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ASYMPTOTIC BEHAVIOR OF POSITIVE

SOLUTIONS OF A LANCHESTER–TYPE MODEL

TRAN THI HUYEN TRANG AND HIROYUKI USAMI

(Communicated by Peter L. Simon)

Abstract. An ordinary differential system, referred to as Lanchester-type model, is treated. We
examine how asymptotic behavior of every solution of the system varies according to the initial
data. We can show the existence of critical values for initial data.

1. Introduction and statement of the main results

In the paper we consider the following binary system⎧⎨
⎩

x′ = −a(t)xy,

y′ = −b(t)xy
(S)

under the following assumptions:
(A1 ) a(t) and b(t) are positive continuous functions on [0,∞) ;
(A2 ) For some constants λ1 , λ2 , μ1 > −1 and μ2 > −1, a(t) and b(t) satisfy

the following growth conditions:

0 < liminf
t→∞

a(t)
tλ1

� limsup
t→∞

a(t)
tλ2

< ∞;

and

0 < liminf
t→∞

b(t)
tμ1

� limsup
t→∞

b(t)
tμ2

< ∞.

System (S) is a kind of Lanchester model, which describes many phenomena ap-
pearing in economics, logistics, biology, and so on. Originally, (S) was proposed by [7]
to describe combat situations. It is said [1, 3, 4] that system (S) is a model of guerrilla
engagements.

It seems that several scientists and technicians engaged in operational research
treat such models via numerical methods; see, for example, [1, 3, 10]. However, as
far as we know, there are few results treating mathematical models like system (S)
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rigorously. In [4, 9] differential systems similar to (S) were considered mathematically.
In [2, 5, 6, 8] related results are obtained for Lanchester-type models.

In this paper we will study asymptotic behavior of positive solutions of (S). Let
x(0) > 0 and y(0) > 0. Then we can show that the (local) solution (x(t),y(t)) of (S)
exists globally on [0,∞) , and x(t) > 0 and y(t) > 0 there, because for example, the
formula

x(t) = x(0)exp

(
−
∫ t

0
a(s)y(s)ds

)
and y(t) = y(0)exp

(
−
∫ t

0
b(s)x(s)ds

)

holds as long as (x(t),y(t)) exists. Therefore x(t) and y(t) both decrease, and limt→∞ x(t)
and limt→∞ y(t) exist as nonnegative numbers. We focus on the values of limt→∞ x(t)
and limt→∞ y(t) .

To explain our motivation in detail, denote the global solution of (S) with the initial
condition

x(0) = α > 0 and y(0) = β > 0 (I)

by (x(t;α,β ),y(t;α,β )) . Let α > 0 be fixed arbitrarily, and let us move β ∈ (0,∞) .
We intend to examine how limt→∞(x(t;α,β ),y(t;α,β )) varies according to β .

As a typical example of system (S), consider the case where a(t) ≡ a0 and b(t) ≡
b0 for some positive constants a0 and b0 :⎧⎨

⎩
x′ = −a0xy,

y′ = −b0xy.
(S0)

This system can be solved explicitly as seen below. In fact, the solution (x(t),y(t)) ≡
(x(t;α,β ),y(t;α,β )) satisfies

(b0x(t)−a0y(t))′ = −a0b0x(t)y(t)+a0b0x(t)y(t) ≡ 0,

and so the quantity b0x(t)−a0y(t) is constant, that is, b0x(t)−a0y(t)≡ b0α −a0β for
t � 0. Let us put m = b0α − a0β . Since y(t) = (b0x(t)−m)/a0 , the first equation of
(S0) is rewritten as x′ = −x(b0x−m) . Therefore we get

x(t) =
mαemt

b0α(emt −1)+m
and y(t) =

mβ
memt +a0β (emt −1)

if m �= 0;

and

x(t) =
α

b0αt +1
and y(t) =

β
a0β t +1

if m = 0.

