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Abstract. In this work, we investigate nonlinear boundary value problems for impulsive differ-
ential equations with causal operators. Our boundary condition is given by a nonlinear function,
and more general than ones given before. To begin with, we prove a comparison theorem. Then
by using this theorem, we show the existence of solutions for linear problems. Finally, by using
the monotone iterative technique, we obtain the existence of extremal solutions for nonlinear
boundary value problems with causal operators. An example satisfying the assumptions is pre-
sented.

1. Introduction

Impulsive differential equations are recognized as important models, which de-
scribe many evolution processes that abruptly change their state at a certain moment.
This type of equations has been studied in depth by some authors in recent years
[1, 2, 6, 10, 12, 15]. As an important branch, boundary value problems, especially,
problems with nonlinear boundary conditions have drawn much attention. There are
many ways to investigate this kind of problem. Among them, monotone iterative tech-
nique coupled with the method of upper and lower solutions is an effective method,
readers can refer [8, 11, 13, 14, 19] for details. Recently, this method has been extended
to boundary value problems with causal operators, see [3, 4, 5, 7, 9, 16, 17, 18, 20] and
the references therein. For the case of differential equations, Jankowski [7] investigated
nonlinear boundary value problems for first-order differential equations with causal
operators by using the monotone iterative method. After it, Wang and Tian [16, 18]
developed monotone iterative method, considered the generalized monotone iterative
method for nonlinear boundary value problems and a class of integral boundary value
problems, respectively, obtained the existence of extremal solutions for causal differ-
ential equations where the right-hand side is the sum of two monotone functions, one
of which is monotone non-decreasing and the other is non-increasing. Moreover, for
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impulsive differential equations, Zhao et al. [20] studied integral boundary value prob-
lems for impulsive differential equations with causal operators. Motivated by the above
excellent work, in this paper, we discuss the following impulsive differential equations
with a causal operator: ⎧⎪⎨

⎪⎩
y′(t) = (Qy)(t), t �= tk,t ∈ J,

Δy(tk) = Ik(y(tk)), k = 1,2, · · · , p,

B(y(0),y) = 0,

(1.1)

where J = [0,T ] , T > 0, E =C(J,R) , Q ∈C(E,E) is a causal operator, 0 = t0 < t1 <
· · · < tp < tp+1 = T , Ik ∈ C(R,R) , B ∈ C[R×R

T+1,R] and Δy(tk) = y(t+k )− y(t−k ) ,
k = 1,2, · · · , p .

The main interest of the paper lies in the fact that we consider nonlinear bound-
ary conditions which, of course, includes the usual linear boundary conditions (such
as initial and periodic) and other general conditions such as B(y(0),y(T )) = 0 and

y(0) =
∫ T

0
μ(t,y(t))dt , (μ ∈ C(J ×R,R)). Note that, the nonlinear boundary value

problem (1.1) reduce to integral boundary value problems for B(y(0),y) = y(0) −
λ1y(τ)−λ2

∫ T

0
ϕ(t,y(t))dt− c which has been studied in [20], and other general con-

ditions such as B(y(0),y(T )) = 0, Ik ≡ 0 which has studied in [7]. Thus our boundary
condition has a very general form.

The rest of the paper is organized as follows. In Section 2, a comparison prin-
ciple is established. In Sections 3, after introducing the definition of upper and lower
solutions, we obtain the existence of solutions for linear problem of (1.1) by apply-
ing Schauder ′ s fixed point theorem. Moreover, the existence of extremal solutions for
(1.1) is established by utilizing the monotone iterative technique. An example is given
to illustrate our results.

2. Preliminaries

In this section, we present a definition and a lemma which help to prove our main
results.

Taking J′ = J\{t1,t2, · · · ,tp} , let us introduce the space:

PC(J,R) =

{
y : J → R;y(t) is continuous everywhere except for some tk

at which y(t−k ) and y(t+k ) exist, and y(t−k ) = y(tk),k = 1,2, · · · , p

}
,

PC′(J,R) =

{
y ∈ PC(J,R);y′ is continuous on J′, where y′(0+),

y′(T−), y′(t+k ) and y′(t−k ) exist,k = 1,2, · · · , p

}
.

