ −λ1 b2 v0

w0 (c1 + c2 a2)λ2 w0 (c1 a1 + c2)λ2 w0 (c1 b1 + c2 b2)λ2− μ

⎞
⎠

= −μ
(

μ2 +
(
u0 + v0 λ1−w0 (b1 c1 +b2 c2) λ2

)
μ

+u0 w0 (a2 b1−b2) c2 λ2 + v0 λ1 (u0−u0 a1 a2−w0 (b1−a1 b2) c1 λ2)
)
.

(3.13)
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The assertions of (ii) and (iii) follow immediately.
We are now in the position to assert the occurrence of diffusion-induced long-term

coexistence for the solutions of (1.5).

THEOREM 3.2. (Diffusion-induced long-term coexistence) Suppose that (H1)∼
(H2) are fulfilled with f satisfying one of the following additional assumptions:

(i) f ∈ Lp(R) , where p ∈ [1,∞];

(ii) f ∈C2(R) , is 2π -periodic, and satisfies

∫ 2π

0
f (ξ )dξ = 0. (3.14)

Let κ0 and κ1 be as defined in Lemma 3.1. Then diffusion-induced coexistence occurs
for the solution of (1.5) provided that κ0 and κ1 belong to{

κ0 < 0
}∪{

κ0 = 0,κ1 < 0
}∪{

κ0 > 0,κ1 � −2
√

k0
}
. (3.15)

Proof. In view of Lemma 3.1, L (u0,v0,w0) has at least one positive eigenvalue.
It follows that (u0,v0,w0) is an unstable equilibrium of (1.5). However, the solution
satisfying (1.5) in the presence of equal diffusion effects, i.e. satisfying (LV ) with
d1 = d2 = 1, in Theorem 2.1 has the asymptotic behavior (u,v,w)(x,t) → (u0,v0,w0)
as t tends to infinity. This asymptotic behavior is due to Lemma 3.3 and Lemma 3.4.

LEMMA 3.3. Suppose that p ∈ [1,∞] and q := p/(p−1) ∈ [1,∞] . If f ∈ Lp(R) ,
then

1

2
√

π t

∫ ∞

−∞
e−

(x−ξ )2
4 t f (ξ )dξ � (2

√
π t )−

1
p (
√

q)−
1
q ‖ f‖p (3.16)

for all x ∈ R, t > 0 .

Proof. The desired result is an immediate consequence of Hölder inequality.
The following Lemma is found in [13].

LEMMA 3.4. Suppose that f (x) ∈C2(R) , is 2π -periodic, i.e. f (x) = f (x+2π)
for all x ∈ R , and satisfies ∫ 2π

0
f (ξ )d ξ = 0. (3.17)

The solution ψ(x, t) of the Cauchy problem for the heat equation⎧⎪⎨
⎪⎩

ψt = ψxx, x ∈ R, t > 0,

ψ(x,0) = f (x), x ∈ R

(3.18)

has the property that ψ(x,t) → 0 as t → ∞ .
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REMARK 3.1. Examining Lemma 3.4, it is natural to consider the consequences
of replacing the condition

∫ 2π
0 f (ξ )d ξ = 0 with

∫ 2π
0 f (ξ )d ξ = 2π f for some f ∈

R \ {0} . If
∫ 2π
0 f (ξ )d ξ = 2π f , then

∫ 2π
0 ( f (ξ )− f )d ξ = 0. Let f (x)− f = f ∗(x)

and ψ(x, t)− f = ψ∗(x,t) , then{
ψ∗

t = ψ∗
xx, x ∈ R, t > 0,

ψ∗(x,0) = f ∗(x), x ∈ R,
(3.19)

where f ∗ ∈C2(R) , is 2π -periodic, and satisfies

∫ 2π

0
f ∗(ξ )d ξ = 0. (3.20)

It follows from Lemma 3.4 that ψ∗(x,t) → 0 as t → ∞ , i.e., ψ(x,t) → f as t → ∞ .

Next we show that initial conditions can be found for the Cauchy problem of the
heat equation to have solutions which converge to nonzero constants. Such initial con-
ditions cannot belong to the space Lp(R) , as shown by Lemma 3.3.

PROPOSITION 3.5. ([30]) Suppose that f ∈ C(R) with limx→−∞ f (x) = f− and
limx→+∞ f (x) = f+ . Then the bounded solution ψ(x, t) to the Cauchy problem for the
heat equation {

ψt = ψxx, x ∈ R, t > 0,

ψ(x,0) = f (x), x ∈ R,
(3.21)

has the property limt→∞ ψ(x,t) = 1
2 ( f− + f+) for all x ∈ R .

