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Abstract. The aim of this paper is to adapt the notion of two-scale convergence in Lp to the
case of a measure converging to a singular one. We present a specific case when a thin cylinder
with locally periodic rapidly oscillating boundary shrinks to a segment, and the corresponding
measure charging the cylinder converges to a one-dimensional Lebegues measure of an interval.
The method is then applied to the asymptotic analysis of linear elliptic operators with locally pe-
riodic coefficients and a p-Laplacian stated in thin cylinders with locally periodic rapidly varying
thickness.

1. Introduction

The goal of this paper is twofold. First, we want to adapt the classical two-scale
convergence (see [25], [1], [33], [9]) to the case of a asymptotically thin domain. We
consider a specific case when the domain has locally periodic rapidly oscillating bound-
ary and shrinks to a segment. Second, we will apply the introduced definition to the
asymptotic analysis of a linear and quasilinear elliptic operators in thin cylinders with
oscillating thickness.

Boundary value and spectral problems in thin domains are usually treated using the
analysis of resolvents ([16]), the method of asymptotic expansions ([13], [26], [8], [21],
[24], [29]), two-scale convergence ([14], [20], [27], [28]), Γ-convergence ([22], [3],
[12], [18], [11], [10]), compensated compactness agrument ([19]), and the unfolding
method ([7], [5], [6]). The presented list of works devoted to the homogenization in
thin structures is far from being complete, but our primary focus is the case of thin
domains with locally periodic rapidly varying thickness, and the works treating the
linear case closely related to our study are [21], [5], [16], [8], and [23]. We describe
them briefly below.

The case of periodic rapidly oscillating boundary was considered in [21], where
the authors studied the asymptotic behaviour of second-order self-adjoint elliptic op-
erators with periodic coefficients, for different boundary conditions. In [5] the case of
a locally periodic rapidly oscillating boundary was addressed, and the authors studied
the Neumann boundary value problem for the Laplace operator in a two-dimensional
thin domain by means of the unfolding method. Spectral asymptotics of the Laplace
operator in thin domains with slowly varying thickness were considered in [16], [8],
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[23], where under the Dirichlet boundary conditions the localization of eigenfunctions
occur.

The contribution of the present paper is an adapted notion of the two-scale conver-
gence that covers both thin domains with slowly varying, periodic rapidly oscillating
and locally periodic rapidly oscillating boundary. We do not make any restrictions on
the dimension of the thin domains in the transverse direction. The method presented
can be applied to both boundary value and spectral problems (exactly like the clas-
sical two-scale convergence), linear and nonlinear. In the present note we use it for
the homogenization of a linear elliptic operator with locally periodic coefficients and
a p -Laplacian operator stated in thin domains with locally periodic rapidly oscillating
boundary. These two academic examples are given to illustrate the method. The results,
even though new, can be predicted based on the existing literature. More advanced
examples, like nonlinear convection-diffusion-reaction problems in thin domains with
oscillating thickness, fluid flow through a thin pipe, or indefinite spectral problems pos-
sibly describing properties of metamaterials, are to be considered elsewhere.

The two-scale convergence is a powerful tool that allows us to characterize the
leading term of the asymptotics without using asymptotic expansions, that reduces the
amount of computations. It can be applied both to linear and nonlinear problems, which
makes this method so popular for asymptotic analysis. In [20] the authors introduced
the notion of the two-scale convergence for thin domains, but their definition does not
catch the oscillations in the longitudinal variable. As a consequence, it works for oper-
ators with coefficients which are constant in the longitudinal variable. Our approach is
based on the two-scale convergence in spaces with measure introduced in [9], [33]. It
was introduced for the case of a scaled periodic measure, while in the present work we
focus on a measure converging to a singular one. The proofs of the basic facts about
the properties of the Lp -spaces and the two-scale convergence itself follow the lines of
those in [33].

The study of the p -Laplacian operator div
(|∇u|p−2∇u

)
attracts a lot of attention

in many different contexts because of its numerous applications. For small p it appears
in total variation denoising [31], for p > 1 it models non-newtonianfluids, and for large
p it is used to model growth and collapse of sandpiles [4].

One of the goals of this note is to analyse the asymptotic behavior of a boundary
value problem for a p -Laplacian operator in a thin cylinder with locally periodic rapidly
varying thickness, when the cylinder shrinks to a one-dimensional segment. We show
that the limit equation is a one-dimensional p -Laplacian with an effective coefficient
describing the varying thickness. Note that in general, when homogenizing a nonlinear
operator, the limit operator does not have the same form. In the present case, however,
the p -Laplacian is preserved due to the dimension reduction.

The homogenizationof quasilinear operators in combinationwith oscillating bound-
ary and dimension reduction was considered in many works. In [12] and [3] the authors
study nonlinearly elastic thin films, including the case of non-convex energies, with
a fast-oscillating profile and apply the Γ-convergence to find the homogenized func-
tional. In such a general situation the dependence of the limit functional on the original
one is not clear and should be studied for each particular situation. In [7] a class of
monotone nonlinear Neumann problems in a thin plate with a “forest” of periodically
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distributed cylinders on the upper part of the plate. The work [2] exploits the method
of local characteristics and study a quasilinear elliptic operator in very general non-
periodic thin domains. The authors provide a periodic and locally periodic examples
where the characteristics can be computed in terms of some auxiliary cell problems. It
is shown that the limit operator is of the same form both in the case of thin domains
with constant thickness and slowly varying thickness. The works [32] and [30] study
a p -Laplacian operator in thin domains with slowly varying thickness. In the limit the
authors obtain again a p -Laplacian with an effective coefficient describing the varying
thickness of the domain.

The paper is organized as follows. In Section 2 we define the domain and introduce
the corresponding spaces with measure charging this domain. In Section 3 we introduce
the adapted two-scale convergence and discuss its properties. Section 4 concerns the
application of the method to the asymptotic analysis of a linear elliptic operator with
locally periodic coefficients (see Theorem 4.1). In Section 5 we study a p -Laplacian
operator, and the main results of that part is given in Theorem 5.1.