Put E0 = PC(J,R) , Ω = PC′(J,R) . E0 and Ω are Banach spaces with the respective
norms:

‖y‖E0 = sup
t∈J

|y(t)| , ‖y‖Ω = ‖y‖E0 +‖y′‖E0 .

A function y ∈ Ω is called a solution of (1.1) if it satisfies (1.1).
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DEFINITION 1. Let Q ∈C(E,E) . We said that Q is a causal map if u(s) = v(s) ,
t0 � s � t � T , where u,v ∈ E , then

(Qu)(s) = (Qv)(s), t0 � s � t.

LEMMA 1. Let m ∈ Ω and⎧⎪⎨
⎪⎩

m′(t) � −Mm(t)− (L m)(t), t ∈ J′,
Δm(tk) � −Lkm(tk), k = 1,2, · · · , p,

m(0) � 0,

where 0 � Lk < 1 , k = 1,2, · · · , p , M � 0 and L ∈C(E,E) is a positive linear
operator.

In addition, we assume that

∫ T

0
eMT (L e−M)(t)dt +

p

∏
k=1

Lk � 1. (2.1)

Then m(t) � 0 for t ∈ J .

Proof. Let v(t) = eMtm(t) , t ∈ J . We have⎧⎪⎨
⎪⎩

v′(t) � −eMt(L e−Mv)(t), t ∈ J′,
Δv(tk) � −Lkv(tk), k = 1,2, · · · , p,

v(0) � 0.

(2.2)

From the definition of v(t) , obviously, v(t) � 0 implies m(t) � 0, t ∈ J . So it suffices
to show v(t) � 0 for any t ∈ J . Suppose on the contrary, there exists t∗ ∈ (0,T ] such
that v(t∗) > 0. Let inf

0�t�t∗
v(t) = −λ , then λ � 0.

Case 1: if λ = 0, then v(t) � 0, for all t ∈ [0,t∗] . Thus, by (2.2), we get v′(t) � 0
on t ∈ [0, t∗] and Δv(tk) � −Lkv(tk) � 0 on tk ∈ (0,t∗) , hence v(t) is nonincreasing in
[0,t∗] . So we have v(t∗) � v(0) � 0, which is a contradiction.

Case 2: if λ > 0, then there exists a t∗ ∈ [0,t∗) such that v(t∗) = −λ < 0 or
v(t+∗ ) = −λ . We only consider v(t∗) = −λ because when v(t+∗ ) = −λ , the proof is
similar. From (2.2) we get

0 < v(t∗) = v(t∗)+
∫ t∗

t∗
v′(t)dt + ∑

t∗�tk�t∗
Δv(tk)

� −λ + λ
∫ T

0
eMT (L e−M)(t)dt + λ

p

∏
k=1

Lk

= λ

{∫ T

0
eMT (L e−M)(t)dt +

p

∏
k=1

Lk −1

}
,
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which yields ∫ T

0
eMT (L e−M)(t)dt +

p

∏
k=1

Lk > 1.

A contradiction is then elicited due to (2.1). Hence v(t) � 0, and this completes the
proof. �

3. Main results

In this section, we shall establish the existence of extremal solutions of problem
(1.1).

DEFINITION 2. A function α ∈ Ω is called a lower solution of (1.1) if⎧⎪⎨
⎪⎩

α ′(t) � (Qα)(t), t ∈ J′,
Δα(tk) � Ik(α(tk)), k = 1,2, · · · , p,

B(α(0),α) � 0.

DEFINITION 3. A function β ∈ Ω is called an upper solution of (1.1) if⎧⎪⎨
⎪⎩

β ′(t) � (Qβ )(t), t ∈ J′,
Δβ (tk) � Ik(β (tk)), k = 1,2, · · · , p,

B(β (0),β ) � 0.

DEFINITION 4. (see [7, Section 2]) A solution y ∈ Ω of problem (1.1) is called
maximal if x(t) � y(t),t ∈ J , for each solution x of (1.1), and minimal if the reverse
inequality holds. If both minimal and maximal solutions exist, we call them extremal
solutions of (1.1).

