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ON A GENERAL CLASS OF SECOND–ORDER, LINEAR,

ORDINARY DIFFERENTIAL EQUATIONS SOLVABLE

AS A SYSTEM OF FIRST–ORDER EQUATIONS
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(Communicated by Mervan Pašić)

Abstract. An approach for solving general second-order, linear, variable-coefficient ordinary dif-
ferential equations in standard form under initial-value conditions is presented for the case of a
specific constant-form relation between the two otherwise arbitrary coefficients. The resulting
system of linear equations produces fundamental (or state transition) matrix elements used to
create integral- and closed-form solutions for both homogeneous and nonhomogeneous differ-
ential equation variants. Two example equations are chosen to illustrate application. A short
discussion is presented on the comparison of the theoretical results for these examples with the
corresponding symbolic integration outputs provided by several commercial programs which
were seen, at times, to be long and unwieldy or even non-existent.

1. Introduction

Given the second-order, linear, nonhomogeneous, ordinary differential equation in
standard form [1, 3, 4, 7, 9, 10, 11, 12, 14, 15]

ÿ(x)+ p(x)ẏ(x)+q(x)y(x) = f (x) (1)

with excitation f (x) and initial-value conditions

y(x0) = y0 and ẏ(x0) = ẏ0, (2)

a relationship between the coefficients of

p(x) = aq(x)+
1
a
, (3)

where a is a nonzero real constant and q(x) is an arbitrary real function, leads to a
readily obtainable general solution to equations (1) and (2). This result appears to be
of practical significance since it provides integral-form general solutions to otherwise
difficult-to-solve variable coefficient differential equations such as, for example,

ÿ(x)+
[
2x+

1
2

]
ẏ(x)+ xy(x) = f (x) for parameter a = 2 , (4)
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or
ÿ(x)+ cosh2(x)ẏ(x)+ sinh2(x)y(x) = f (x) for a = 1 (5)

for arbitrary f (x) . All similar second-order differential equations obeying (3) are, of
course, also included in the following analysis.

2. Conversion to an Equivalent System of Linear Equations

A general solution to equations (1) and (2) subject to (3) follows from conversion
to a system of linear first-order equations by employing state variables u1(x) and u2(x)
in the form

y(x) = u1(x), ẏ(x) = u̇1(x) = u2(x),
u̇2(x) = −q(x)u1(x)− p(x)u2(x)+ f (x),

(6)

or [
u̇1(x)
u̇2(x)

]
=

[
0 1

−q(x) −p(x)

][
u1(x)
u2(x)

]
+

[
0
1

]
f (x), (7)

where the system excitation f (x) = 0 for the homogeneous case and

y(x) =
[
1 0

][
u1(x)
u2(x)

]
. (8)

The standard, linear, variable-coefficient system canonical form for this single-input,
single-output case in matrix form is

u̇(x) = A(x)u(x)+b f (x) (9)

from which matrix A(x) and the column vector b are defined by comparison with
equation (7). Matrix A(x) is the companion matrix of the corresponding characteristic
polynomial of equation (1) [14]. The standard general solution [14] , [12] to eq. (9) is
obtained from the fundamental or state transition matrix ΦΦΦΦ(x,x0) as

u(x) = ΦΦΦΦ(x,x0)u(x0)+
∫ x

x0

ΦΦΦΦ(x,x′)b f (x′)dx′. (10)

This result is also the variable coefficient version of Duhamel’s Formula [14] which
exhibits the zero-input and zero-state responses for the state vector u(x) and single
input f (x) in the two terms, respectively, on the right-hand side. For the initial-value
problem of (1), (2), since y(x) = u1(x) and ẏ = u2(x) , eq. (11) provides the general
solution to (1)

y(x) = Φ11(x,x0)y(x0)+ Φ12(x,x0)ẏ(x0)+
∫ x

x0

Φ12(x,x′) f (x′)dx′ (11)

where Φi j(x,x0) are the matrix elements of 2× 2 ΦΦΦΦ(x,x0) . Hence the solution to
the nonhomogeneous version of the initial-value problem of equations (1) and (2) is
completely determined by the initial conditions, excitation f (x) , and the two top-row
elements of the fundamental matrix which is itself determinable from its properties as
a fundamental matrix. Note also that Φi j(x,x0) is nonzero only for x � x0 for initial
value problems.
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3. Linear System Solution ΦΦΦΦ(x,x0)