2. Variable spaces with singular measure in a cylinder with locally periodic
rapidly oscillating boundary

We are going to adapt the notion of the two-scale convergence to the case when
a thin domain has a rapidly oscillating boundary modulated by some (slowly) varying
function.

In what follows the points in Rd are denoted by x = (x1,x′) , and I = (−1,1) . We
denote

Q(x1,y1) = {y′ ∈ Rd−1 : F(x1,y1,y
′) > 0},

where F(x1,y1,y′) is such that

(H1) F(x1,y1,y′) ∈C1,α(I×T1×Rd−1) , where T1 is the one-dimensional torus.

(H2) Q(x1,y1) is non-empty, bounded, and simply connected.

To ensure that the conditions (H1), (H2) are fulfilled, we can take, for example, F
satisfying the assumptions

(F1) For each x1 and y1 , F(x1,y1,0) > 0 and F(x1,y1,y′) < 0 for |y′| � R , for some
R > 0. This guarantees that Q(x1,y1) is not empty and bounded.

(F2) F(x1,y1, ·) does not have a nonpositive local maximum/minimum. This guaran-
tees that Q(x1,y1) is simply connected.

Now let ε > 0 be a small parameter. We are going to work in a thin cylinder

Ωε =
{

x = (x1,x
′) : x1 ∈ I,x′ ∈ εQ

(
x1,

x1

ε

)}
.

Here Q(x1,
x1
ε ) describes the locally periodic varying cross section of the cylinder (pe-

riodicity with respect to the second variable is inherited from F ). When F = F(y1,y′)
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we have a periodic oscillating boundary, when F = F(x1,y′) we are in the case of
slowly varying thickness, and finally, when F = F(y′) the cylinder is straight.

An example of Ωε is presented in Figure 1 for three different values of ε .

Figure 1: A thin cylinder in R2 generated by
F(x1,y1,y2) = 2+ sin(2πx1)−y2

2 · (1+4ε cos(2πy1)).

The boundary of Ωε consists of the lateral boundary of the cylinder

Σε =
{

x = (x1,x
′) : x1 ∈ I,F

(
x1,

x1

ε
,
x′

ε

)
= 0

}
,

and the bases Γ±
ε = {±1}× εQ(±1,±1/ε) .

The periodicity cell depending on x1 is

�(x1) = {y = (y1,y
′) : y1 ∈ T1,y′ ∈ Q(x1,y1)},

where T1 is a one-dimensional torus.
Since F(x1,y1,y′) is periodic in y1 , the boundary of �(x1) is ∂�(x1) = {y =

(y1,y′) : y1 ∈ T1,F(x1,y1,y′) = 0} .

REMARK 1. In the two-dimensional case the definition of the thin cylinder with
locally periodic oscillating thickness becomes easier (and more transparent). Namely,
given two smooth functions G−(x1,y1) and G+(x1,y1) , 1-periodic with respect to the
second variable, we set

Ωε =
{

x = (x1,x
′) ∈ R2 : x1 ∈ I,−εG−

(
x1,

x1

ε

)
< x′ < εG+

(
x1,

x1

ε

)}
.
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In the d -dimensional case, however, an alternative way to describe the varying thick-
ness would be to apply a family of diffeomorphisms depending on x1 and ε (posing a
local periodicity assumption) to a constant cross-section. An advantage of the defini-
tion given in the present paper is that it is easier to work with when defining the lateral
boundary and the bases of the cylinder, and the periodicity cell, as well as to program
when using numerical methods.

We define a Radon measure on Rd by

dμε = ε−(d−1)χΩε (x)dx, (1)

where χΩε (x) is the characteristic function of the thin cylinder Ωε ; dx is the d -
dimensional Lebesgue measure.

The factor ε−(d−1) in (1) makes the measure of the cylinder Ωε of order 1.

LEMMA 2.1. The measure με defined by (1) converges weak∗ in the space of
Radon measures M (Rd) , as ε → 0 , to the measure μ∗ defined by

dμ∗ = |�(x1)|χI(x1)dx1× δ (x′).

Proof. Let ϕ ∈C0(Rd) . Then
∫

Rd
ϕ(x)dμε (x) =

∫
I
ε−(d−1)

∫
εQ(x1,x1/ε)

ϕ(x)dx′dx1.

Rescaling y′ = x′/ε gives
∫

Rd
ϕ(x)dμε(x) =

∫
I

∫
Q(x1,x1/ε)

ϕ(x1,εy′)dy′dx1.

Let us divide the interval I into small subintervals (translated periods) Iε
j = ε[0,1)+ε j ,

j ∈ Z . The two intervals intersecting the bases of the cylinder (if Ωε cannot be covered
by an integer number of intervals) give an error of order ε .

On each interval we use the mean-value theorem choosing a point ξ j and get

∑
j

∫
Iε
j

∫
Q(x1,x1/ε)

ϕ(x1,εy′)dy′dx1 = ∑
j

∫
Iε
j

∫
Q(ξ j ,x1/ε)

ϕ(ξ j,εy′)dy′dx1.

Since Q(x1,y1) is periodic with respect to y1 , rescaling y1 = x1ε yields

∑
j

∫
T1

∫
Q(ξ1,y1)

ϕ(ξ j,εy′)dy′dy1 = ∑
j

ε
∫

�(ξ j)
ϕ(ξ j,εy′)dy.