Put β0 = β0(α) = b0α/a0. By these formulas we can derive the following fact
concerning limt→∞(x(t;α,β ),y(t;α,β )) :

(i) if β < β0 , then limt→∞ x(t;α,β ) > 0 and limt→∞ y(t;α,β ) = 0;
(ii) if β = β0 , then limt→∞ x(t;α,β ) = limt→∞ y(t;α,β ) = 0;
(iii) if β > β0, then limt→∞ x(t;α,β ) = 0 and limt→∞ y(t;α,β ) > 0.
Accordingly, a simple problem naturally comes from this fact:
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PROBLEM. Like the typical example (S0) , is there a critical value for system (S)
with general coefficients a(t) and b(t)?

The main objective of the paper is to answer this problem. In fact, we can settle
this problem affirmatively in some sense.

The main result of the paper is as follows:

THEOREM 1. Let α > 0 be fixed. Then for system (S) there are two constants
β1 = β1(α) and β2 = β2(α) (β1 � β2) such that:

(i) if β < β1 , then limt→∞ x(t;α,β ) > 0 and limt→∞ y(t;α,β ) = 0;
(ii) if β1 � β � β2 , then limt→∞ x(t;α,β ) = limt→∞ y(t;α,β ) = 0;
(iii) if β > β2 , then limt→∞ x(t;α,β ) = 0 and limt→∞ y(t;α,β ) > 0.

REMARK 2. (i) For the typical system (S0) we have already shown that the crit-
ical numbers introduced in Theorem 1 are the same: β1 = β2 . So we conjecture that
β1 = β2 in Theorem 1 generally. One of our next aims is to see this fact.

(ii) It is impossible for solutions (x,y) of (S) to satisfy limt→∞ x(t) > 0 as well as
limt→∞ y(t) > 0. In fact if this is the case, then

∞ > −x(∞)+ x(0) =
∫ ∞

0
a(s)x(s)y(s)ds � x(∞)y(∞)

∫ ∞

0
a(s)ds,

which is a contradiction because of
∫ ∞
0 a(s)ds = ∞ by assumption (A2 ).

(iii) In [9], system (S) was considered mainly under more restrictive conditions.
However, the main objective in [9] is different from ours.

This paper is organized as follows. In Section 2 we give several preliminary re-
sults. In Sections 3 we give firstly several propositions forming part of the proof of
Theorem 1, and then we give the proof of the main result Theorem 1.

2. Preliminary results

LEMMA 3. A vector function (x(t),y(t)) is the solution of initial value problem
(S)-(I) if and only if it solves the system of integral equations

x(t) = α exp

(
−β

∫ t

0
a(s)exp

(
−
∫ s

0
b(r)x(r)dr

)
ds

)
, (1)

y(t) = β exp

(
−α

∫ t

0
b(s)exp

(
−
∫ s

0
a(r)y(r)dr

)
ds

)
. (2)

Proof. The initial value problem (S)-(I) is equivalent to the system of integral
equations

x(t) = α exp

(
−
∫ t

0
a(s)y(s)ds

)
, (3)

y(t) = β exp

(
−
∫ t

0
b(s)x(s)ds

)
. (4)
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Substituting (4) into the integrand of (3) we find that x(t) satisfies (1). Similarly we
can get (2) for y(t) .

Conversely, suppose that (x(t),y(t)) satisfies (1) and (2). Let us introduce the
auxiliary functions x̃ and ỹ by

x̃(t) = α exp

(
−
∫ t

0
a(s)y(s)ds

)
and ỹ(t) = β exp

(
−
∫ t

0
b(s)x(s)ds

)
.

Then, (1) and (2), respectively, can be rewritten as

x(t) = α exp

(
−
∫ t

0
a(s)ỹ(s)ds

)
, and y(t) = β exp

(
−
∫ t

0
b(s)x̃(s)ds

)
.

Therefore, x(t), x̃(t),y(t) and ỹ(t) satisfy⎧⎨
⎩

x′ = −a(t)xỹ, x(0) = α,

ỹ′ = −b(t)xỹ, ỹ(0) = β ,

and ⎧⎨
⎩

x̃′ = −a(t)x̃y, x̃(0) = α,

y′ = −b(t)x̃y, y(0) = β .

