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Abstract. In this paper, we study the existence of multiple positive solutions for the following
equation:

−Δu+u = (Kα (x)∗ |u|p)|u|p−2u +λ f (x), x ∈ R
N ,

where N � 3, α ∈ (0,N), p ∈ (1+ α/N,(N + α)/(N− 2)), Kα (x) is the Riesz potential, and
f (x) ∈ H−1(RN) , f (x) � 0 , f (x) �≡ 0. We prove that there exists a constant λ ∗ > 0 such that
the equation above possesses at least two positive solutions for all λ ∈ (0,λ ∗) . Furthermore, we
can obtain the existence of the ground state solution.

1. Introduction and main result

Given N � 3, α ∈ (0,N) and p ∈ (1+ α/N,(N + α)/(N−2)), we consider the
problem {

−Δu+u = (Kα (x)∗ |u|p)|u|p−2u + λ f (x),
u ∈ H1(RN),

(1.1)

where Kα : R
N → R is the Riesz potential defined for every x ∈ R

N \ {0} by

Kα (x) =
Γ(N−α

2 )

Γ(α
2 )π N

2 2α |x|N−α
,

and Γ is the Gamma function, the notation ∗ denotes the convolution operator, and f
satisfies the conditions:{

f ∈ H−1(RN)\ {0},
f (x) � 0 for all x ∈ R

N and f (x) �≡ 0.
(1.2)
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A special case of equation (1.1), relevant in physical applications, is the Choquard
equation

−Δu+u =
(

1
|x| ∗ |u|

2
)

u, x ∈ R
3, (1.3)

as a model of an electron trapped in its own hole, and was proposed by Choquaerd
in 1976 as an approximation to Hartee-Fock theory of a one-component plasma [1].
In 1996, Penrose proposed equation (1.3) as a model of self-gravitating matter, in a
programme in which quantum state reduction was understood as a gravitational phe-
nomenon [5]. In 1976, Lieb [2] proved the existence and uniqueness of the mini-
mizer solution of the ground state to equation (1.3). Lions [3] obtained the existence
of many radically symmetric solutions for equation (1.3) by using variational meth-
ods, and further results for related problems may be found in [8, 9, 10, 13] and the
references therein. In these contexts, equation (1.1) is usually called the nonlinear
Schrödinger-Newton equation. If u solves equation (1.1), the function ψ defined by
ψ(t,x) = eitu(x) is a solitary wave of the focusing time-dependent Hartree equation

iψt = −Δψ − (Kα ∗ |ψ |p)|ψ |p−2ψ + λ f .

In 2010, Ma and Zhao [12] considered the generalized Choquard equation

−Δu+Vu =
(
Kα(x)∗ |u|p)|u|p−2u, (1.4)

where V is an electric potential. When V ≡ 1, [12] proved that every positive solu-
tion of problem (1.4) is radially symmetric and monotone decreasing about some point
under some assumptions on N,α, p. Especially, the positive solution is uniquely de-
termined up to translations as α = p = 2 and N = 3. Moroz and Van Schaftingen
[16] obtained the existence of ground state solutions for problem (1.4), and got var-
ious qualitative properties of ground state solutions such as the regularity, positivity,
radial symmetry and decay asymptotics. For V is a non-constant case, Moroz and Van
Schaftingen [22] proved the existence of ground state solutions for problem (1.4) with
Hardy-Littlewood-Sobolev critical exponent growth. Clapp and Salazar [15] and Lü
[19, 21] obtained positive, sign changing and ground states solutions for problem (1.4)
under different potential conditions.

For semiclassical cases,

− ε2∇uε +Vuε = ε−α(Kα(x)∗ |uε |p)|uε |p−2uε , (1.5)

the existence of semiclassical ground state solutions for problem (1.5) has been con-
sidered in [18]. Under the assumptions on the decay of potential V , [23] proved the
existence of positive solutions by using variational methods and nonlocal penalization
technique. Moroz and Van Schaftingen in [17] obtained the nonexistence and optimal
decay of supersolutions of the Choquard equations. The existence of multiple semiclas-
sical solutions was also considered in [14]. Cingolani, Clapp and Secchi in [11] consid-
ered the existence of semiclassical regime of standing wave solutions of a Schrödinger
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equation in presence of nonconstant electric and magnetic potentials. Cingolani and
Secchi [20] studied the semiclassical limit for the pseudorelativistic Hartree equation.