The last sum is a Riemann sum converging, as ε → 0, to the following integral

∑
j

ε
∫

�(ξ j)
ϕ(ξ j,εy′)dy →

∫
I

∫
�(x1)

ϕ(x1,0)dydx1

=
∫

I
|�(x1)|ϕ(x1,0)dx1 =

∫
Rd

ϕ(x)dμ∗.
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Note that, for any x1 ∈ I , due to the continuity of F , |x′| � Cεd−1 . Given γ > 0,
we can choose ε small enough such that x′ ∈ εQ implies |ϕ(x1,0)−ϕ(x)| < γ using
the uniform continuity of ϕ . �

REMARK 2. We assume that the cylinder is bounded, but Lemma 2.1 is also valid
in the case when the cylinder grows in the x1 direction, as ε → 0. The arguments are
valid if the measure of the cross section is positive and bounded from above by Cεd−1

(the whole cylinder is contained in another cylinder of diameter of order ε ). In the case
of a cylinder growing in x1 , as ε → 0, the limit measure is dμ∗ = |�(x1)|dx1 × δ (x′) .
An example of how the two-scale convergence in spaces with measure is used in such
case can be found in [28].

REMARK 3. Note that the geometry of the boundary of the periodicity cell is of
no importance in Lemma 2.1.

For any ε and 1 < p < ∞ , the space of Borel measurable functions g : Rd → R
such that ∫

Rd
|g|p dμε < ∞,

is denoted by Lp(Rd ,με ) . For vector functions g : Rd →Rd we denote the correspond-
ing space by Lp(Rd ,με)d .

DEFINITION 2.2. A sequence uε is bounded in Lp(Rd ,με) if

limsup
ε→0

∫
Rd

|uε |pdμε < ∞.

A bounded sequence uε ∈ Lp(Rd ,με) is said to converge weakly in Lp(Rd ,με) to
u ∈ Lp(Rd ,μ∗) if

lim
ε→0

∫
Rd

uε ϕ dμε =
∫

Rd
uϕ dμ∗, ϕ ∈C∞

0 (Rd).

We say that uε ∈ Lp(Rd ,με) converges strongly to u ∈ Lp(Rd ,μ∗) if for any vε ∈
Lp′(Rd ,με) weakly converging to v ∈ Lp′(Rd ,μ∗) , 1/p+1/p′ = 1, we have

lim
ε→0

∫
Rd

uε vε dμε =
∫

Rd
uvdμ∗.

In the case of strong convergence we write uε → u , ε → 0.

Proofs of the following facts valid for a sequence of measures με weakly conver-
gent to μ∗ (no specific assumptions on the structure of με ), can be found in [34].

• The property of weak compactness of a bounded sequence in a separable Hilbert
space remains valid with respect to the convergence in variable spaces. Any
bounded sequence in Lp(Rd ,με) contains a weakly convergent subsequence.
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• For uε ∈ Lp(Rd ,με) weakly converging to u ∈ Lp(Rd ,μ∗) the lower semiconti-
nuity property holds:

liminf
ε→0

∫
Rd

|uε |pdμε �
∫

Rd
|u|pdμ∗.

• A sequence uε ∈ Lp(Rd ,με) converges strongly to u ∈ Lp(Rd ,μ∗) if and only if
uε converges to u weakly and

lim
ε→0

∫
Rd

|uε |pdμε =
∫

Rd
|u|pdμ∗.

Let us also recall the definition of the Sobolev space with measure.

DEFINITION 2.3. A function g ∈ Lp(Rd ,με ) is said to belong to the space
W 1,p(Rd ,με ) if there exists a vector function z ∈ Lp(Rd ,με)d and a sequence ϕk ∈
C∞

0 (Rd) such that
ϕk → g in Lp(Rd ,με), k → ∞,

∇ϕk → z in Lp(Rd ,με)d , k → ∞.

In this case z is called a gradient of g and is denoted by ∇με g .

Since in our case the measure με is a weighted Lebesgue measure, we have
∇με g = ∇g and the space W 1,p(Rd ,με) is identical to the usual Sobolev space W 1,p(Ωε ) ,
in contrast to the scaled periodic singular measure considered in [33] when the gradient
is not unique and is defined up to a gradient of zero.

The spaces L2(Rd ,μ∗) and W 1,p(Rd ,μ∗) are defined in a similar way, however the
μ∗ -gradient is not unique and is defined up to a gradient of zero. A zero function might
have a nontrivial gradient as it is demostrated by Example 1 in Ch. 3, [33]. Following
the proof in the last example, one can see that for p = 2 the subspace of vectors of
the form (0,ψ2(z1), . . . ,ψd(z1)) , ψ j ∈ L2(R) is the subspace of gradients of zero. Any
μ∗ -gradient of v ∈W 1,2(Rd ,μ∗) takes the form

∇μ∗v(z) = (v′(z1,0),ψ2(z1), . . . ,ψd(z1)), ψ j ∈ L2(R),

where v′(z1,0) is the derivative of the restriction of v(z) to R×{0} .

3. Two-scale convergence in spaces with measure converging to a singular one

In what follows με denotes the measure given by

dμε = χΩε (x)ε
−(d−1) dx,

and its weak limit is

dμ∗ = |�(x1)|χI(x1)dx1× δ (x′).

For each x1 ∈ I , we introduce Ck(�(x1)) , Lp(�(x1)) and W 1,p(�(x1)) in a usual
way. Functions belonging to these spaces are 1-periodic with respect to y1 .

In the present context two-scale convergence is described as follows.
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DEFINITION 3.1. We say that gε ∈ Lp(Rd ,με) , 1 < p < ∞ , converges two-scale
weakly, as ε → 0, in Lp(Rd ,με ) if

(i) limsupε→0 ‖gε‖Lp(Rd ,με ) < ∞ ,

(ii) there exists a function g(x1,y) ∈ Lp(I;Lp(�(x1)) 1-periodic in y1 such that the
following limit relation holds:

lim
ε→0

∫
Rd

gε(x)ϕ(x)ψ(
x
ε
)dμε(x) =

∫
Rd

1
|�(x1)|

∫
�(x1)

g(x1,y)ϕ(x)ψ(y)dydμ∗(x)

=
∫

I

∫
�(x1)

g(x1,y)ϕ(x1,0)ψ(y)dydx1,

for any ϕ ∈C∞
0 (Rd) and ψ(y) ∈C∞(�(x1)) periodic in y1 .

