A PROBLEM INVOLVING THE p–LAPLACIAN OPERATOR

RATAN KR. GRI AND D. CHOUDHURI

(Communicated by Jesús Ildefonso Díaz)

Abstract. Using a variational technique we guarantee the existence of a solution to the resonant Lane-Emden problem $-\Delta_p u = \lambda |u|^{q-2} u, \ u|\partial \Omega = 0$ if and only if a solution to $-\Delta_p u = \lambda |u|^{q-2} u + f, \ u|\partial \Omega = 0$, $f \in L^{p'}(\Omega)$ (p' being the conjugate of p), exists for $q \in (p, p^*)$ under certain condition on λ, where p^* is the Sobolev conjugate of p.

1. Introduction

The study of partial differential equations involving a p-Laplacian differential operator has become a major case of study in the recent times although it is still far from being completely understood, especially when $p = 1$ or ∞. A few evidences of the limiting case can be found in [18], [20]. In fact, existence of a positive eigenvector to the eigenvalue problem can be found in [7]. When $p = 2$, the usual Laplacian is obtained for which a vast literature exists ([10], [11] and the references therein). For $p \neq 2$ the p-Laplacian operator has physical applications in the study of non-Newtonian fluids (dilatant fluids when $p > 2$) [15]. In practical life most of the problems are non linear by nature for which a numerical solution is sought for, however, unearthing the existence of solution leads to a rich theory hidden behind the partial differential equations. The problems we are going to address in this article are the following. Let Ω be a bounded subset of $\mathbb{R}^n, n \geq 3$ with a Lipschitz boundary $\partial \Omega$. Given $1 < p < \infty$ and $q \in (p, p^*)$, where $p^* = \frac{np}{n-p}$ if $1 < p < n$ and $p^* = \infty$ if $p \geq n$, we consider the following problems.

1. $-\Delta_p u = \lambda |u|^{q-2} u, \ u|\partial \Omega = 0$. This problem is also known as the resonant Lane-Emden problem.

2. $-\Delta_p u = \lambda |u|^{q-2} u + f, \ f \in L^{p'}(\Omega), \ u|\partial \Omega = 0$.

where λ is a real number, $\Delta_p = \nabla \cdot (|\nabla|^{p-2} \nabla \cdot)$. Throughout this paper we shall refer the problems in 1 and 2 as the first and the second problem respectively.

We call the first problem to be of sub-linear type if $1 < q < p < p^*$ and of super-linear type when $1 < p < q < p^*$. In this article, we restrict the first problem to be of
super-linear type. It is found in [5, 6] that a unique solution exists to the first problem for the sub-linear case whereas uniqueness is lost for the super-linear case. Readers interested in knowing more about the first problem can refer to examples found in [8], [16], where the domain is ring shaped for \(q \sim p^* \) and the solution is non-unique. Kawohl [2] showed the same but the domain which was considered is of annulus type with the annulus being sufficiently small in size. Uniqueness of solution is also guaranteed in [9] for the sub-linear case whereas a subdifferential method has been used to prove existence in [13] for both sub and super linear cases. Grumiau and Parini [3] discussed the asymptotic behavior of the ground state solutions as \(q \to p \). In recent times Vérón et al [12] considered a similar problem but with a measure instead of the function \(f \). They have characterized the ‘good’ measures for which the problem - \(\Delta p u + g(x, u) = \mu, u\rvert_{\partial\Omega} = 0 \) - where \(g(\ldots) \) is non-decreasing, \(\Omega \) is a bounded domain in \(\mathbb{R}^n \) - has a solution. Interested readers can also refer to the work of Giri and Choudhuri [19] (and the references therein) who have used the notion of ‘reduced limit’ for problems with measure data.

In this paper we will use a well known variational technique to show the existence of a solution in \(W^{1,p}_0(\Omega) = \{ v \in L^p(\Omega) : \nabla v \in L^p(\Omega), v\rvert_{\partial\Omega} = 0 \} \). A Fredholm type alternative is also proposed thus showing a connection between the first and the second problem. We organize the paper into two sections. In Section 2 we give the Mathematical formulation. In Section 3 we discuss a few preliminary results and the main result.

2. Mathematical formulation

The following definitions and theorems will be used in the main result we prove.

2.1 Definition: Let \(X \) be a Banach space and \(H : X \to \mathbb{R} \) a \(C^1 \) functional. It is said to satisfy the Palais-Smale condition (PS) if the following holds.