In 2003, Küpper, Zhang and Xia [7] obtained positive solutions and bifurcation
point for the following equation,

−Δu+u =
(

1
|x| ∗ |u|

2
)

u + λ f (x), x ∈ R
3. (1.6)

Motivated by the works we mentioned above, we study the existence of positive solu-
tions for problem (1.1) in the present paper. The main idea of our paper is related to
the nonhomogeneous for semilinear elliptic equations [3, 6, 7]. The methods in these
papers are dependent on the local character of the equation. We use a different method
and some special estimates to obtain our results. Likewise, we generalize the results in
[7] at the same conditions.

In particular, we study the dependence of solutions on the parameter λ , and work
out multiple positive solutions and the ground state solution. Such problems are of-
ten referred to being nonlocal because of the appearance of the term

∫
RN (Kα(x) ∗

|u|p)|u|pdx , which implies that problem (1.1) is no longer a pointwise identity. The
main difficulties dealing with this problem lie in the presence of the nonlocal term and
the lack of compactness due to the unboundedness of the domain R

N .
Now, we state the main result of this paper.

THEOREM 1. Assume that N � 3 , α ∈ (0,N) , p ∈ (1+α/N,(N +α)/(N−2)) ,
and f satisfies (1.2), then there exists λ ∗ > 0 such that equation (1.1) has at least two
positive solutions and a ground state solution for all λ ∈ (0,λ ∗) .

The rest of this paper is organized as follows. In section 2, we introduce some
notations, preliminary results and lemmas for equation (1.1). In section 3, we prove
Theorem 1.

2. Some notations and preliminary results

From now on, we will use the following notations.
• C1,C2,C3, . . . denote various positive constants whose exact values are not im-

portant.
• → (respectively ⇀) denotes strong (respectively weal) convergence.
• on(1) denotes on(1) → 0 as n → ∞ .
• Sr = {u ∈ H1(RN) : ‖u‖ = r} , Br = {u ∈ H1(RN) : ‖u‖ < r} and Br = {u ∈

H1(RN) : ‖u‖ � r} .
Let H1(RN) be the Hilbert space equipped with the inner product and norm

〈u,v〉 =
∫

RN
(∇u ·∇v+uv)dx, ‖u‖2 = 〈u,u〉.

It follows from the Sobolev inequality that the embedding H1(RN) ↪→ Lq(RN) is con-
tinuous. Thus for each q ∈ [2,2∗] , there exists bq > 0 such that

|u|q � bq‖u‖ for all u ∈ H1(RN), (2.1)
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where 2∗ = 2N/(N−2) and |u|q = (
∫
RN |u|qdx)1/q is the usual norm in Lq(RN) .

In order to control nonlocal term in problem (1.1), we need the following Hardy-
Littlewood-Sobolev inequality,

∫ ∫
RN×RN

f (x)g(x)
|x− y|α dxdy � Cm,λ ,N | f |r|g|m for all f ∈ Lr(RN), g ∈ Lm(RN),

where 0 < α < N , 1 < r,m < ∞ and 1/r + 1/m+ α/N = 2, which states that if s ∈
(1,N/α) and every φ ∈ Ls(RN) , then Kα ∗φ ∈ LNs/(N−αs)(RN) such that

∫
RN

|Kα ∗φ | Ns
N−αs dx � CN,α ,s

(∫
RN

|φ |sdx

) N
N−αs

, (2.2)

where CN,α ,s > 0 depends on N,α,s. Set

K (u) =
∫

RN
(Kα(x)∗ |u|p)|u|pdx =

∫ ∫
RN×RN

Kα (x− y)|u(x)|p|u(y)|pdxdy.

From (2.2), we get

K (u) � CN,α ,p

(∫
RN

|u| 2Np
N+α dx

)N+α
N

= CN,α ,p|u|2p
pr , (2.3)

for every u ∈ H1(RN), where CN,α ,p is a positive constant and r = 2N/(N + α) . By
the Sobolev embedding, H1(RN) ↪→ L2Np/(N+α)(RN) if and only if

2Np
N + α

∈ (2,2∗), that is, p ∈
(

N + α
N

,
N + α
N−2

)
.

By (2.3), we know that K (u) is well defined in H1(RN) for p ∈ (1 + α/N,(N +
α)/(N−2)). Furthermore, K (u) ∈C1(H1(RN),R).

Let u+ = max{u,0} , u− = min{u,0} , u = u+ +u−. One can verify that the weak
solution of equation (1.1) is equivalent to the non-zero critical point of the functional

Iλ (u) =
1
2

∫
RN

(|∇u|2 +u2)dx− 1
2p

∫
RN

(Kα(x)∗ (u+)p)(u+)pdx−λ
∫

RN
f udx.