We write gε 2
⇀ g(x1,y) if gε converges two-scale weakly to g(x1,y) in Lp(Rd ,με) .

The definition of the two-scale convergence holds for more general classes of test
functions. Following the lines of the proof of Lemma 2.1 one can see that for ψ(y) ∈
L1(�(x1)) we have the mean-value property

lim
ε→0

∫
Rd

ϕ(x)ψ
( x

ε

)
dμε(x) =

∫
Rd

1
|�(x1)|

∫
�(x1)

ϕ(x)ψ(y)dydμ∗(x)

=
∫

I
ϕ(x1,0)

(∫
�(x1)

ψ(y)dy
)

dx1.

For example, as it is shown in Lemma 3.1 in [34], one can take a Caratheodory
function Φ(x,y) such that

|Φ(x,y)| � Φ0(y), Φ0 ∈ L1(�(x1)).

Such test functions are called admissible, and the mean-value property holds

lim
ε→0

∫
Rd

Φ
(
x,

x
ε

)
dμε =

∫
Rd

1
|�(x1)|

∫
�(x1)

Φ(x,y)dydμ∗

=
∫

I

∫
�(x1)

Φ(x1,0,y)dydx1.

The proof of the mean-value property follows the lines of the proof of Lemma 3.1 in
[34]. As it was shown in [1], the property of continuity with respect to one of the
arguments can not be dropped.

The following compactness result can be proved in the same way as Theorem 4.2
in [34].

LEMMA 3.2. (Compactness) Suppose that gε satisfies the estimate

limsup
ε→0

‖gε‖Lp(Rd ,με ) < ∞.

Then gε , up to a subsequence, converges two-scale weakly in Lp(Rd ,με) to some func-
tion g(x1,y) ∈ Lp(Rd ×�(x1),μ∗ ×dy) .
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DEFINITION 3.3. A sequence gε is said to converge two-scale strongly to a func-
tion g(x1,y) ∈ Lp(Rd ×�(x1),μ∗ ×dy) if

(i) gε converges two-scale weakly to g(x1,y) ,

(ii) the following limit relation holds:

lim
ε→0

∫
Rd

|gε(x)|pdμε(x) =
∫

Rd

1
|�(x1)|

∫
�(x1)

|g(x1,y)|p dydμ∗(x).

We write gε 2→ g(x1,y) if gε converges two-scale strongly to the function g(x1,y)
in Lp(Rd ,με) .

The following properties of the weak two-scale limit hold (see [34] for the proof
in spaces with measure):

• If uε
2
⇀ u(x1,y) in Lp(Rd ,με) , then uε converges weakly in Lp(Rd ,με) to the

local average of the two-scale limit:

uε ⇀
1

|�(x1)|
∫

�(x1)
u(x1,y)dy.

To see this it is suffices to take a test function independent of y in the definition
of the two-scale convergence.

• If uε
2
⇀ u(x1,y) in Lp(Rd ,με) , then the lower semicontinuity property holds

liminf
ε→0

∫
Rd

|uε |pdμε �
∫

Rd

1
|�(x1)|

∫
�(x1)

|u(x1,y)|pdydμ∗

=
∫

I

∫
�(x1)

|u(x1,y)|pdydx1.

A proof is based on the Young inequality

a ·b � 1
p
|a|p +

1
p′
|b|p′ , 1

p
+

1
p′

= 1.

For any ϕ(x1,y) ∈C∞
0 (R;C∞(�(x1)))

1
p

∫
Rd

|uε |pdμε �
∫

Rd
uε ϕ

(
x1,

x
ε

)
dydμε − 1

p′

∫
Rd

∣∣∣ϕ(
x1,

x
ε

)∣∣∣p′dμε .

Passing to the limit yields

1
p

liminf
ε→0

∫
Rd

|uε |pdμε �
∫

Rd

1
|�(x1)|

∫
�(x1)

u(x1,y)ϕ(x1,y)dydμ∗

− 1
p′

∫
Rd

1
|�(x1)|

∫
�(x1)

|ϕ(x1,y)|p′dydμ∗.

By density of smooth functions in Lp(Rd ,με ) , we can take

ϕ(x1,y) = |u(x1,y)|p−2u(x1,y),

which completes the proof.
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The next proposition provides additional information about the two-scale limit in
the case when it is possible to estimate the derivatives. The original statement is given
for a fixed domain Ω and the Lebesgue measure in [1] (Proposition 1.14). A more
general case of a periodic scaled measure με is considered in [17] (Theorem 10.3).
The proof is essentially the same in all these cases and is therefore omitted.

LEMMA 3.4. Assume that uε(x) is bounded in W 1,p(Rd ,με ) , 1 � p < ∞ . Then
there exists u(x1) ∈ W 1,p(Rd ,μ∗) and u1(x1,y) ∈ Lp(R;W 1,p(�(x1))) periodic in y1

such that, as ε → 0 ,

(i) uε converges strongly in Lp(Rd ,με) and strongly two-scale in Lp(Rd ,με) to
u(x1) ∈ Lp(Rd ,μ∗) .

(ii) ∇uε , along a subsequence, weakly two-scale converges to ∇μ∗u(x1)+∇yu1(x1,y)
in Lp(Rd ,με) . Here ∇μ∗u(x1) is one of the gradients of u with respect to μ∗
(which are defined up to a gradient of zero) .

4. Homogenization of a linear elliptic operator with locally periodic coefficients

Let us illustrate how one can apply the adapted notion of the two-scale conver-
gence to the asymptotic analysis of a linear second-order elliptic operator with locally
periodic coefficients stated in a thin domain with locally periodic rapidly oscillating
boundary. One can think about it as a model problem for steady state thermal conduc-
tion in a thin rod made of a composite material, where the conductivity varies “almost”
periodically (as a rapidly oscillating function modulated by a function slowly varying
along the rod). One can assume that the lateral boundary of the rod is insulated, so
a Neumann boundary condition is to be imposed, and keep a given temperature at the
ends of the rod, which leads to Dirichlet boundary conditions at the bases. Other appli-
cations include modelling of electrostatic problems and reaction-diffusion processes.