Whenever \(\{ u_n \} \) is a sequence in \(X \) such that \(\{ H(u_n) \} \) is bounded and \(H'(u_n) \to 0 \) strongly in \(X' \) (the dual space), then \(\{ u_n \} \) has a strongly convergent subsequence in \(X \).

The (PS) condition is a strong condition as very “well-behaved” function do not satisfy it (Example: \(f(x) = c, x \in \mathbb{R}, c \) a real constant).

We now state the following important theorem due to Ambrosetti and Rabinowitz [1] which is a common tool used in the theory of modern PDEs.

Mountain-pass theorem: Let \(H : X \to \mathbb{R} \) be a \(C^1 \) functional satisfying (PS). Let \(u_0, u_1 \in X, c_0 \in \mathbb{R} \) and \(r > 0 \) such that

1. \(||u_1 - u_0|| > r \)

2. \(H(u_0), H(u_1) < c_0 \leq H(v) \), \(\forall v \) such that \(||v - u_0|| = r \). Then \(H \) has a critical value \(c \geq c_0 \) defined by

\[
 c = \inf_{\Gamma \in \mathcal{P}} \max_{t \in [0,1]} H(\Gamma(t)), \tag{2.1}
\]

where \(\mathcal{P} \) is the collection of all continuous paths \(\Gamma : [0, 1] \to X \) such that \(\Gamma(0) = u_0, \Gamma(1) = u_1 \).
2.2 Weak formulation of the problem: We now give the weak formulation of the first problem. We say that \(u \in W^{1,p}_0(\Omega) \) is a weak solution of the first problem if
\[
\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v dx - \lambda \int_{\Omega} |u|^{q-2} uv dx = 0
\] (2.2)
for every \(v \in W^{1,p}_0(\Omega) \).

The weak solutions of the Lane-Emden problem are the critical points of the energy function defined by
\[
J_q(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p dx - \frac{\lambda}{q} \int_{\Omega} |u|^q dx.
\] (2.3)

The following compact embedding theorems, due to Rellich-Kondrachov will be used in our work.

1. if \(p < n \), \(W^{1,p}_0(\Omega) \hookrightarrow L^q(\Omega) \), \(1 \leq q < p^* \),
2. if \(p = n \), \(W^{1,n}_0(\Omega) \hookrightarrow L^q(\Omega) \), \(1 \leq q < \infty \),
3. if \(p > n \), \(W^{1,p}_0(\Omega) \hookrightarrow C(\overline{\Omega}) \).

We consider the non-homogeneous counterpart of the first problem - which is the second problem - and is as follows.
\[
-\Delta_p u = \lambda |u|^{q-2} u + f,
\]
\(u|_{\partial \Omega} = 0 \), \(p' \) being the conjugate of \(p \), which is equal to \(\frac{p}{p-1} \). Let the corresponding energy functional be denoted by \(J \) which is defined as follows.
\[
J(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p dx - \frac{\lambda}{q} \int_{\Omega} |u|^q dx - \int_{\Omega} f u dx.
\] (2.5)

The Fréchet derivative of \(J \), which is in \(W^{-1,p'}_0(\Omega) \) where \(p' = \frac{p}{p-1} \), is
\[
< J'(u), v > = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v dx - \lambda \int_{\Omega} |u|^{q-2} uv dx - \int_{\Omega} f v dx,
\] (2.6)
\(\forall v \in W^{1,p}_0(\Omega) \). Thus \(u \in W^{1,p}_0(\Omega) \) is a weak solution of the second problem if
\[
\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v dx - \lambda \int_{\Omega} |u|^{q-2} uv dx - \int_{\Omega} f v dx = 0.
\]

3. Few preliminary results and the main theorem

The main result of this paper, stated informally, is as follows. The problem \(-\Delta_p u = \lambda |u|^{q-2} u, u|_{\partial \Omega} = 0 \) has a weak solution if and only if the problem \(-\Delta_p u = \lambda |u|^{q-2} u + \)
Since have technical lemmas on which the proof of this result will rely upon. The case of $p \geq n$ follows the same proof as in the case $p < n$ which is based on the results on compact embedding stated after equation (2.3). But first we present a few technical lemmas on which the proof of this result will rely upon.