Proposition 3.5 allows us to construct solutions of (LV ) when initial condition
f (x) does not belong to Lp(R) . For instance, let f (x) be

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2, if x ∈ (−∞,−1),
x+3, if x ∈ [−1,0],
−2x+3, if x ∈ (0,1),
1, if x ∈ [1,∞).

(3.22)

In this case, limx→−∞ f (x) = 2 and limx→+∞ f (x) = 1. Then the bounded solution to
problem (3.21) is given by

ψ(x,t) =
1
2

[
3+2

√
t
π

(
2e−

(−1+x)2
4 t −3e−

x2
4 t + e

−(1+x)2
4 t

)
+2 (−1+ x) erf

(−1+ x

2
√

t

)

−3xerf
( x

2
√

t

)
+(1+ x) erf

(1+ x

2
√

t

)]
. (3.23)
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Here the error function erf(z) is the integral of the Gaussian distribution de-

fined by erf(z) = 2√
π

∫ z

0
e−ξ 2

dξ and erfc(z) = 1− erf(z) . It is easily verified that

limt→∞ ψ(x, t) = 3
2 for all x ∈ R . In Section 6, ψ(x, t) will be used to construct a

solution of (LV ) .

4. Alternative approach to space-time separated solutions: the method of exp-sin
functions

In Section 2, we obtained a sufficient condition under which solutions of (LV )
can be constructed from solutions of the heat equation. We demonstrate in this section
that for space-time separated solutions it is also a necessary condition. This is done by
employing an approach which is in the spirit of the approach developed in establishing
exact traveling wave solutions of (LV ) ([3, 4]). For unbounded solutions and solutions
of Gaussian type, it is conjectured that the sufficient condition can also be proved to
be necessary by a similar approach to the one presented here. In particular, the method
of exp-sin functions employed also provides an alternative approach to establishing
space-time separated solutions.

To begin with, we make the following ansatz for space-time separated solutions of
(LV ) : ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
u(x,t) = k1 +m1 eβ t sin(α x),

v(x,t) = k2 +m2 eβ t sin(α x),

w(x,t) = k3 +m3 eβ t sin(α x),

(4.1)

where mi (i = 1,2,3.) are constants; ki (i = 1,2,3.) , α , and −β are positive constants,
which are to be determined. Substituting this ansatz into (LV ) leads to

ut −uxx−u(1−u−a1v−b1w) = k1 (−1+ k1 +a1 k2 +b1 k3)

+
[ (−1+ α2 + β +2k1 +a1 k2 +b1 k3

)
m1

+ k1 (a1 m2 +b1 m3)
]
eβ t sin(α x)

+
[
m1 (m1 +a1 m2 +b1 m3)

]
e2β t sin2(α x), (4.2)

vt −d1 vxx −λ1 v(1−a2u− v−b2w) (4.3)

= k2 (−1+a2k1 + k2 +b2 k3) λ1

+
[
m2

(
β + α2 d1 +(−1+a2k1 +2k2 +b2 k3) λ1

)
+ k2 (a2 m1 +b2m3) λ1

]
eβ t sin(α x)

+
[
m2 (a2 m1 +m2 +b2 m3) λ1

]
e2β t sin2(α x), (4.4)
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and

wt −d2wxx −λ2 w(1−a3u−b3v−w) (4.5)

= k3 (−1+a3 k1 +b3 k2 + k3) λ2

+
[
m3

(
β + α2 d2 +(−1+a3k1 +b3 k2 +2k3) λ2

)
+ k3 (a3 m1 +b3m2) λ2

]
eβ t sin(α x)

+
[
m3 (a3 m1 +b3 m2 +m3) λ2

]
e2β t sin2(α x). (4.6)

By equating the coefficients of powers of enβ t sinn(α x)(n = 0,1,2) in the last three
equations to zero, we obtain a system of nine algebraic equations. In terms of certain
parameters, this system can be solved with the aid of Mathematica software. It turns
out that there are four families of nontrivial solutions, in which d1 = d2 = 1 and β =
−α2 . More precisely, the four families F1 , F2 , F3 , and F4 can be expressed as
follows:

F1 =
{

(a1,a2,a3,b1,b2,b3)
∣∣∣∣a1 =

k3 m1 +m3− k1 m3

−k3 m2 + k2 m3
, a2 =

k3 m2 +m3− k2 m3

−k3 m1 + k1 m3
,

a3 =
m2 − k3 m2 + k2 m3

−k2 m1 + k1 m2
, b1 =

k2 m1 +m2− k1 m2

k3 m2 − k2 m3
,

b2 =
m1 − k2 m1 + k1 m2

k3 m1− k1 m3
, b3 =

m1− k3 m1 + k1 m3

k2 m1 − k1 m2

}
,

(4.7)

F2 =
{

(a1,a2,a3,b1,b3,k1,k3)
∣∣∣∣a1 = 1,a2 = −m2 +b2m3

m1
,a3 = −m2 +m3

m1
,

b1 = −m1 +m2

m3
,b3 = 1,k1 =

(−1+ k2) m1

m2
,

k3 =
(−1+ k2) m3

m2

}
,

(4.8)

F3 =
{

(a1,a2,a3,b1,b2,k1,k3)
∣∣∣a1 = −m1 +m3

m2
,a2 = −m2 +m3

m1
,

a3 = −b3 m2 +m3

m1
,

b1 = 1,b2 = 1,k1 =
k2 m1

m2
,k3 = 1+

k2 m3

m2

}
,

(4.9)

F4 =
{

(a1,a2,a3,b2,b3,k1,k3)
∣∣∣a1 = −m1 +b1m3

m2
,a2 = 1,a3 = 1,
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b2 = −m1 +m2

m3
,

b3 = −m1 +m3

m2
,

k1 = 1+
k2 m1

m2
,k3 =

k2 m3

m2

}
,

(4.10)

where family F3 and family F4 are equivalent. This is readily seen from the fact that
the roles of v and w can be interchanged. We note that λ1 and λ2 are not restricted in
all the four families, namely, λ1 and λ2 can be chosen arbitrarily, provided that λ1 and
λ2 are positive.

LEMMA 4.1. For each family Fi (i = 1,2,3,4.) , condition (H1) is fulfilled.

Proof. To show (H1) holds for each family Fi , it suffices to find nonzero ε1 , ε2 ∈
R such that ε1 (1−u−a1 v−b1 w)+ε2 (1−a2 u−v−b2 w)+(1−a3 u−b3 v−w) = 0
for ai,bi (i = 1,2,3.) ∈ Fi , and u,v,w ∈ R . Indeed, it is readily verified that

· for family F1 , ε1 = −1+
1+ m2−k3 m2+k2 m3

k2 m1−k1 m2

1+ k3 m2+m3− k2 m3
k3 m1−k1 m3

, ε2 = − 1+ m2−k3 m2+k2 m3
k2 m1−k1 m2

1+ k3 m2+m3− k2 m3
k3 m1−k1 m3

;

· for family F2 , ε1 = − (−1+b2)m3
m1+ m2+b2 m3

, ε2 = − m1+m2+m3
m1+m2+ b2 m3

;

· for family F3 , ε1 = (−1+b3)m2
m1+m2+m3

, ε2 = −m1+b3 m2+m3
m1+m2+m3

;

· for family F4 , ε1 = − m1+m2+m3
m1+m2+ b1 m3

, ε2 = − (−1+b1)m3
m1+ m2+b1 m3

.

This completes the proof.

Lemma 4.1, together with the result obtained by the method of exp-sin functions
yields the following theorem. In the next theorem, we give a necessary and sufficient
condition for the existence of space-time separated solutions

THEOREM 4.2. When d1 = d2 = 1 , (LV ) admits space-time separated solutions
of the form (4.1) if and only if (H1) holds.

5. Illustrative examples

There do exist parameters ai , bi (i = 1,2,3.) , λi (i = 1,2.) and functions f (x)
which satisfy hypotheses (H1) ∼ (H2) . Indeed, we illustrate in this section cases (i)
and (iii) of Theorem 2.5 by an example.