So by the uniqueness of solutions of initial value problems of ordinary differential sys-
tems, we find that (x, ỹ) ≡ (x̃,y) ; that is, (x,y) is the solution of (S)-(I). This completes
the proof. �

LEMMA 4. (Comparison Lemma) Let x0 � x0 > 0 and 0 < y
0
< y0 . Then

x(t;x0,y0
) > x(t;x0,y0) in (0,∞);

and
y(t;x0,y0

) < y(t;x0,y0) on [0,∞). (5)

REMARK 5. An analogous result to this lemma also holds when x0 > x0 and
y
0
� y0 .

Proof. We will show that y(t;x0,y0
) < y(t;x0,y0) on [0,∞) by contradiction. Sup-

pose the contrary. Since in some right neighborhoodof 0 we have y(t;x0,y0
)< y(t;x0,y0),

there is a T satisfying

y(t;x0,y0
) < y(t;x0,y0) on [0,T );

and
y(T ;x0,y0

) = y(T ;x0,y0).
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On the other hand, from Lemma 3 we have

1
y(T ;x0,y0

)
=

1
y
0

exp

(
x0

∫ T

0

b(s)

exp
(∫ s

0 a(r)y(r;x0,y0
)dr
)ds

)

>
1
y0

exp

(
x0

∫ T

0

b(s)

exp
(∫ s

0 a(r)y(r;x0,y0)dr
)ds

)
=

1
y(T ;x0,y0)

.

This is a contradiction. So (5) holds. The other inequality is a direct consequence of
(3) and (5). This completes the proof. �

In what follows we put B(t) =
∫ t
0 b(s)ds and A(t) =

∫ t
0 a(s)ds . Note that, by

assumption (A2 ), A(t) and B(t) have polynomial growths as t → ∞ .

LEMMA 6. Let K , k > 0 , and y0 > 0 be constants satisfying K > k and

k exp

(
y0

∫ ∞

0
a(s)e−kB(s)ds

)
� K;

and

ky0

(∫ ∞

0
a(s)B(s)e−kB(s)ds

)
exp

(
y0

∫ ∞

0
a(s)e−kB(s)ds

)
< 1.

Then, system (S) has a solution (x(t),y(t)) such that

k � x(t) � K, lim
t→∞

x(t) = k;

and
y(0) = y0, lim

t→∞
y(t) = 0.

REMARK 7. An analogous result to Lemma 6 holds if a(t) , b(t) , x and y are
replaced by b(t) , a(t) , y and x , respectively.

Proof of Lemma 6. A solution (x(t),y(t)) of system (S) satisfies limt→∞ x(t) = k
and y(0) = y0 if and only if it solves the system of integral equations

x(t) = k exp

(∫ ∞

t
a(s)y(s)ds

)
,

y(t) = y0 exp

(
−
∫ t

0
b(s)x(s)ds

)
.

By substituting the formula for y(t) into the formula for x(t) , it suffices to find a solu-
tion x(t) of the single integral equation

x(t) = k exp

(
y0

∫ ∞

t

a(s)

exp
(∫ s

0 b(r)x(r)dr
)ds

)
(6)
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satisfying k � x(t) � K , t � 0. We will solve this nonlinear integral equation via a
fixed point theorem.

Let X be the Banach space defined by

X =
{

x ∈C[0,∞)
∣∣∣∣sup

t�0
|x(t)| < ∞

}

equipped with the norm ‖x‖ = supt�0 |x(t)| for x ∈ X , and we introduce the subset
S ⊂ X given by

S = {x ∈ X |k � x(t) � K on [0,∞)}.
Let us define the operator Φ : X → X by

Φ[x](t) = k exp

(
y0

∫ ∞

t
Ψ[x](s)ds

)
, t � 0,

for x ∈ X , where Ψ[x](s) denotes

Ψ[x](s) = a(s)exp

(
−
∫ s

0
b(r)x(r)dr

)
, s � 0.