We first assume that a nontrivial solution exists to the problem

$$-\Delta_p u = \lambda |u|^{q-2}u, \quad u|_{\partial \Omega} = 0,$$

(3.1)

Theorem 1. The mapping J defined in (2.5) is a C^1-functional over $W^{1,p}_0(\Omega)$.

Proof. The functional J is differentiable which can be seen by extending the arguments in [17], Theorem 5.3.1. Thus it is enough to show that $J'\prime$ is continuous. Now from (2.6), we have

$$|J'(u), v| \leq \int_\Omega |\nabla u|^{p-2} \nabla u \cdot \nabla v dx + |\lambda| \int_\Omega |u|^{q-2} |v| dx + \int_\Omega |f||v| dx \leq ||\nabla u||_{p^{-1}} ||\nabla v||_p + |\lambda| ||u||_{q^{-1}} ||v||_q + ||f||_{p^{-1}} ||v||_p \leq \left[||\nabla u||_{p^{-1}} + C_1 |\lambda|||u||_{q^{-1}} + C_2 ||f||_{p^{-1}} \right] ||\nabla v||_p,$$

(3.2)

$\forall v \in W^{1,p}_0(\Omega)$, where C_1, C_2 are the constants due to the embedding of $W^{1,p}_0(\Omega)$ in $L^q(\Omega)$ for $q \in [1, p^*)$. From (3.2) one can see that J is a C^1 functional over $W^{1,p}_0(\Omega)$.

Theorem 2. There exists $u_0, u_1 \in W^{1,p}_0(\Omega)$ and a positive real number c_0 such that $J(u_0), J(u_1) < c_0$ and $J(v) \geq c_0$, for every v satisfying $||v-u_0||_{1,p} = r$.

Proof. Let $u_0 = 0$. Clearly u_0 is a solution of (3.1) $J(0) = 0$. Now let $w \in B(0,1) = \{u \in W^{1,p}_0(\Omega) : ||u||_{1,p} = 1\}$ and consider $v = u_0 + rw$ for $r > 0$ and hence $||v-u_0||_{1,p} = r$. We first show the existence of r_0, c_0 such that for each v we have $||v-u_0||_{1,p} = r_0$ and for which $J(v) \geq c_0$, where $c_0 > 0$. Since $p < q < p^*$, we have

$$J(u_0 + rw) - J(u_0) = \frac{r^p}{p} \int_\Omega |\nabla w|^p dx - \frac{r^q \lambda}{q} \int_\Omega |w|^q dx - r \int_\Omega fwdx, = \frac{r^p}{p} - \frac{r^q \lambda}{q} \int_\Omega |w|^q dx - r \int_\Omega fwdx.$$

(3.3)

Further, $|w|_{1,p} = 1$ and hence $\int_\Omega w^p dx \leq \int_\Omega |w|^p dx = ||w||_p^p \leq c_1 |w|_{1,p}^p = c_1$. Similarly, $\int_\Omega w^q dx \leq c_2$. Using these arguments leads to

$$J(u_0 + rw) - J(u_0) \geq r \left[\frac{r^{p-1}}{p} - \frac{r^{q-1} \lambda}{q} c_2 - c_1^{1/p} ||f||_{p'} \right].$$

(3.4)
We first analyze the term

$$
\left[\frac{r^{p-1}}{p} - \frac{r^{q-1}}{q} \right] c_2 - c_1^{1/p} ||f||_{p'} = F(r)
$$

(say). Clearly $F(0) < 0$ and for $r_0 = \left(\frac{q(p-1)}{p(q-1)} \frac{1}{\lambda c_2} \right)^{\frac{q-p}{p-1}}$ we see that $F'(r_0) = 0$. A bit of calculus guarantees that $F''(r_0) < 0$ and hence r_0 is a maximizer of F. Note that, if

$$
0 < \lambda < \lambda_1 = \frac{q(p-1)}{c_2 p(q-1)}, \left(\frac{q-p}{p(q-1)} \cdot \frac{1}{c_1^{\frac{1}{p} ||f||_{p'}}} \right)^{\frac{q-p}{p-1}},
$$

then $F(r_0) > 0$. As $r \to \infty$ we have $F(r) \to -\infty$. Hence there exists $r_1, r_2 > 0$, $r_0 > 0$ (this r_0 could be different from the above one) such that $r_1 F(r_1) = r_2 F(r_2) = c'$ (say), $r_1 < r_0 < r_2$ and $rF(r) > 0$ for each $r \in (r_1, r_2)$. Thus for v such that $||v - u_0||_{1,p} = r_0$ we have $J(v) \geq c' > 0$ for each $v \in B(0, r_0) \subset W^{1,p}_0(\Omega)$.