Note that the method developed here can be applied to higher order linear elliptic
operators with locally periodic coefficients.

We consider the following boundary value problem:

−div
(
aε ∇uε

)
+ cεuε = f , Ωε ,

aε ∇uε ·n = 0, Σε , (2)

uε = 0, Γ±
ε .

Our main assumptions are

(H1) The coefficients have the form aε(x) = a(x1,
x
ε ) , cε(x)= c(x1,

x
ε ) , where c(x1,y) ,

ai j(x1,y) ∈C1,α(I;Cα (�(x1))) are 1-periodic in y1 , 0 < α < 1.

(H2) The matrix a is symmetric and satisfies the uniform ellipticity condition: There
exists Λ0 > 0 such that for all x1 ∈ I and y ∈ �(x1) ,

ai j(x1,y)ξiξ j � Λ0|ξ |2, ξ ∈ Rd .
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(H3) f (x1) ∈ L2(I) .

We study the asymptotic behavior of the solution uε of (2) as ε → 0.
Problem (2) being stated in a bulk domain is classical and can be homogenized by

any method of asymptotic analysis. We present the convergence result in the case when
the domain is thin and has a locally periodic rapidly varying thickness using singular
measures approach. Corrector terms, as well as the estimates for the rate of convergence
can be obtained for example by using the asymptotic expansion method.

THEOREM 4.1. Let uε be a solution of problem (2). Under the assumptions (H1)–
(H3), the following convergence result holds:

(i) uε converges two-scale, as ε → 0 , in L2(Rd ,με) to the solution u of the one-
dimensional problem

−(aeff(x1)u′)′ + c(x1)u = |�(x1)| f (x1), x ∈ (−L,L), (3)

u(±L) = 0.

The effective diffusion coefficient aeff and the potential c are given by the formu-
lae

aeff(x1) =
∫

�(x1)
a1 j(x1,y)(δ1 j + ∂y jN1(x1,y))dy,

c(x1) =
∫

�(x1)
c(x1,y)dy.

The auxiliary function N1(x1,y) solves the following cell problem:{−divy(a(x1,y)∇yN1(x1,y)) = ∂yiai1(x1,y), y ∈ �(x1),

a(x1,y)∇yN1(x1,y) ·n = −ai1(x1,y)ni, y ∈ ∂�(x1).

(ii) lim
ε→0

1
εd−1

∫
Ωε

|uε(x)−u(x1)|2 dx = 0.

(iii) As ε → 0 , the corresponding fluxes converge two-scale in L2(Rd ,με):

aε(x)∇uε 2
⇀ aeff(x1)u′(x1)e1 + ∇yN(x1,y)u′(x1), e1 = (1,0, · · · ,0) ∈ Rd .

Proof. The weak formulation of (2) in terms of the measure με reads
∫

Rd
aε∇uε ·∇Φdμε +

∫
Rd

cεuε Φdμε =
∫

Rd
fΦdμε , (4)

where Φ ∈ H1(Ωε) , Φ
∣∣
Γ±

ε
= 0. Taking uε as a test function we obtain the following a

priori estimate:

‖uε‖L2(Rd ,με ) +‖∇uε‖L2(Rd ,με ) � C. (5)
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Thus, up to a subsequence, uε converges two-scale weakly in L2(Rd ,με ) to some
u(x1) ∈ L2(Rd ,μ∗) , and due to Lemma 3.4, there exists u1(x1,y) ∈ L2(R;H1(�(x1)))
periodic in y1 such that ∇uε converges two-scale in L2(Rd ,με ) to ∇μ∗u(x1)+∇yu1(x1,y) .

We proceed in two steps. First we choose an oscillating test function to determine
the structure of u1(x1,y) . Then we use a smooth test function of a slow argument to
obtain the limit problem for u .

Let us take

Φε (x) = ε ϕ(x)ψ
( x

ε

)
, ϕ ∈C∞

0 (Rd), ψ ∈C∞(T1 ×Rd−1),

as a test function in (4).
The gradient of Φε takes the form

∇Φε (x) = ε ψ
( x

ε

)
∇xϕ(x)+ ϕ(x)∇yψ(y)

∣∣
ζ=x/ε .

In the first term on the left hand side in (4) we can regard aε as a part of the test
function. Passing to the limit we get

∫
Rd

( 1
|�(x1)|

∫
�(x1)

a(x1,y)∇yψ(y)dy
)
·∇μ∗u(x1,0)ϕ(x1,0)dμ∗

+
∫

Rd

( 1
|�(x1)|

∫
�(x1)

a(x1,y)∇yψ(y) ·∇yu1(x1,y)dy
)

ϕ(x1,0)dμ∗ = 0.

Looking for u1 in the form

u1(x1,y) = N(x1,y) ·∇μ∗u(x1,0) (6)

gives the following relation for the components of N(y) :
∫

Rd

( 1
|�(x1)|

∫
�(x1)

a(x1,y)∇yNk(y) ·∇ψ(y)dy
)

ϕ(x1,0)dμ∗

= −
∫

Rd

( 1
|�(x1)|

∫
�(x1)

ak j(x1,y)∂y j ψ(y)dy
)

ϕ(x1,0)dμ∗,

for any ϕ ∈ C∞
0 (Rd) , ψ ∈ C∞(T1 ×Rd−1) . The last integral identity is a variational

formulation associated to{−divy(a(x1,y)∇yNk(x1,y)) = ∂yiaik(x1,y), y ∈ �(x1),

a(x1,y)∇yNk(y) ·n = −aik(x1,y)ni, y ∈ ∂�(x1), k = 1,2, . . . .
(7)

For each x1 ∈ I , there exists a unique solution Nk(x1, ·)∈C1,α(I;C1,α(�(x1))/R to (7).
In this way

∇uε
2
⇀ (∇μ∗u(x1,0)+ ∇yN(x1,y) ·∇μ∗u(x1,0)), ε → 0.