We will show that Φ is a contractive mapping on S below.
To see Ψ(S) ⊂ S, let x ∈ S . Then, it is easy to see that

0 � Ψ[x](s) � a(s)exp

(
− k

∫ s

0
b(r)dr

)
≡ a(s)e−kB(t), s � 0. (7)

So,

k � Φ[x](t) � k exp

(
y0

∫ ∞

0
a(s)e−kB(s)ds

)
� K

by the assumptions. Therefore, Φ(S) ⊂ S as desired.
For x1 , x2 ∈ S , we have

|Ψ[x1](s)−Ψ[x2](s)| � a(s)
∫ s

0
b(r)|x1(r)− x2(r)|dr · e−η(s),

where η(s) is a number between
∫ s
0 b(r)x1(r)dr and

∫ s
0 b(r)x2(r)dr , and so

|Ψ[x1](s)−Ψ[x2](s)| � a(s)
∫ s

0
b(r)dr · e−kB(s)‖x1− x2‖

≡ a(s)B(s)e−kB(s)‖x1− x2‖, s � 0. (8)

Then
|Φ[x1](t)−Φ[x2](t)| � ky0

∫ ∞

t
|Ψ[x1](s)−Ψ[x2](s)|ds · eξ (t),

where ξ (t) is a number between y0
∫ ∞
t Ψ[x1](s)ds and y0

∫ ∞
t Ψ[x2](s)ds. Therefore, by

(8)

|Φ[x1](t)−Φ[x2](t)| � ky0

∫ ∞

t
a(s)B(s)e−kB(s)ds · eξ (t)‖x1− x2‖.
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Since 0 � ξ (t) � y0
∫ ∞
t a(s)e−kB(s)ds by (7), we finally obtain

|Φ[x1](t)−Φ[x2](t)| � ky0

(∫ ∞

t
a(s)B(s)e−kB(s)ds

)

×exp

(
y0

∫ ∞

t
a(s)e−kB(s)ds

)
‖x1− x2‖, t � 0.

Accordingly,

‖Φ[x1]−Φ[x2]‖ � ky0

(∫ ∞

0
a(s)B(s)e−kB(s)ds

)

×exp

(
y0

∫ ∞

0
a(s)e−kB(s)ds

)
‖x1− x2‖.

By our assumptions Φ is a contraction on S . This completes the proof. �

3. Proof of the main result

Recall that we fix α > 0 arbitrarily. To prove Theorem 1, we further prepare two
propositions.

PROPOSITION 8. If β > 0 is sufficiently small, then

lim
t→∞

x(t;α,β ) > 0 and lim
t→∞

y(t;α,β ) = 0.

Proof. Let K,k > 0 be numbers satisfying k < K < α, and we fix them. Then,
there is a sufficiently small y0 such that the assumptions of Lemma 6 hold. Therefore,
we find an x0 ∈ (k,K) and a y0 satisfying

lim
t→∞

x(t;x0,y0) = k > 0 and lim
t→∞

y(t;x0,y0) = 0.

Let β be sufficiently small so that 0 < β < y0 . Since x0 < α , by Remark 5

x(t;α,β ) > x(t;x0,y0) and y(t;α,β ) < y(t;x0,y0), t � 0.

So
lim
t→∞

x(t;α,β ) = const � k > 0; and lim
t→∞

y(t;α,β ) = 0.

This completes the proof. �

PROPOSITION 9. If β > 0 is sufficiently large, then

lim
t→∞

x(t;α,β ) = 0 and lim
t→∞

y(t;α,β ) > 0.
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Proof. For k � 1 we can show easily that the inequality

kze−kz � z
ez −1

, z > 0

holds. Therefore for k � 1 we have

k
∫ ∞

0
b(s)A(s)e−kA(s)ds �

∫ ∞

0
b(s)

A(s)
eA(s)−1

ds < ∞.

So the Lebesgue dominated convergence theorem implies that

lim
k→∞

k
∫ ∞

0
b(s)A(s)e−kA(s)ds = 0.