Choice of u_1: Let w_q be a nontrivial solution to the equation $-\Delta_p w_q = \lambda |w_q|^{q-2} w_q$ in Ω, $w_q = 0$ on $\partial \Omega$. Consider the function $g = k w_q$, $k \in \mathbb{R}$, where we have normalized w_q with respect to the Sobolev norm on $W^{1,p}_0(\Omega)$ without changing its notation. Note that,

$$
J(g) = \left(\frac{k^p}{p} - \frac{\lambda k^q \int_\Omega |w_q|^q dx}{q} \right) - kC,
$$

where $C = \int_\Omega f w_q dx$. Since $p < q < p^*$, we choose k_0 to be sufficiently large so that

$$
\frac{k_0^p}{p} - \frac{\lambda k_0^q \int_\Omega |w_q|^q dx}{q} - k_0 C < 0.
$$

Then $J(k_0 w_q) < 0$ and hence $J(k_0 w_q) > J(u_0)$. Thus we can choose $u_1 = k_0 w_q$, where $k_0 > r_0$, due to which $||u_1 - u_0||_{1,p} > r_0$. Hence the result.

Theorem 3. The functional J satisfies the Palais-Smale condition.

Proof. Let u_n be a sequence in $W^{1,p}_0(\Omega)$ such that $|J(u_n)| \leq M$ and $J'(u_n) \to 0$ as $n \to \infty$ in $W^{-1,p'}_0(\Omega)$, p' being the conjugate of p. Now

$$
J(u_n) = \frac{1}{p} \int_\Omega |\nabla u_n|^p dx - \frac{\lambda}{q} \int_\Omega |u_n|^q dx - \int_\Omega f u_n dx, \quad (3.5)
$$

$$
< J'(u_n), v > = \int_\Omega |\nabla u_n|^{p-2} \nabla u_n. \nabla v dx - \lambda \int_\Omega |u_n|^{q-2} u_n v dx - \int_\Omega f v dx, \quad (3.6)
$$
for all \(v \in W_0^{1,p}(\Omega) \). Consider the following.

\[
< J'(u_n), u_n > = \int_\Omega |\nabla u_n|^{p-2}\nabla u_n \cdot \nabla v dx - \lambda \int_\Omega |u_n|^q dx - \int_\Omega fu_n dx, \tag{3.7}
\]

\[
J(u_n) = \frac{1}{p} \int_\Omega |\nabla u_n|^{p} dx - \frac{\lambda}{q} \int_\Omega |u_n|^q dx - \int_\Omega fu_n dx,
\]

\[
= \frac{1}{p} |u_n|_{1,p}^p - \frac{\lambda}{q} \int_\Omega |u_n|^q dx - \int_\Omega fu_n dx.
\]

\[
\lambda \int_\Omega |u_n|^q dx = \frac{q}{p} |u_n|_{1,p}^p - qJ(u_n) - q \int_\Omega fu_n dx
\]

\[
\frac{p-q}{p} |u_n|_{1,p}^p = < J'(u_n), u_n > - qJ(u_n) - (q-1) \int_\Omega fu_n dx. \tag{3.8}
\]

From (3.8) \(\{u_n\} \) is bounded in \(W_0^{1,p}(\Omega) \) and hence by Eberlein-Šmulian’s theorem (refer Dunford-Schwartz [1; p. 430] [14]) it has a weakly convergent subsequence, say \(\{u_{n_k}\} \), in \(W_0^{1,p}(\Omega) \).

Claim. The subsequence \(\{u_{n_k}\} \) is strongly convergent in \(W_0^{1,p}(\Omega) \).

Proof. Applying limit \(n_k \to \infty \) to (3.6) (refer Appendix) and using the strong convergence of \(\{u_{n_k}\} \) in \(L^q(\Omega) \) due to compact embedding we obtain

\[
\int_\Omega |\nabla u|^{p-2}\nabla u \cdot \nabla v dx = \lambda \int_\Omega |u|^{q-2}uv dx + \int_\Omega fv dx, \tag{3.9}
\]

We then pass on the limit \(n_k \to \infty \) to (3.7) to get

\[
\lim_{n_k \to \infty} |u_{n_k}|_{1,p}^p = \lambda \int_\Omega |u|^q dx + \int_\Omega fu dx = |u|_{1,p}^p. \tag{3.10}
\]

Since, a weakly convergent sequence which is convergent in norm is strongly convergent, hence \(u_{n_k} \to u \) in \(W_0^{1,p}(\Omega) \) as \(n_k \to \infty \).