For α,β ∈ Ω , we write α � β if α(t) � β (t) for all t ∈ J . Also, we denote
[α,β ] = {y ∈ Ω,α(t) � y(t) � β (t),t ∈ J} .

In the sequel, we state our theorems. First we discuss the existence of solutions
for the following linear problem⎧⎪⎨

⎪⎩
y′(t)+My(t)+ (L y)(t) = ση(t), t ∈ J′,
Δy(tk) = −Lky(tk)+ γk, k = 1,2, · · · , p,

B(y(0),y) = 0,

(3.1)

where η ∈ [α,β ] , ση (t) = (Qη)(t)+Mη(t)+ (L η)(t) , γk = Ik(η(tk))+Lkη(tk) .
Throughout this paper, we shall assume the following hypotheses hold:

(H1 ) Let α and β ∈ Ω be lower and upper solutions of problem (1.1), respectively,
such that α � β .

(H2 ) There exists M � 0 such that

(Qu)(t)− (Qv)(t) � −M(u− v)− (L (u− v))(t), for α � v � u � β .
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(H3 ) There exist 0 � Lk < 1, k = 1,2, · · · , p such that

Ik(u)− Ik(v) � −Lk(u− v), for α � v � u � β .

(H4 ) B(u, ·) is a nonincreasing function for each u ∈ [α(0),β (0)] .

THEOREM 1. Suppose that all conditions of Lemma 1 are satisfied. Then linear
problem (3.1) has at least one solution y ∈ [α,β ] .

Proof. For η ∈ [α,β ] , we consider the following problem:⎧⎪⎨
⎪⎩

y′(t)+My(t)+ (L y)(t) = ση(t), t ∈ J′,
Δy(tk) = −Lkp(tk,y(tk))+ γk, k = 1,2, · · · , p,

y(0) = p(0,y(0)−B(y(0),y)),
(3.2)

where ση (t) = (Qη)(t)+Mη(t)+ (L η)(t) , p(t,y) = max[α(t),min(y,β (t))] , γk =
Ik(η(tk))+Lkη(tk) .

The idea of the proof is to transform (3.2) into a fixed point problem in order to
apply Schauder Fixed Point Theorem (see [17]).

Consider the operator
A : E0 → E0

given by

A y(t) = y(0)+
∫ t

0
[ση (s)−My(s)− (L y)(s)]ds+ ∑

0�tk�t

[γk −Lkp(tk,y(tk))]. (3.3)

It is easy to see that y ∈ Ω is a solution of (3.2), if and only if y ∈ E0 is a fixed point of
A . Also every solution y of (3.2) is a solution of (3.1).

In order to apply Schauder ′ s fixed point theorem, we shall prove that the operator
A is continuous and compact. Note that E0 is a Banach space with the norm ‖y‖ =
sup
t∈J

|y(t)| . Let y∈E0 , the continuity of L and ση imply that ση(s)−My(s)−(L y)(s)

is bounded. The definition of p(t,y) implies that γk −Lkp(tk,y(tk)) is bounded, so A
is continuous and bounded.

Let t1, t2 ∈ J , t1 < t2 , then

|(A y)(t1)−(A y)(t2)|�
∣∣∣∣
∫ t2

t1
[ση(s)−My(s)− (L y)(s)]

∣∣∣∣+ ∑
t1�tk�t2

|γk−Lkp(tk,y(tk))|,

as t2 → t1 . The right side of the above inequality tends to zero. This proves that the
operator A is equicontinuous on J . Then Arzela-Ascoli theorem shows that A is
compact. From Schauder ′ s fixed point theorem, A has a fixed point in E0 . Next, we
shall prove y ∈ [α,β ] .
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Firstly, we prove α � y , set m(t) = α(t)− y(t) , t ∈ J . Owing to (H2 ) and (H3 ),
we acquire

m′(t) = α ′(t)− y′(t)
� (Qα)(t)− (Qη)(t)−M

(
η(t)− y(t)

)− (
L (η − y)

)
(t)

� −Mm(t)− (L m)(t),

and

Δm(tk) = Δα(tk)−Δy(tk)
� Ik(α(tk))− Ik(η(tk))−Lkη(tk)+Lkm(tk,y(tk))
� −Lk(α(tk)−m(tk,y(tk)))
� −Lk min{m(tk),0},

note that m(0) � 0, by Lemma 1, we have α � y . Similarly, we can show that y � β
and then y ∈ [α,β ] .