Now the structure of the function v1(z1,ζ ) is known, and we can proceed by deriving
the problem for u .
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We pass to the limit in the integral identity (4) with ϕ(x) ∈C∞
0 (Rd) :

∫
Rd

( 1
|�(x1)|

∫
�(x1)

a(x1,y)(Id+ ∇yN(x1,y))dy
)

∇μ∗u(x1,0) ·∇ϕ(x1,0)dμ∗

+
∫

Rd

1
|�(x1)|

∫
�(x1)

c(x1,y)u(x1,0)ϕ(x1,0)dydμ∗

=
∫

Rd
f (x1,0)ϕ(x1,0)dμ∗.

Here ∇N = {∂ζi
Nj(ζ )}d

i j=1 , and Id = {δi j}d
i j=1 is the unit matrix. Denote

Aeff
i j =

∫
�(x1)

aik(x1,y)(δk j + ∂ykNj(x1,y))dy.

In this way the limit problem in the weak form reads
∫

Rd

1
|�(x1)|A

eff∇μ∗u(x1,0) ·∇ϕ(x1,0)dμ∗ +
∫
Rd

1
|�(x1)|c(x1)u(x1,0)ϕ(x1,0)dμ∗

=
∫

Rd
f (x1,0)ϕ(x1,0)dμ∗. (8)

The μ∗ -gradient is not unique, but the flux Aeff∇μ∗u(x1,0) is uniquely determined by
the condition of orthogonality of the vector Aeff∇μ∗u to the subspace of the gradients of
zero. This can be seen by taking in (8) any test function with zero trace ϕ(x1,0, . . . ,0) =
0 and non-zero μ∗ -gradient, for example ϕ(x) = ∑ j �=1 x jψ j(x1) with arbitrary ψ j ∈
C∞

0 (R) \ {0} . By the density of smooth functions, the subspace of vectors in the form
(0,ψ2(x1), . . . ,ψd(x1)) , ψ j ∈ L2(R) is the subspace of the gradients of zero, and the
condition of orthogonality to the gradients of zero gives that

Aeff∇μ∗u = (Aeff
1 j ∂

μ∗
x j

u(x1,0),0, . . . ,0).

If we define a solution of (8) as a function u(x) ∈ H1(Rd ,μ∗) satisfying the integral
identity, then this solution is unique. A solution (u,Aeff∇μ∗u) , as a pair, is also unique
due to the orthogonality to the gradients of zero. If one, however, defines a solution of
(8) as a pair (u,∇μ∗u) , then a solution is not unique. This has to do with the fact that
the matrix Aeff is not positive definite, and the uniqueness of the flux does not imply
the uniqueness of the gradient.

Next step is to prove that Aeff
1 j = 0 for all j �= 1. To this end we rewrite the problem

for Nk in the following form:{−divy(a(x1,y)∇y(Nk(x1,y)+ yk) = 0, y ∈ �(x1),

a(x1,y)∇y(Nk(x1,y)+ yk) ·n = 0, k = 1,2, . . . , y ∈ ∂�(x1).
(9)

We multiply (9) by ym , m �= 1, and integrate over �(x1) . For m �= 1, the function ym

is periodic in y1 and can be used as a test function. This gives
∫

�(x1)
a(x1,y)∇y(yk +Nk(x1,y)) ·∇ym dy = 0,
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and since ∂y j ym = δ jm , Aeff
km = 0 for any k = 1, . . . ,d and m �= 1. Thus

Aeff∇μ∗u = (Aeff
11u′(x1,0),0, . . . ,0),

and (8) takes the form

∫
R

Aeff
11u′(x1,0)ϕ ′(x1,0)dx1 +

∫
R

c(x1)u(x1,0)ϕ(x1,0)dx1

=
∫

R
f (x1,0) |�(x1)|ϕ(x1,0)dx1.

Denoting aeff = Aeff
11 , u(x1) = u(x1,0) , we see that the last integral identity is the weak

formulation of (3).
Using Ni as a test function in (9) gives

Aeff
ik (x1) =

∫
�(x1)

a(x1,ζ )∇y(yi +Ni(x1,y)) ·∇y(yk +Nk(x1,y))dy,

which shows that Aeff is symmetric and positive semidefinite due to the corresponding
properties of a(x1,y) . If e1 = (1,0, . . . ,0) ,

aeff = Aeff
11 = Aeffe1 · e1 � Λ0

∫
�(x1)

|∇y(y1 +N1(x1,y))|2 dy � 0.

Assuming that ∂yi(y1 + N1(x1,y)) = 0 for all i , leads to a contradiction since N1 is
periodic in y1 . Thus, the effective coefficient aeff is strictly positive.

It is left to prove the strong convergence of uε in L2(Rd ,με ) . To this end we
consider the local average of uε

uε(x1) =
1

εd−1|Q(x1,x1/ε)|
∫

εQ(x1,x1/ε)
uε(x)dx′.

Applying the Poincaré inequality we obtain

∫
εQ(x1,x1/ε)

(uε −uε)2dx′ � Cε2
∫

εQ(x1,x1/ε)
|∇(uε −uε)|2dx′.

Integrating with respect to x1 , using (5) and the definition of uε , we have

∫
Ωε

(uε −uε)2dx � Cε2
∫

Ωε
|∇(uε −uε)|2dx � Cε. (10)

At the same time, since uε is bounded in H1(I) , it converges strongly in L2(Rd ,μ∗)
(equivalently in L2(I)) to some u(x1) , which together with (10) gives the strong con-
vergence of uε in L2(Ωε ,με) to u(x1) = u(x1) . �
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5. Homogenization of quasilinear operators in a thin domain

We proceed with the nonlinear case and apply the adapted notion of the two-scale
convergence to a model of nonlinear degenerate diffusion. Namely, we study the ho-
mogenization of a quasilinear elliptic operator stated in a thin domain with locally pe-
riodic rapidly oscillating boundary. Let again the domain be that described in Sec-
tion 2. We consider the following boundary value problem for the p-Laplace operator,
1 < p < ∞ :

−div
(|∇uε |p−2∇uε

)
= f , Ωε ,

|∇uε |p−2∇uε ·nε = 0, Σε , (11)

uε = 0, Γ±
ε ,

where f ∈ Lp′(Ωε) , (1/p)+ (1/p′) = 1.
Such equations appear, for example, while modeling non-Newtonian fluids, turbu-

lent flows of gas in porous media, and glaciology. Moreover, the technique used in this
section allows one to consider more general monotone operators stated in thin domains
with oscillating thickness.