So, by the Mountain-pass theorem an extreme point for \(J \) exists in \(W_0^{1,p}(\Omega) \).

We summarize the results proved in Theorems 1, 2 and 3 in the form of a unified theorem as follows.

THEOREM 4. Suppose \(-\Delta_p u = \lambda |u|^{q-2}u, \ u|_{\partial\Omega} = 0 \) has a nontrivial solution for some \(\lambda > 0 \), where \(q \in (p, p^*) \). Then the problem \(-\Delta_p u = \lambda |u|^{q-2}u + f, \ f \in L^p(\Omega), \ u|_{\partial\Omega} = 0 \) has a nontrivial solution whenever \(\lambda \in (0, \lambda'] \) where \(\lambda' < \lambda_1 \) and \(\lambda_1 = \frac{q(p-1)}{c_2p(q-1)} \left(\frac{q-p}{p(q-1)} \right)^{\frac{q-p}{p}} \), \(p' = \frac{p}{p-1}, \ c_1^{1/p}, c_2^{1/q} \) are the Sobolev constants corresponding to the embedding of \(W_0^{1,p}(\Omega) \) in \(L^p(\Omega), L^q(\Omega) \) respectively.

Arguing on similar lines, as in Theorems 1, 2 and 3, we conclude the following result.
Theorem 5. If the eigenvalue problem
\[-\Delta_p u = \lambda |u|^{p-2} u \text{ in } \Omega, \]
\[u|_{\partial \Omega} = 0 \text{ on } \partial \Omega, \]
has a nontrivial solution, then the non homogeneous Lane-Emden problem
\[-\Delta_p u = \lambda |u|^{q-2} u + f, \quad f \in L^{p'}(\Omega), \]
\[u|_{\partial \Omega} = 0, \]
has a nontrivial solution for \(q \in (p, p^*) \) whenever \(\lambda \in (0, \lambda'] \) where \(\lambda' < \lambda_1 \) and
\[\lambda_1 = \frac{q(p-1)}{c_2 p(q-1)} \left(\frac{q-p}{p(q-1)} \frac{1}{c_1^p ||u||^p} \right)^{\frac{q-p}{p-1}}, \quad p' = \frac{p}{p-1}, \quad c_1^{1/p}, \quad c_2^{1/q} \text{ are the Sobolev constants} \]
corresponding to the embedding of \(W^{1,p}_0(\Omega) \) in \(L^p(\Omega), L^q(\Omega) \) respectively.

Conversely, suppose to each \(f \in L^{p'}(\Omega) \) the problem
\[-\Delta_p u = \lambda |u|^{q-2} u + f, \]
\[u|_{\partial \Omega} = 0, \quad (3.11) \]
has a nontrivial solution on the set \(\mathcal{M} = \{ u \in W^{1,p}_0(\Omega) : ||u||_q = 1 \} \) for some \(\lambda > 0 \),
where \(q \in [p, p^*) \). Existence of such solution can be assumed from the weak lower semi continuity and coercivity of the corresponding energy functional \(J \) on the subset \(\mathcal{M} \) of \(W^{1,p}_0(\Omega) \) (refer [17]). In order to prove the existence of nontrivial solution of the first problem for \(q \in [p, p^*) \), we let \(\{ f_n \} \subset L^{p'}(\Omega) \) be a sequence such that \(f_n \rightarrow 0 \) in \(L^{p'}(\Omega) \). Then for each \(f_n \), there exists a solution, say \(u_n \).

We have
\[B[u, v] = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v dx - \lambda \int_{\Omega} |u|^{q-2} u v dx, \]
\[= \int_{\Omega} f v dx, \quad \forall v \in W^{1,p}_0(\Omega), \quad (3.12) \]
where \(B \) is a ‘non linear form’ in two variables \(u \) and \(v \). It is easy to check that \(B(\cdot, \cdot) \) is the Fréchet derivative of the \(C^1 \) functional \(\frac{1}{p} \int_\Omega |\nabla u|^p - \frac{\lambda}{q} \int_\Omega |u|^q \) and hence is continuous.