Finally, we shall prove α(0) � y(0)−B(y(0),y) � β (0) .
If y(0)−B(y(0),y) < α(0) , due to (3.2) and the definition of p(t,y) , we have

y(0) = α(0) , in consequence α(0)−B(α(0),y) < α(0) . Since B(α(0), ·) is nonin-
creasing in [α,β ] and we know y ∈ [α,β ] , we see that B(α(0),α) > 0, which con-
tradicts with the definition of the lower solution. Similarly arguments may show that
y(0)−B(y(0),y) � β (0) .

Thus every solution y of (3.2) is a solution of (3.1), and it belongs to [α,β ] .
This proves that problem (3.1) has a solution y ∈ [α,β ] . �

THEOREM 2. Assume that the conditions of Theorem 1 hold. Then there exist
monotone sequence {αn(t)} , {βn(t)} in E0 such that α0 = α , β0 = β which converge
uniformly to the extremal solutions of (1.1) in [α,β ] .

Proof. Let η ∈ [α,β ] , we consider the following equations:⎧⎪⎨
⎪⎩

y′(t)+My(t)+ (L y)(t) = (Qη)(t)+Mη(t)+ (L η)(t), t ∈ J′,
Δy(tk) = −Lky(tk)+ Ik(η(tk))+Lkη(tk), k = 1,2, · · · , p,

y(0) = ςη ,

(3.4)

where ςη is the minimal solution in [α(0),β (0)] such that B(ςη ,η) = 0. Since B is
continuous and B(α0,η) � B(α(0),α) � 0 and 0 � B(β (0),β ) � B(β (0),η) , ςη is
well defined.

By Theorem 1, (3.4) has at least one solution (defining B(u,v) = u− ςη ). Next
we prove the uniqueness of solution to this problem. If not, let y1(t) , y2(t) be two
solutions of (3.4). Set v1(t) = y1(t)− y2(t) and v2(t) = y2(t)− y1(t) , then

v1(0) = 0, v′1(t)+Mv1(t)+ (L v1)(t) = 0, Δv1(tk) = −Lkv1(tk),
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and
v2(0) = 0, v′2(t)+Mv2(t)+ (L v2)(t) = 0, Δv2(tk) = −Lkv2(tk),

from Lemma 1, we have v1 = y1 − y2 � 0 and v2 = y2 − y1 � 0, so y1 = y2 . Then
problem (3.4) has exactly one solution.

Define a mapping A by Aη = y , then A has the following properties:

(a) α � Aα , β � Aβ ;

(b) A is monotonically nondecreasing in [α,β ] , i.e., for any η1,η2 ∈ [α,β ] , η1 � η2

implies Aη1 � Aη2 .

To prove (a), set m(t) = α(t)−α1(t) , t ∈ J , where α1 = Aα . Employing (H1 ),
we have

m′(t) = α ′(t)−α ′
1(t)

� (Qα)(t)− [(Qα)(t)+Mα(t)+ (L α)(t)−Mα1(t)− (L α1)(t)]
= −Mm(t)− (L m)(t),

and

Δm(tk) = Δα(tk)−Δα1(tk)
� Ik(α(tk))− [−Lkα1(tk)+ Ik(α(tk))+Lkα(tk)]
= −Lkm(tk),

note that m(0) � 0, then based on Lemma 1, we get α � α1 . Analogously, we have
β � Aβ .