It follows that there is a sufficiently large k > 0 satisfying

k exp

(
α
∫ ∞

0
b(s)e−kA(s)ds

)
� 2k;

and

kα
(∫ ∞

0
b(s)A(s)e−kA(s)ds

)
exp

(
α
∫ ∞

0
b(s)e−kA(s)ds

)
< 1.

Then by Lemma 6 (and Remark 7), we find that for some y0 > k

lim
t→∞

x(t;α,y0) = 0, lim
t→∞

y(t;α,y0) = k > 0.

For β satisfying β > y0, Lemma 4 implies that

x(t;α,y0) > x(t;α,β ) and y(t;α,y0) < y(t;α,β ).

So we get

lim
t→∞

x(t;α,β ) = 0; and lim
t→∞

y(t;α,β ) = const � k > 0.

This completes the proof. �

Now, we are in a position to prove Theorem 1 on the basis of Propositions 8 and
9.

Proof of Theorem 1. Recall that α > 0 be fixed arbitrarily. Define the sets S =
S(α) and S = S(α) in (0,∞) by

S =
{

β > 0
∣∣ lim

t→∞
x(t;α,β ) = 0 and lim

t→∞
y(t;α,β ) > 0

}
and

S =
{

β > 0
∣∣ lim

t→∞
x(t;α,β ) > 0 and lim

t→∞
y(t;α,β ) = 0

}
,

respectively. Clearly S∩S = /0 .
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By Propositions 8 and 9, and Lemma 4, S and S are intervals containing a neigh-
borhood of ∞ and a right neighborhood of 0, respectively. Furthermore, we find from
Lemma 4 that supS � infS . Put β∗ = infS and β ∗ = supS . Then β ∗ � β∗. We will
show that the conclusion of Theorem 1 holds by defining β1 = β ∗ and β2 = β∗. The
proof is divided into the following steps:

Step 1: Proof of limt→∞ y(t;α,β∗) = 0.
Step 2: Proof of limt→∞ x(t;α,β∗) = 0.

Step 3: Proof of limt→∞ y(t;α,β ∗) = limt→∞ x(t;α,β ∗) = 0.
Step 4: The final step.
Step 1. We claim that limt→∞ y(t;α,β∗) = 0. The proof is done by contradiction.

Suppose to the contrary that limt→∞ y(t;α,β∗) = 2k > 0. We can find a sufficiently
large T1 > 0 satisfying

exp

(
α
∫ ∞

T1

b(s)e−kA(s)ds

)
< 2.

By the continuity on the initial data, we can find a sufficiently small δ ∈ (0,β∗) satis-
fying

y(t;α,β∗ − δ ) > 2k on [0,T1].

Now, we claim that y(t;α,β∗ − δ ) > k on [0,∞) . In fact, if this is not the case, then
there is a T2 > T1 satisfying

y(t;α,β∗ − δ ) > k on [0,T2); and y(T2;α,β∗ − δ ) = k.

Then by Lemma 3

1
k

=
1

y(T2;α,β∗ − δ )

=
1

β − δ∗
exp

(
α
∫ T1

0

b(s)

exp
(∫ s

0 a(r)y(r;α,β∗ − δ )dr
)ds

)

×exp

(
α
∫ T2

T1

b(s)

exp
(∫ s

0 a(r)y(r;α,β∗ − δ )dr
)ds

)

=
1

y(T1;α,β∗ − δ )
exp

(
α
∫ T2

T1

b(s)

exp
(∫ s

0 a(r)y(r;α,β∗ − δ )dr
)ds

)

<
1
2k

exp

(
α
∫ ∞

T1

b(s)e−kA(s)ds

)
<

1
2k

·2 =
1
k
.

This is an obvious contradiction. Therefore we get y(t;α,β∗−δ ) > k on [0,∞) , and so
limt→∞ y(t;α,β∗ − δ ) = const � k. Furthermore by (3) we see that limt→∞ x(t;α,β∗ −
δ ) = 0. So β∗ − δ ∈ S. However, this is a contradiction to the definition of β∗ = infS .
So limt→∞ y(t;α,β∗) = 0 as desired. This completes the proof of Step 1.
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Step 2. We claim that limt→∞ x(t;α,β∗) = 0. The proof is done by contradiction
as in Step 1. Suppose to the contrary that limt→∞ x(t;α,β∗) = 2k > 0. Then, as before,
we can find a sufficiently large number T1 > 0 satisfying

exp

(
(β∗ +1)

∫ ∞

T1

a(s)e−kB(s)ds

)
< 2.