Clearly, for each \(v \in W^{1,p}_0(\Omega) \) we have
\[B[u_n, v] = \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \cdot \nabla v dx - \lambda \int_{\Omega} |u_n|^{q-2} u_n v dx, \]
\[= \int_{\Omega} f_n v dx, \]
\[\leq ||f_n||_{p'} ||v||_p \rightarrow 0 \text{ as } n \rightarrow \infty. \quad (3.13) \]
Hence \(\int_{\Omega} f_n v dx \rightarrow 0 \) as \(n \rightarrow \infty \). Consider \(T_n(v) = \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \cdot \nabla v dx \). Then \(T_n \)'s are bounded linear over \(W^{1,p}_0(\Omega) \) and \(||T_n|| = |||\nabla u_n|^{p-1}||_{p'} \) for \(n \geq 1 \). From the above
In other words, for a fixed \(v \in W_0^{1,p}(\Omega) \) we have the sequence \(\{T_n(v)\} \) to be bounded which implies that \(\{T_n(v)\} \) is pointwise bounded. Thus by the uniform boundedness principle \(\{||T_n||\} \) is bounded. Thus \(\{||\nabla u_n||_p\} \) is bounded. Hence, there exists a subsequence \(\{u_{n_k}\} \) which weakly converges to \(u_\infty \) with respect to the norm \(|| \cdot ||_{1,p} \) in \(W_0^{1,p}(\Omega) \). Hence we have

\[
\lim_{n_k \to \infty} \int_{\Omega} |\nabla v|^{p-2} \nabla v \cdot \nabla u_{n_k} \, dx = \int_{\Omega} |\nabla v|^{p-2} \nabla v \cdot \nabla u_\infty \, dx, \quad \forall v \in W_0^{1,p}(\Omega).
\]

\[
\Rightarrow \lim_{n_k \to \infty} \int_{\Omega} |\nabla u_{n_k}|^{p-2} \nabla u_{n_k} \cdot \nabla u_{n_k} \, dx = \int_{\Omega} |\nabla u_{n_k}|^{p-2} \nabla u_{n_k} \cdot \nabla u_\infty \, dx, \quad \forall v \in W_0^{1,p}(\Omega).
\]

(3.14)

for a fixed \(l \). Therefore, since \(u_{n_k} \to u_\infty \) in \(W_0^{1,p}(\Omega) \) implies that \(|\nabla u_{n_k}|^{p-1} \to |\nabla u_\infty|^{p-1} \) (for a subsequence) in \(L^p(\Omega) \) (Refer Appendix). But \(W_0^{1,p}(\Omega) \hookrightarrow L^p(\Omega) \hookrightarrow W^{-1,p'}(\Omega) \) and hence

\[
\lim_{n_k \to \infty} \int_{\Omega} |\nabla u_{n_k}|^{p-2} \nabla u_{n_k} \cdot \nabla v \, dx = \int_{\Omega} |\nabla u_\infty|^{p-2} \nabla u_\infty \cdot \nabla v \, dx, \quad \forall v \in W_0^{1,p}(\Omega),
\]

\[
\Rightarrow \lim_{n_k \to \infty} \int_{\Omega} |\nabla u_{n_k}|^{p-2} \nabla u_{n_k} \cdot \nabla u_\infty \, dx = \int_{\Omega} |\nabla u_\infty|^{p} \, dx.
\]

(3.15)

Therefore, \(\lim_{n_k \to \infty} \int_{\Omega} |\nabla u_{n_k}|^p \, dx = \int_{\Omega} |\nabla u_\infty|^p \, dx \). It immediately can be concluded that there exists a \(u_\infty \) such that \(u_{n_k} \to u_\infty \) in \(W_0^{1,p}(\Omega) \). Hence using the continuity of \(B[.,.] \) in (3.12) we have

\[
\lim_{n_k \to \infty} B[u_{n_k}, v] = \lim_{n_k \to \infty} \int_{\Omega} |\nabla u_{n_k}|^{p-2} \nabla u_{n_k} \cdot \nabla v \, dx - \lim_{n_k \to \infty} \lambda \int_{\Omega} |u_{n_k}|^{q-2} u_{n_k} \, v \, dx
\]

\[
= \lim_{n_k \to \infty} \int_{\Omega} f_{n_k} \, v \, dx,
\]

\[
\Rightarrow B[u_\infty, v] = 0, \forall v \in W_0^{1,p}(\Omega).
\]