EXAMPLE 1. We first choose

a1 =
48
35

, a2 =
55
42

, a3 =
235
126

, b1 = 1, b2 = 1, b3 =
1
3
, λ1 = 1,λ2 = 3 (5.1)
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so that the solution (u0,v0,w0) of (2.1)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1−u− 48
35 v−w = 0,

1− 55
42 u− v−w = 0,

1− 235
126 u− 1

3 v−w = 0

(5.2)

is given in terms of w0 by

u0 =
7
15

− 7w0

15
, v0 =

7
18

− 7w0

18
. (5.3)

We then choose w0 = 13
28 in (5.3), from which it follows that u0 = 1

4 and v0 = 5
24 . It is

easily verified that

70
39

(1−u− 48
35

v−w)− 109
39

(1− 55
42

u− v−w)+ (1− 235
126

u− 1
3

v−w) = 0. (5.4)

Hence in this case, (H1) is satisfied. To satisfy (H2) , we take f (x) = 3
7 sin(2x) in

case (i) such that for x ∈ R ,

u0 +
b1−a1 b2

−1+a1a2
f (x) =

1
4
− 1

5
sin(2x) > 0, (5.5a)

v0 +
−a2 b1 +b2

−1+a1a2
f (x) =

5
24

− 1
6

sin(2x) > 0, (5.5b)

w0 + f (x) =
13
28

+
3
7

sin(2x) > 0. (5.5c)

This shows that (H2) is fulfilled. The resulting solution is given by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(x,t) = 1
4 − 1

5 e−4 t sin(2x),

v(x,t) = 5
24 − 1

6 e−4 t sin(2x),

w(x,t) = 13
28 + 3

7 e−4 t sin(2x).

(5.6)

On the other hand, suppose that we take f (x) = 3
7 e−x sin(2x) in case (ii) . Ac-

cording to Theorem 2.5, the resulting solution is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(x,t) = 1
4 − 1

5 e−x−3 t sin(2x−4 t),

v(x,t) = 5
24 − 1

6 e−x−3 t sin(2x−4 t),

w(x,t) = 13
28 + 3

7 e−x−3 t sin(2x−4 t).

(5.7)
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Figure 1: Space-time separated solution (5.7): u (red), v (green) and w (blue)

It should be noted that each component of this solution is not positive for all x ∈ R ,
t > 0. For case (iii) we take f (x) = 3

7 e−x2
. Similarly, we have for x ∈ R ,

u0 +
b1−a1 b2

−1+a1a2
f (x) =

1
4
− 1

5
e−x2

> 0, (5.8a)

v0 +
−a2 b1 +b2

−1+a1a2
f (x) =

5
24

− 1
6

e−x2
> 0, (5.8b)

w0 + f (x) =
13
28

+
3
7

e−x2
> 0 (5.8c)

and the resulting solution is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u(x,t) = 1
4 − 1

5
1√

1+4 t
e−

1
1+4 t x2

,

v(x,t) = 5
24 − 1

6
1√

1+4 t
e−

1
1+4 t x2

,

w(x,t) = 13
28 + 3

7
1√

1+4 t
e−

1
1+4 t x2

.

(5.9)

Profiles of the (5.7) and (5.9) with different values of t are shown respectively in
Figure 1 and Figure 2. As mentioned at the end of Section 2, we see that the unbounded
solution here is not positive for all x ∈ R,t > 0. From the viewpoint of biology, the
unbounded solution is unlikely to be of interest.
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Figure 2: Solution of Gaussian type (5.9): u (red), v (green) and w (blue)

This example also shows that diffusion-induced coexistence for the parameters in
(5.1) occurs. Indeed, first it is readily verified that 3

7 sin(2x) is a 2π -periodic func-

tion with
∫ 2π
0

3
7 sin(2ξ )dξ = 0 and 3

7 e−x2 ∈ L2(R) . Thus conditions (i) and (ii) in
Theorem 3.2 are satisfied. A direct calculation yields

L (u0,v0,w0)

∣∣∣∣∣
(u0,v0,w0)=( 1

4 , 5
24 , 13

28 )

=

⎛
⎝ − 1

4 − 275
1008 − 3055

1176
− 12

35 − 5
24 − 13

28
− 1

4 − 5
24 − 39

28

⎞
⎠ , (5.10)

and the eigenvalues of L ( 1
4 , 5

24 , 13
28) are 0, − 27

14 , and 13
168 .

6. Concluding Remarks

We would like first to remark that, besides the work of Cherniha and Davydovych
([6]), the present investigations were motivated by the following naive observation.
Consider the following problem:{

ut = uxx, x ∈ R, t > 0,

u(x,0) = sin(x), x ∈ R.
(6.1)

The unique bounded solution to this problem can be represented as

u(x,t) =
1√
4π t

∫ ∞

−∞
e−

(x−ξ )2
4 t sin(ξ )dξ . (6.2)
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On the other hand, it is easy to verify that

u(x,t) = e−t sin(x) (6.3)

is also a bounded solution satisfying the given initial condition. By uniqueness, the two
solutions (6.2) and (6.3) should be identical. This observation results in the three types
of solutions of (6.1), with sin(x) replaced by various initial conditions.