Moreover, the functional Iλ is well defined and Iλ ∈ C1(H1(RN),R) from (1.2) and
(2.3). Define

I(u) =
1
2

∫
RN

(|∇u|2 +u2)dx− 1
2p

∫
RN

(Kα (x)∗ (u+)p)(u+)pdx, (2.4)

which is the functional of the equation

−Δu+u = (Kα (x)∗ |u|p)|u|p−2u, u ∈ H1(RN). (2.5)
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We consider the Nehari manifold

N =
{
u ∈ H1(RN)\ {0} : 〈I′(u),u〉 = 0

}
=

{
u ∈ H1(RN)\ {0} : ‖u‖2 =

∫
RN

(Kα(x)∗ (u+)p)(u+)p dx

}
.

Denote
m = inf{I(u) : u ∈ N }, (2.6)

from [16, Theorem 1], we know that m is achieved by a function positive w ∈H1(RN),
which is a critical point of the functional equation I .

In order to prove our results, we need some lemmas as follows.

LEMMA 1. Let α ∈ (0,N) , p ∈ [
1,(N + α)/(N − 2)

)
. If {un} ⊂ H1(RN) is a

bounded sequence in L2Np/(N+α)(RN) such that un → u almost everywhere in R
N as

n → ∞ . Then we have:
(i) K (u)−K (un−u)→ K (u) as n → ∞,
(ii) K ′(un)−K ′(un−u)→ K ′(u) in H−1(RN) as n → ∞.

The proof is analogous to that of Lemma 3.3 in [19], we omit it here.

LEMMA 2. Assume that N � 3 , α ∈ (0,N) , p ∈ (1 + α/N,(N + α)/(N − 2)) ,
f satisfies (1.2) and {un} ⊂ H1(RN) is a (PS)c sequence for Iλ , then there exists
u ∈ H1(RN) such that un → u in H1(RN) , Iλ (u) = c, or c � Iλ (u)+m.

Proof. {un} is a (PS)c sequence of Iλ in H1(RN) , that is

Iλ (un) → c ∈ R, I′λ (un) → 0 as n → ∞.

We shall claim that {un} is bounded in H1(RN). It follows from (2.1) and (2.3) that

1+ c+o(1)�Iλ (un)− 1
2p

〈I′λ (un),un〉

=
1
2
‖un‖2− 1

2p

∫
RN

(Kα(x)∗ (u+
n )p)(u+

n )p dx−λ
∫

RN
f undx

− 1
2p

‖un‖2 +
1
2p

∫
RN

(Kα (x)∗ (u+
n )p)(u+

n )p dx+
λ
2p

∫
RN

f undx

�
(1

2
− 1

2p

)
‖un‖2−

(
1− 1

2p

)
λCf ‖un‖,

for p > 1, {un} is bounded in H1(RN). Of course, un ⇀ u in H1(RN) , we set vn =
un−u , then vn ⇀ 0 weakly in H1(RN , vn → 0 a.e. on R

N .
If vn → 0 strongly in H1(RN) , which means un → u strongly in H1(RN) and

Iλ (u) = limn→∞ Iλ (un) = c. When vn does not strongly converge to zero in H1(RN) ,
we may assume that

‖vn‖→ η > 0.
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It follows from Brézis-Lieb’s Lemma and Lemma 1 that

Iλ (un) =Iλ (vn +u)

=
1
2
‖vn+u‖2−λ

∫
RN

f · (vn+u)dx− 1
2p

∫
RN

(Kα (x)∗ ((vn+u)+)p)((vn+u)+)p dx

=
1
2
‖vn‖2 +

1
2
‖u‖2 +on(1)−λ

∫
RN

f · (vn +u)dx

− 1
2p

∫
RN

(Kα(x)∗ (v+
n )p)(v+

n )p dx− 1
2p

∫
RN

(Kα (x)∗ (u+)p)(u+)p dx

=Iλ (u)+ I(vn)−λ
∫

RN
f vndx+on(1).

Passing to the limit as n → ∞ , one gets

c = Iλ (u)+ lim
n→∞

I(vn). (2.7)

We can easily obtain {vn} is a (PS)c1 sequence for I from Lemma 2.6 in [21],

I(vn) → c1 and I′(vn) → 0.

We choose a sequence {tn} , such that

tn
2p−2 =

‖vn‖2∫
RN (Kα(x)∗ (v+

n )p)(v+
n )p dx

.

For 〈I′(vn),vn〉 → 0, we can easily obtain

tn
2p−2 =

‖vn‖2

‖vn‖2−〈I′(vn),vn〉 =
1

1− 〈I′(vn),vn〉
‖vn‖2

→ 1.