In other words,

\[
\int_{\Omega} |\nabla u_\infty|^{p-2} \nabla u_\infty \cdot \nabla v \, dx - \lambda \int_{\Omega} |u_\infty|^{q-2} u_\infty \, v \, dx = 0, \forall v \in W_0^{1,p}(\Omega).
\]

(3.16)

Assume that \(\lambda \in (0, \inf_{u \neq 0 \in W_0^{1,p}(\Omega)} \left\{ \frac{\int_{\Omega} |\nabla u|^p}{\int_{\Omega} |u|^q} \right\} \) (infimum exists and is strictly greater than zero which follows from the embedding result for \(p < N \)). Since \(||u_{n_k}||_q = 1 \) and \(u_{n_k} \to u_\infty \) in \(W_0^{1,p}(\Omega) \), hence we have

\[
0 < \lambda \leq \liminf \frac{\int_{\Omega} |\nabla u_{n_k}|^p}{\int_{\Omega} |u_{n_k}|^q}
\]

\[
= \liminf \int_{\Omega} |\nabla u_{n_k}|^p
\]

\[
= \liminf ||\nabla u_{n_k}||_p^p = ||\nabla u_\infty||_p^p = ||u_\infty||_{1,p}^p
\]

This implies that \(u_\infty \) is a nontrivial solution of the first problem. Thus we summarize the result proved as follows.
Theorem 6. Suppose to each \(f \in L^q(\Omega) \), \(p' = \frac{p}{p-1} \), the problem \(-\Delta_p u = \lambda |u|^{q-2}u + f, u|_{\partial \Omega} = 0 \) has a solution in \(M \subset W_0^{1,p}(\Omega) \) for some \(\lambda > 0 \), then the problem \(-\Delta_p u = \lambda |u|^{q-2}u, u|_{\partial \Omega} = 0 \), has a nontrivial solution in \(W_0^{1,p}(\Omega) \) for \(q \in [p, p^*], \) whenever \(\lambda \in \left(0, \inf_{u \neq 0 \in W_0^{1,p}(\Omega)} \frac{\|f\|_{\Omega} |\nabla u|^p}{\|u\|^q} \right) \).

We end this section with a small observation from Theorem 6 that if to each \(f \in L^p(\Omega) \), the problem \(-\Delta_p u = \lambda |u|^{p-2}u + f, u|_{\partial \Omega} = 0 \) has a solution in \(M \subset W_0^{1,p}(\Omega) \) for some \(\lambda > 0 \) and \(q \in [p, p^*], \) then the eigenvalue problem \(-\Delta_p u = \lambda |u|^{p-2}u, u|_{\partial \Omega} = 0 \), has a nontrivial solution in \(W_0^{1,p}(\Omega) \), whenever \(\lambda \in \left(0, \inf_{u \neq 0 \in W_0^{1,p}(\Omega)} \frac{\|f\|_{\Omega} |\nabla u|^p}{\|u\|^q} \right) \).

4. Appendix

We show that

\[
\lim_{n \to \infty} \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \cdot \nabla v dx = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v dx, \quad \forall v \in W_0^{1,p}(\Omega). \tag{4.1}
\]

We divide the explanation into two cases:

Case 1: When \(p > 2 \).

This implies that \(p' \), the conjugate of \(p \), should be lesser than 2, i.e., \(1 < p' < 2 < p \). Thus we have \(W_0^{1,p}(\Omega) \hookrightarrow compact L^{p'}(\Omega) \) (since \(W_0^{1,p}(\Omega) \hookrightarrow compact L^q(\Omega) \) for \(q \in [1, p^*] \)). Since \(\nabla u_n \) converges weakly to, say \(\nabla u \), in \(L^p(\Omega) \), hence \(\langle \nabla u_n - \nabla u, \nabla v \rangle \to 0 \) for each \(v \in L^p(\Omega) \). Thus \(\langle \nabla u_n - |\nabla u|, |\nabla u| - |\nabla v| \rangle \to 0 \), i.e., \(||\nabla u_n||_2 \to ||\nabla u||_2 \). Hence \(||\nabla u_n||_{p'} \to ||\nabla u||_{p'} \) because \(p' < 2 < p \). By the Riesz-Fischer theorem [4], there exists a subsequence of \(\{\nabla u_n\} \) which converges pointwise a.e., i.e., \(|\nabla u_n(x)| \to |\nabla u(x)| \). So \(|\nabla u_n(x)|^{p-1} \to |\nabla u(x)|^{p-1} \) and hence \(|\nabla u_n|^{p-1} \to |\nabla u|^{p-1} \) in \(L^{p'}(\Omega) \). Thus we have \(\lim_{n \to \infty} \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \cdot \nabla v dx = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v dx, \forall v \in W_0^{1,p}(\Omega) \).