To prove (b), let η1, η2 ∈ [α,β ] , η1 � η2 . Suppose that v1 = Aη1 , v2 = Aη2 and
m(t) = v1(t)− v2(t) . Applying (H2 ) and (H3 ), we get

m′(t)+Mm(t)+ (Lm)(t) = (Qη1)(t)+Mη1(t)+ (L η1)(t)
− (Qη2)(t)−Mη2(t)− (L η2)(t) � 0,

Δm(tk) = Δv1(tk)−Δv2(tk)
= [−Lkv1(tk)+ Ik(η1(tk)+Lkη1(tk)]− [−Lkv2(tk)+ Ik(η2(tk)+Lkη2(tk)]
� −Lk(v1(tk)− v2(tk))
= −Lkm(tk),

and
B(x,η1) � B(x,η2), for all x ∈ [α0,β0],

then Aη1(0) = ςη1 � ςη2 = Aη2(0) , thus m(0) � 0. Based on Lemma 1 we have
m(t) � 0, t ∈ J , which implies Aη1 � Aη2 .

Now, define the sequences {αn(t)} , {βn(t)} with α0 = α , β0 = β such that
αn+1 = Aαn , βn+1 = βn . Following (a) and (b), we have

α0 � α1 � α2 � . . . � αn � . . . � βn � . . . � β2 � β1 � β0.
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Consequently, there exist ρ and r such that lim
n→∞

αn(t)= ρ(t) and lim
n→∞

βn(t)= r(t)

uniformly and monotonically. Clearly, ρ(t) and r(t) are the solutions of problem (1.1).
To prove that ρ(t) and r(t) are extremal solutions of problem (1.1), let y(t) be

any solution of (1.1) such that α(t) � y(t) � β (t) . Suppose that there exists a positive
integer n such that αn(t) � y(t) � βn(t) on J . Based on the monotonically nondecreas-
ing property of A , we can easily see that αn+1 = Aαn � Ay = y , i.e. , αn+1(t) � y(t) on
J . Similarly, we can get y(t) � βn+1(t) on J . Since α0(t) � y(t) � β0(t) on J , by in-
duction we derives αn(t) � y(t) � βn(t) on J for every n . Therefore ρ(t) � y(t) � r(t)
as n → ∞ . We complete the proof. �

4. Example

In this section, we give an example that proves the validity of Theorem 2.

EXAMPLE 1. Consider the following problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y′(t) = −1
2
y(t)+

1
2

cos(y( 1
2 t))− t2

∫ t

0
e

1
2 sy(s)ds = (Qy)(t), t �= 1

3
,t ∈ J,

Δy(tk) = − 1
15

y2(tk), tk =
1
3
,

B(y(0),y) = y(0)+
∫ 1

0
(s− y(s))ds− 1

4
,

(4.1)

where J = [0,1] . Set

α0(t) = 0, β0(t) =

⎧⎪⎪⎨
⎪⎪⎩

3
4
t +1, t ∈ [0,

1
3
],

3
4
t +

3
4
, t ∈ (

1
3
,1],

we can easily verify that α0(t) is a lower solution and β0(t) is an upper solution with
α0(t) � β0(t) .

By computing, we have

Ik(u(tk))− Ik(v(tk)) = − 1
15

(
u2(tk)− v2(tk)

)
� −1

6
(u(tk)− v(tk))

= −L1(u(tk)− v(tk)),

where α0(tk) � v(tk) � u(tk) � β0(tk) , L1 =
1
6

.

(Qu)(t)− (Qv)(t) � −1
2
(u− v)− (L (u− v))(t)

where α0(t) � v(t) � u(t) � β0(t) , M =
1
2

.
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It is easy to prove that (L y)(t) = t2
∫ t

0
e

1
2 sy(s)ds and

∫ T

0
eMT (L e−M)(t)dt +

p

∏
k=1

Lk =
∫ 1

0
e

1
2
(
t2

∫ t

0
e

1
2 se−

1
2 sds

)
dt +

1
6

� 1.

Apparently, for any y1 < y2 , B(y(0),y1)−B(y(0),y2) =
∫ 1
0 (y2(s)− y1(s))ds >

0. So B(y(0), ·) is nonincreasing. Then all conditions of Theorem 2 are satisfied.
Therefore, via Theorem 2, there exist monotone iterative sequences {αn(t)},{βn(t)}
which converge uniformly on J to the extremal solutions of (4.1).
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