We study the asymptotic behaviour of the solution uε of (11) as ε → 0.
Equivalently we can study the minimization problem for the functional

Iε(v) =
∫

Ωε

( 1
p
|∇v|p− f v

)
dx, (12)

where v∈W 1,p(Ωε) , v = 0 on Γ±
ε . In general, an Euler-Largange equation might have

other solutions that are not solving the corresponding minimization problem, but since
the map ξ → |ξ |p is convex, each weak solution of (11) is also a minimizer of Iε (see
[15], Ch. 8.2). In terms of the measure με :

Jε(v) =
∫

Rd

(1
p
|∇v|p− f v

)
dμε , v ∈W 1,p(Rd ,με ), v

∣∣∣
Γ±

ε
= 0. (13)

Due to the convexity of | · |p , there exists a unique minimizer uε ∈ W 1,p(Ωε) ,
uε

∣∣
Γ±

ε
= 0 (see [15]).

We study the asymptotic behaviour of uε as ε → 0.
The main result of this section is given in the following theorem.

THEOREM 5.1. Let uε be a solution of (11) and the assumptions (H1)–(H3) are
satisfied. Then, as ε → 0 ,

(i) uε converges strongly to u(x1) in Lp(Rd ,με):

lim
ε→0

ε−(d−1)
∫

Ωε
|uε |p dx =

∫
I
|�(x1)| |u(x1)|p dx1,

where u solves the following one-dimensional equation

(|�(x1)| |u′(x1)|p−2u′(x1))′ = |�(x1)| f (x1), x1 ∈ I,

u(±L) = 0.
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(ii) ∇uε converges strongly in Lp(Rd ,με)d to {u′(x1),0, · · · ,0} :

lim
ε→0

ε−(d−1)
∫

Ωε
|∇uε |p dx =

∫
I
|�(x1)| |u′(x1)|p dx1.

Proof. The proof is similar to one given in [1], but it should be adapted to the
case when the domain is thin and the dimension reduction occur. The limit two-scale
problem, in contrast to the one for a general quasilinear operator, can be decoupled. We
will derive a cell problem, the expression for the effective diffusion, and a homogenized
one-dimensional equation.

Weak formulation of (11) reads
∫

Ωε
|∇uε |p−2∇uε ·∇φ dx =

∫
Ωε

fφ dx, φ ∈W 1,p(Ωε), φ
∣∣
Γ±

ε
= 0.

In terms of measures:∫
Rd

|∇uε |p−2∇uε ·∇φ dμε =
∫

Rd
fφ dμε , φ ∈W 1,p(Rd ,με), φ

∣∣
Γ±

ε
= 0. (14)

Taking uε as a test function in (14) and using Friedrichs’ inequality, we obtain a
priori estimates

‖∇uε‖Lp(Ωε ,με )d +‖uε‖Lp(Ωε ,με ) � C. (15)

By Lemma 3.4, up to a subsequence, uε converges two-scale in Lp(Ωε ,με) to u(x1) ∈
Lp(Rd ,μ∗) (equivalently Lp(I)), and ∇uε converges two-scale to ∇μ∗u(x1)+∇u1(x1,y)
in Lp(Ωε ,με)d . Here u1(x1,y) ∈ Lp(R;W 1,p(�(x1))) is periodic in y1 and ∇μ∗u(x1)
is one of the gradients of u with respect to μ∗ , defined up to a gradient of zero, that is

∇μ∗u(x1) = {u′(x1),ψ2(x1), · · · ,ψd(x1)}, φi ∈ Lp(R).

We will derive lower and upper bounds for the functional (12), which will give us
the homogenized functional.

By convexity,

|b|p � |a|p + p|a|p−2a · (b−a), p � 1.

Thus

Jε(uε) �
∫

Ωε

(1
p
|Φε |p + |Φε |p−2Φε · (∇uε −Φε)− f uε

)
dμε ,

for Φε = Φ(x1,x/ε) , with Φ(x1,y) ∈C∞
0 (R;C∞(�(x1)))d .

Passing to the limit, as ε → 0, we obtain

liminf
ε→0

Jε(uε) �
∫

Rd

1
|�(x1)|

∫
�(x1)

( 1
p
|Φ(x,y)|p − f u

)
dydμ∗

+
∫

Rd

1
|�(x1)|

∫
�(x1)

1
p
|Φ|p−2Φ · (∇μ∗u+ ∇yu1−Φ)dydμ∗.
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Taking a sequence of smooth functions Φ(x1,y) converging to ∇μ∗u + ∇yu1 in
Lp(Rd ,με) yields

liminf
ε→0

Jε(uε) �
∫

Rd

1
|�(x1)|

∫
�(x1)

(1
p
|∇μ∗u+ ∇yu1|p− f u

)
dydμ∗.

The last functional will be denoted by

J(v,v1) =
∫

Rd

1
|�(x1)|

∫
�(x1)

( 1
p
|∇μ∗v+ ∇yv1|p− f u

)
dydμ∗. (16)

Now we will derive an upper bound for (13). Since uε is a minimizer of (13),

Jε(uε) � Jε

(
φ(x1)+ εφ1

(
x1,

x
ε

))
for φ(x1) ∈C∞

0 (Rd) , and φ1 ∈C∞
0 (Ωε ;C∞(�(x1))) periodic in y1 .