Then there exists a sequence {tn} such that 〈I′(tnvn), tnvn〉 = 0. So tnvn ∈ N . From
(2.6), we have

m � lim
n→∞

I(tnvn)

= lim
n→∞

(
I(tnvn)− I(vn)+ I(vn)

)
= lim

n→∞

(
(tn2−1)‖vn‖2 +(tn2p−1)

∫
RN

(Kα (x)∗ (v+
n )p)(v+

n )p dx+ I(vn)
)

= lim
n→∞

I(vn).

For (2.7) and the above inequality, we get

c � Iλ (u)+m.

This completes the proof of Lemma 2. �
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LEMMA 3. There exist positive constants λ ∗ , r and ρ such that for every λ ∈
(0,λ ∗) , we have

Iλ |u∈Sr(u) � ρ > 0 and inf
u∈Br

Iλ (u) < 0.

Proof. By (2.3), we have

Iλ (u) =
1
2
‖u‖2− 1

2p

∫
RN

(Kα (x)∗ (u+)p)(u+)p dx−λ
∫

RN
f udx

�1
2
‖u‖2− CN,α ,p

2p
‖u‖2p

pr −Cf λ‖u‖

�1
2
‖u‖2−C1‖u‖2p−Cf λ‖u‖,

set g(t) = 1
2 t2 −C1t2p −Cf λ t for t > 0, letting r = ( 1

4C1
)

1
2p−2 > 0, λ ∗ = r

8Cf
, then

g(r) � 1
4 r2 −Cf λ r � 1

8r2 for every λ ∈ (0,λ ∗) . It follows that there exists a constant
ρ > 0 such that Iλ |u∈Sr(u) � ρ > 0 for every λ ∈ (0,λ ∗) . Choosing u ∈ H1(RN) with∫
RN f udx > 0, for any λ ∈ (0,λ ∗) , there exists t > 0 such that tu ∈ Br and

Iλ (tu) =
1
2
t2‖u‖2− t2p

2p

∫
RN

(Kα (x)∗ (u+)p)(u+)p dx− tλ
∫

RN
f udx < 0 as t → 0.

This completes the proof of Lemma 3. �

LEMMA 4. Assume that N � 3 , α ∈ (0,N) , p ∈ (1 + α/N,(N + α)/(N − 2))
and f satisfies (1.2). Then there exists λ ∗ > 0 such that equation (1.1) exists a positive
solution for all λ ∈ (0,λ ∗) , which is a local minimizer of the function Iλ .

Proof. Applying Ekeland’s variational principle [4, Theorem 4.1] in Br , there is a
minimizing sequence {un} ⊂ Br such that

Iλ (un) � inf
u∈Br,

Iλ (u)+
1
n
, Iλ (ϕ) � Iλ (un)− 1

n
‖ϕ −un‖, ϕ ∈ Br.

Through calculation of the standard, we have

‖I′λ (un)‖→ 0 and Iλ (un) → cλ as n → ∞,

where cλ stands for the infimum of Iλ on Br . Since {un} is bounded and Br is a closed
convex set, there exists w1 ∈ Br , up to subsequences, such that un ⇀ w1 in H1(RN)
and un → w1 a.e. in R

N . Consequently, one gets

〈I′λ (w1),v〉 = lim
n→∞

〈I′λ (un),v〉

= lim
n→∞

(
〈un,v〉−

∫
RN

(Kα (x)∗ (u+
n )p)(u+

n )p−1vdx−λ
∫

RN
f vdx

)
=0,
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for all v ∈ H1(RN) . Then w1 is a non-trivial solution of problem (1.1). Taking the test
function w−

1 , we have

〈I′λ (w1),w−
1 〉 = ‖w−

1 ‖−λ
∫

RN
fw−

1 dx = 0,

so ‖w−
1 ‖ = 0. Thus w1 = w+

1 � 0. From the strong maximum principle, we deduce
that w1 > 0. Obviously, w1 is a local minimizer of the function Iλ . This completes the
proof of Lemma 4. �

LEMMA 5. Let α ∈ (0,N) , p ∈ (1+ α/N,(N + α)/(N −2)) , λ > 0 and f sat-
isfies (1.2), there exists λ ∗ > 0 such that for all λ ∈ (0,λ ∗), then the functional Iλ
satisfies the following conditions:
(i) there exist r,ρ such that Iλ � ρ > 0 for all ‖u‖ = r,
(ii) there exists e ∈ H1(RN) with ‖e‖ > r such that Iλ (e) < 0 .