In this paper we have found that, under certain conditions on the parameters,
space-time separated solutions, unbounded solutions, and solutions of Gaussian type of
(LV ) exist by giving explicit forms of these solutions. Each type of solution is essen-
tially different from that of traveling wave solutions (for non-traveling wave type solu-
tions, refer to [7]), which were previously established in [3, 4]. In addition, the traveling
wave solutions found in [3, 4] have the asymptotic behavior (u(x,t),v(x,t),w(x,t)) →
(1,0,0) or (0,1,0) as t → ∞ , meaning that two of the three competing species become
extinct while the remaining species survive long term. This phenomenon is known as
Gause’s competitive exclusion principle. However, our space-time separated solutions
and solutions of Gaussian type both have the asymptotic behavior

(u(x,t),v(x,t),w(x,t)) → (u0,v0,w0)

with u0,v0,w0 > 0 as t → ∞ . Ecologically, this can be interpreted as the long-term
coexistence of the three competing species. This remarkable feature of space-time sep-
arated solutions and solutions of Gaussian type differs greatly from that of traveling
wave solutions.

One of the essential purposes of this paper is to investigate diffusion-induced long-
term coexistence of diffusive Lotka-Volterra systems of three competing species, which
is new and interesting phenomenon and seems to be explored for the first time for
Lotka-Volterra systems. As indicated in the introduction, we show in addition to trav-
eling wave solutions, other classes of solutions exist for diffusive Lotka-Volterra sys-
tems of three competing species. In spite of the fact that the parameter region where
the assumption (H1) is satisfied is not generic, the solutions, not yet described in the
literature, are found in this paper. In order to find more solutions, an elementary ap-
proach is employed in this paper. The key idea is to make use of the linear dependence
of nonlinearity in (LV ) . We remark that this approach has been previously used for
two-component Lotka-Volterra systems (see [5] for instance). Although this approach
is elementary, it will be shown in subsequent studies that, by applying this approach
diffusive Lotka-Volterra systems of three species can be reduced to one single reaction-
diffusion equation. Moreover, we also extend Cherniha and Davydovych’s results [6]
from systems of two species to systems of three species.

We believe that the approach developed here, i.e. construction of solutions for a
system from the solution of a single, linear equation, can be applied to certain classes
of reaction-diffusion systems other than (LV ) . These problems will be investigated in
future work.

Acknowledgements. The author wishes to express sincere gratitude to his friends,
Dr. Tom Mollee and Miss Xian Liao for their careful reading of the manuscript and



LI-CHANG HUNG, Differ. Equ. Appl. 8, No. 4 (2016), 501–520. 519

helpful suggestions and comments to improve the readability and accuracy, and to his
advisor Professor Chiun-Chuan Chen, without whose continual encouragement and ex-
traordinary forbearance, much of this work could not have been written. The author is
also indebted to Professors Tai-Ping Liu and Masayasu Mimura for their warm guid-
ance and academic influence. The research is partially supported by National Center
for Theoretical Sciences, Taiwan and the National Science Council (Taiwan) grant 100-
2115-M-002-009-MY2.

RE F ER EN C ES

[1] M. J. ABLOWITZ AND A. ZEPPETELLA, Explicit solutions of Fisher’s equation for a special wave
speed, Bull. Math. Biol., 41 (1979), pp. 835–840.

[2] D. G. ARONSON AND H. F. WEINBERGER, Nonlinear diffusion in population genetics, combustion,
and nerve pulse propagation, in Partial differential equations and related topics (Program, Tulane
Univ., New Orleans, La., 1974), Springer, Berlin, 1975, pp. 5–49. Lecture Notes in Math., Vol. 446.

[3] C.-C. CHEN, L.-C. HUNG, M. MIMURA, M. TOHMA, AND D. UEYAMA, Semi-exact equilibrium
solutions for three-species competition-diffusion systems, submitted.

[4] C.-C. CHEN, L.-C. HUNG, M. MIMURA, AND D. UEYAMA, Exact traveling wave solutions of three
species competition-diffusion systems, to appear in Discrete and Continuous Dynamical System-B.
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