Passing to the limit we get

limsup
ε→0

Jε(uε) �
∫

Rd

1
|�(x1)|

∫
�(x1)

( 1
p
|∇μ∗φ + ∇yφ1|p− fφ

)
dydμ∗,

and thus

limsup
ε→0

Jε(uε) � inf
(v,v1)

∫
Rd

1
|�(x1)|

∫
�(x1)

(1
p
|∇μ∗v+ ∇yv1|p− f v

)
dydμ∗,

where infimum is taken over v ∈W 1,p(Rd ,μ∗) , v1 ∈ Lp(Rd ,μ∗;W 1,p(�(x1))\R) (v1

is periodic in y1 ).
Finally

lim
ε→0

Jε(uε) = inf
(v,v1)

∫
Rd

1
|�(x1)|

∫
�(x1)

(1
p
|∇μ∗v+ ∇yv1|p− f v

)
dydμ∗ (17)

= inf
(v,v1)

J(v,v1),

where infimum is taken over v ∈W 1,p(Rd ,μ∗) , v1 ∈ Lp(Rd ,μ∗;W 1,p(�(x1)) \R) , v1

being periodic in y1 .
Solution (v,v1) to the last minimization problem is unique due to the convexity

properties.
The minimizer (v,v1) of (17) satisfies the following integral identity:

∫
Rd

1
|�(x1)|

∫
�(x1)

|∇μ∗v+∇yv1|p−2(∇μ∗v+∇yv1)·(∇μ∗Φ+∇yΦ1)dydμ∗ =
∫

Rd
fΦdμ∗,

(18)
for Φ ∈W 1,p(Rd ,μ∗) and Φ1 ∈ Lp(Rd ,μ∗;W 1,p(�(x1))\R) periodic in y1 .

Taking Φ = 0 and Φ1 = ϕ(x)ψ(y) we obtain an auxiliary cell problem

−divy
(|∇μ∗v+ ∇yv1|p−2(∇μ∗v+ ∇yv1)

)
= 0, y ∈ �(x1),

|∇μ∗v+ ∇yv1|p−2(∇μ∗v+ ∇yv1) ·n = 0, y ∈ ∂�(x1).
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Denote ξ = ∇μ∗v , and let us analyse the following cell problem:

−divy
(|ξ + ∇yv1|p−2(ξ + ∇yv1)

)
= 0, y ∈ �(x1),

|ξ + ∇yv1|p−2(ξ + ∇yv1) ·n = 0, y ∈ ∂�(x1). (19)

For each ξ there exists a unique, defined up to a function depending on x1 , solution

vξ
1 (x1,y)∈C1,α(I;W 1,p(�(x1))) . Take ξ = e1 = {1,0, · · · ,0} . Then a constant function

v1(x1,y) = Const solves (19).
For any ξ ∈ Rd , we set

Aeff(x1,ξ ) =
∫

�(x1)
|ξ + ∇yv

ξ
1 |p−2(ξ + ∇yv

ξ
1 )dy.

Multiplying (19) by vξ
1 and integrating by parts yields

∫
�(x1)

|ξ + ∇yv
ξ
1 |p−2(ξ + ∇yv

ξ
1 ) ·∇yv

ξ
1 dy = 0,

and thus

Aeff(x1,ξ ) ·ξ =
∫

�(x1)
|ξ + ∇yv

ξ
1 |p dy.

For ξ = e1 , Aeff(x1,e1) = {|�(x1)|,0, · · · ,0} .
Taking in (18) a test function with zero trace Φ(x1,0) = 0 and non-zero gradient

∇μ∗φ (for example φ(x) = ∑ j �=1 x jψ j(x1) with arbitrary ψ j ∈ Lp(R)\{0} ), we see that
the choice of the gradient with respect to μ∗ is uniquely determined by the condition
that the flux is orthogonal in Lp to the gradients of zero and that all the components of
A(x1,∇μ∗v) except for the first one are zeroes:

Aeff
m (x1,∇μ∗v) =

∫
�(x1)

|∇μ∗v+ ∇yv1|p−2(∂ μ∗
m v+ ∇ymv1)dy = 0, m �= 1.

The last condition is obviously satisfied for ∇μ∗v = {v′(x1),0, · · · ,0} and the corre-
sponding v1 = Const , and we conclude immediately that

Aeff(x1,∇μ∗v) = |�(x1)| |v′(x1)|p−2v′(x1).

Thus (18) is the weak formulation of

(|�(x1)| |v′(x1)|p−2v′(x1))′ = |�(x1)| f (x1), x1 ∈ I,

v(±L) = 0.

The strong convergence of uε and ∇uε follows from the convergence of energy
functionals. �



Differ. Equ. Appl. 9, No. 3 (2017), 393–412. 411

RE F ER EN C ES

[1] G. ALLAIRE, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23, 6 (1992), 1482–
1518.

[2] B. AMAZIANE, M. GONCHARENKO, AND L. PANKRATOV, γ d-convergence for a class of quasilin-
ear elliptic equations in thin structures, Mathematical methods in the applied sciences, 28, 15 (2005),
1847–1865.

[3] N. ANSINI AND ANDREA BRAIDES, Homogenization of oscillating boundaries and applications to
thin films, Journal d’Analyse Mathématique, 83, 1 (2001), 151–182.
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[20] S. MARUŠIĆ AND E. MARUŠIĆ-PALOKA, Two-scale convergence for thin domains and its appli-
cations to some lower-dimensional models in fluid mechanics, Asymptotic Analysis, 23, 1 (2000),
23–57.

[21] T. A. MEŁNIK AND A. V. POPOV, Asymptotic analysis of boundary value problems in thin perforated
domains with rapidly changing thickness, Nelı̄nı̄ı̆nı̄ Koliv., 13, 1 (2010), 50–74.

[22] F. MURAT AND A. SILI, Problemes monotones dans des cylindres de faible diametre formés de
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