Proof. (i) It has been proved by Lemma 3.
(ii) In fact, we have

Iλ (w1 + tw) =
1
2

∫
RN

(|∇(w1 + tw)|2 +(w1 + tw)2)dx−λ
∫

RN
f · (w1 + tw)dx

− 1
2p

∫
RN

(
Kα(x)∗ ((w1 + tw)+)p)((w1 + tw)+)pdx

<
1
2
‖w1‖2− 1

2p

∫
RN

(
Kα (x)∗wp

1

)
wp

1dx−λ
∫

RN
fw1dx

+ t
∫

RN
(∇w1 ·∇w+w1w)dx− t

∫
RN

(
Kα(x)∗wp

1

)
wp−1

1 wdx

− tλ
∫

RN
fwdx+

t2

2
‖w‖2− t2p

2p

∫
RN

(
Kα(x)∗wp)wpdx, (2.8)

where t > 0 and w is a positive solutions of problem (2.5) by [16, Theorem1]. Hence

lim
t→+∞

Iλ (w1 + tw)
t2p = − 1

2p

∫
RN

(Kα(x)∗wp)wp dx < 0.

Taking t0 > 0 large enough such that Iλ (w1 + t0w) < 0. Let e = w1 + t0w , obviously
‖w1 + t0w‖ > r . �

Define

Γ =
{

γ ∈C1([0,1],H1(RN)) : γ(0) = w1,γ(1) = w1 + t0w
}
,

c = inf
γ∈Γ

sup
u∈γ

Iλ (u).

We can claim
c < Iλ (w1)+m, (2.9)
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Since w1 is a positive solution of problem (1.1), we have∫
RN

(
∇w1 ·∇w+w1w

)
dx =

∫
RN

(
Kα(x)∗wp

1

)
wp−1

1 wdx+ λ
∫

RN
fwdx. (2.10)

It follows from (2.8) and (2.10) that

sup
t>0

Iλ (w1 + tw) < Iλ (w1)+m.

Then
c < Iλ (w1)+m.

This completes the proof of our claim.

3. Proof of the main result

In this section, we give the proof of our main result.

Proof of Theorem 1. According to Lemma 4, we have got that w1 is a local mini-
mizer of functional Iλ .

From Lemma 5, there exists a (PS)c sequence {un} ⊂H1(RN) of Iλ . It is easy to
prove that {un} is bounded in H1(RN). Hence there exists w2 ∈H1(RN) such that, up
to a subsequences, un ⇀ w2 in H1(RN) .

If Iλ (w1) > Iλ (w2) . One see that w1,w2 are two positive solutions of problem
(1.1) from Lemmas 2 and 4.

Otherwise, Iλ (w1) � Iλ (w2) , from (2.9), we have

c < Iλ (w1)+m � Iλ (w2)+m.

Combining with Lemma 2, one gets

Iλ (w2) = lim
n→∞

Iλ (un) = c,

So w2 is a non-trivial solution of problem (1.1). Taking the test function w−
2 , we have

〈I′λ (w2),w−
2 〉 = ‖w−

2 ‖−λ
∫

RN
fw−

2 dx = 0,

then ‖w−
2 ‖ = 0, w2 = w+

2 � 0. By strong maximum principle, we obtained that w2 is
a positive solution of equation (1.1).

To sum up, we obtain two positive solutions of problem (1.1).
Last, we give the proof of the existence of ground state solution. In order to find

the ground state solution of equation (1.1), we denote

G = {u ∈ H1(RN)\ {0} : I′λ (u) = 0},

m1 = inf{Iλ (u) : u ∈ H1(RN),u ∈ G }.
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In the following, we show that there exists u∗ ∈ G with Iλ (u∗) = m1, that is, u∗ is a
ground state solution of problem (1.1). For every u ∈ G , we have

Iλ (u) =Iλ (u)− 1
2p

〈I′λ (u),u〉

=
1
2
‖u‖2− 1

2p

∫
RN

(Kα(x)∗ (u+)p)(u+)p dx−λ
∫

RN
f udx

− 1
2p

‖u‖2 +
1
2p

∫
RN

(Kα(x)∗ (u+)p)(u+)p dx+
λ
2p

∫
RN

f udx

�
(1

2
− 1

2p

)
‖u‖2 +

( 1
2p

−1
)

λCf ‖u‖,

hence Iλ (u) > −∞ from p > 1. Then Iλ on G is bounded from below.
Let {un} ⊂ G be a minimizing sequence of Iλ . From Lemma 2, there exists u∗ ∈

G such that un → u∗ in H1(RN) as n → ∞ . Otherwise,

m1 � Iλ (u∗)+m,

which is in contradiction with the fact that m > 0 for Iλ (u∗) � m1 . Therefore u∗ is a
ground state solution of problem (1.1). �
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