By the continuity on the initial data, we can find a sufficiently small δ ∈ (0,1) such
that the solution x(t;α,β∗ + δ )(< x(t;α,β∗)) fulfills

x(t;α,β∗ + δ ) > 2k on [0,T1].

Now, we claim that x(t;α,β∗ +δ ) > k on [0,∞) . In fact, if not, then there is a T2 > T1

satisfying

x(t;α,β∗ + δ ) > k on [0,T2); and x(T2;α,β∗ + δ ) = k.

Then

1
k

=
1

x(T2;α,β∗ + δ )

=
1
α

exp

(
(β∗ + δ )

∫ T1

0

a(s)

exp
(∫ s

0 b(r)x(r;α,β∗ + δ )dr
)ds

)

×exp

(
(β∗ + δ )

∫ T2

T1

a(s)

exp
(∫ s

0 b(r)x(r;α,β∗ + δ )dr
)ds

)

=
1

x(T1;α,β∗ + δ )
exp

(
α
∫ T2

T1

a(s)

exp
(∫ s

0 b(r)x(r;α,β∗ + δ )dr
)ds

)

<
1
2k

exp

(
(β∗ +1)

∫ ∞

T1

a(s)e−kB(s)ds

)
<

1
2k

·2 =
1
k
.

This is an obvious contradiction. It follows that x(t;α,β∗ + δ ) > k on [0,∞) , and so
limt→∞ x(t;α,β∗ + δ ) = const � k. Further by (4) we get limt→∞ y(t;α,β∗ + δ ) = 0.
So β∗ + δ ∈ S . This is, as before, a contradiction to the definition of β∗ = infS . So
limt→∞ x(t;α,β∗) = 0 as desired. This completes the proof of Step 2.

Step 3. We claim that limt→∞ y(t;α,β ∗) = 0 and limt→∞ x(t;α,β ∗) = 0. In fact, if
limt→∞ y(t;α,β ∗) > 0, then, as in Step 1, we can find that, for sufficiently small δ > 0,
limt→∞ y(t;α,β ∗ − δ ) > 0 and limt→∞ x(t;α,β ∗ − δ ) = 0, that is, β ∗ − δ ∈ S. This is
a contradiction; and so, limt→∞ y(t;α,β ∗) = 0 as desired.

Next suppose to the contrary that limt→∞ x(t;α,β ∗) > 0. Then, as in Step 1, we
can find that, for sufficiently small δ > 0, limt→∞ x(t;α,β ∗ + δ ) > 0 and
limt→∞ y(t;α,β ∗ + δ ) = 0, that is, β ∗ + δ ∈ S. This is again a contradiction; and so,
limt→∞ y(t;α,β ∗) = 0.
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Step 4. The final step. We claim that limt→∞ x(t;α,β ) = limt→∞ y(t;α,β ) = 0 for
β ∈ [β ∗,β∗] . In fact, for β ∈ [β ∗,β∗] , Lemma 4 and Remark 5 imply that

0 < x(t;α,β ) � x(t;α,β ∗),

and

0 < y(t;α,β ) � y(t;α,β∗).

So by the results of Steps 1 and 3, we find that limt→∞ x(t;α,β ) = limt→∞ y(t;α,β ) =
0.

This completes the proof of Theorem 1. �

REMARK 10. From the close look at the arguments in the paper, we find that all
results in this paper still hold if condition (A2 ) is replaced by

0 < liminf
t→∞

a(t)
t−1 � limsup

t→∞

a(t)
t−1 < ∞;

and

0 < liminf
t→∞

b(t)
t−1 � limsup

t→∞

b(t)
t−1 < ∞.
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