Case 2: When \(p < 2 \).

This implies that \(p' \), the conjugate of \(p \), should be greater than 2, i.e., \(p < 2 < p' \).

Look at the map \(F : W_0^{1,p}(\Omega) \to L^{p'}(\Omega) \) defined by \(u \mapsto |\nabla u|^{p-1} \). Consider the range of \(F \), i.e., \(R(F) = \{|\nabla u|^{p-1} : u \in W_0^{1,p}(\Omega)\} \).

Observe that the map \(F \) is bounded in the sense that bounded sets are mapped to bounded sets. Hence if \(u_n \to u \) in \(W_0^{1,p}(\Omega) \) implies that \(\{u_n\} \) is bounded in \(W_0^{1,p}(\Omega) \). Hence \(\{F(u_n)\} = \{|\nabla u_n|^{p-1}\} \) is bounded in \(L^{p'}(\Omega) \). Since \(L^{p'}(\Omega) \) is reflexive, hence there exists a subsequence of \(\{|\nabla u_n|^{p-1}\} \) which weakly converges to, say, \(w \) in \(L^{p'}(\Omega) \).

We have the following: \(u_n \to u \) in \(W_0^{1,p}(\Omega) \) so \(|\nabla u_n|^{p-1} \to w \) in \(L^{p'}(\Omega) \). This implies that

\[\langle |\nabla u_n|^{p-1} - w, v \rangle \to 0, \forall v \in L^{p'}(\Omega) \]
Since \(p < 2 < p' \) hence \(|\nabla u_n|^{p-1} - w \in L^p(\Omega)\). Thus \(|||\nabla u_n|^{p-1} - w||_2 \to 0\) and hence \(|||\nabla u_n|^{p-1} - w||_p \to 0\). Therefore we have a subsequence of \(\{|||\nabla u_n|^{p-1}\}\) such that \(|\nabla u_n|^{p-1} \to w\) pointwise a.e. (implying \(|\nabla u_n| \to w^{\frac{1}{p-1}}\) pointwise a.e.) and so \(|\nabla u_n| \to w^{\frac{1}{p-1}}\) in \(L^p(\Omega)\). Hence \(w = |\nabla u|^{p-1}\).

Thus in all the above cases we found the following.

\[
\lim_{n \to \infty} \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \cdot \nabla v \, dx = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx, \quad \forall v \in W^{1,p}_0(\Omega). \tag{4.2}
\]

Hence by the compact embedding due to Rellich-Kondrachov it can be concluded \(u_n \to u\) in \(L^q(\Omega)\). Thus we also have

\[
\lim_{n \to \infty} \int_{\Omega} |u_n|^{q-2} u_n v \, dx = \int_{\Omega} |u|^{q-2} u v \, dx, \quad \forall v \in W^{1,p}_0(\Omega). \tag{4.3}
\]

5. Conclusions

The resonant Lane-Emden problem has been studied. An existence result has been established to the non-homogeneous Lane-Emden problem for the super-linear case - \(1 < p < q < p^*\) for \(\lambda \in (0, \lambda'] - \lambda'\) being sufficiently large - if it is assumed that a solution exists to the homogeneous Lane-Emden problem for the super-linear case - \(1 < p < q < p^*\). We further proved the ‘converse’ that if the non-homogeneous problem has a solution then a solution to the homogeneous problem exists for the super linear case. We also established an ‘equivalence’ of eigenvalue problem and the non homogeneous Lane-Emden problem.

Acknowledgement. We would like to thank the anonymous referee(s) for carefully reading this paper and making many useful comments.

REFERENCES

(Received March 28, 2016)

Ratan Kr. Giri
Department of Mathematics
National Institute of Technology Rourkela
Rourkela - 769008, India
e-mail: giri90ratan@gmail.com

D. Choudhuri
Department of Mathematics
National Institute of Technology Rourkela
Rourkela - 769008, India
e-mail: dc.iit12@gmail.com