As a fundamental matrix, ΦΦΦΦ(x,x0) satisfies

d
dx

ΦΦΦΦ(x,x0) = A(x)ΦΦΦΦ(x,x0), (12)

where ΦΦΦΦ(x0,x0) = I . Hence, for A(x) of equations (7) and (9), this leads to the four
equations for the Φi j elements:

d
dx

Φ11(x,x0) = Φ21(x,x0) (13)

d
dx

Φ12(x,x0) = Φ22(x,x0) (14)

d
dx

Φ21(x,x0) = −q(x)Φ11(x,x0)− p(x)Φ21(x,x0) (15)

d
dx

Φ22(x,x0) = −q(x)Φ12(x,x0)− p(x)Φ22(x,x0). (16)

Note that by the nature of the resulting A(x) for general eq. (1), overall coupling
among the Φi j elements is restricted to identical differential equation relations between
Φ11,Φ21 in equations (13) and (15) and Φ12,Φ22 in equations (14) and (16).

THEOREM 1. A general 2×2 fundamental matrix ΦΦΦΦ(x,x0) for the second-order,
linear, nonhomogeneous differential equation (1) with initial-value conditions of (2)
under the coefficient relationship of (3) is given by

Φ11(x,x0) = e−
x−x0

a +
1
a
Ia(x,x0) (17)

Φ12(x,x0) = Ia(x,x0) (18)

Φ21(x,x0) =
1
a

[
e−aQ(x,x0) − e−

x−x0
a

]
− 1

a2 Ia(x,x0) (19)

Φ22(x,x0) = e−aQ(x,x0) − 1
a
Ia(x,x0), (20)

where

Q(x,x0) =
∫ x

x0

q(x′)dx′ (21)

and

Ia(x,x0) =
∫ x

x0

e−
(x−x′)

a e−aQ(x′,x0) dx′. (22)

Proof. Under the condition that p(x) = aq(x)+ 1
a for any nonzero, real constant a ,

either pair, (13), (15) or (14), (16) can be solved as follows. For (13), (15),

1
a

d
dx

Φ11(x,x0) =
1
a

Φ21(x,x0) and
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d
dx

Φ21(x,x0) = −q(x)Φ11(x,x0)−
(

aq(x)+
1
a

)
Φ21(x,x0)

can be added together to give

1
a

d
dx

Φ11(x,x0)+
d
dx

Φ21(x,x0) = −q(x)Φ11(x,x0)−aq(x)Φ21(x,x0)

or
d
dx

Φ11(x,x0)+a
d
dx

Φ21(x,x0) = −aq(x)
[
Φ11(x,x0)+aΦ21(x,x0)

]
(23)

in which the quantity v1(x,x0) = Φ11(x,x0) + aΦ21(x,x0) for constant a acts like a
normal mode in that it evolves in a way uncoupled to any other element grouping.
Similarly for equations (14), (16), v2 = Φ12(x,x0)+aΦ22(x,x0) plays an identical role
with the only difference occurring in the initial values of v1(x0,x0) = 1 and v2(x0,x0) =
a .

Eq. (23) is subsequently solved for v1(x,x0) and the resulting Φ11,Φ21 relation
substituted into eq. (15) to obtain an uncoupled differential equation for Φ21 . When
an identical method is used for equations (14), (16), the resulting fundamental or state
transition matrix ΦΦΦΦ(x,x0) is then found to be comprised of the elements shown in (17)
through (20), together with the definitions (21) and (22).

The requisite fundamental matrix condition Φi j(x0) = δi j is of course met, and
the general solution of equations (1), (2) under the constraint of eq. (3) follows from
these results as per eq. (11).

Note that Φ12(x,x0) of (18) is the Green’s Function or Impulse Response Function
of Systems Theory for the initial value problem [12], [1]. Therefore, a general form for
particular solutions for these equations from excitation f (x) is denoted by

yp(x) =
∫ x

x0

Ia(x,x′) f (x′)dx′ (24)

Due to the complexity of eqs. (21), (22), this result would usually require numeri-
cal integration except for sufficiently simple q(x) , f (x) .

REMARK 1. The main result of Theorem 1 can perhaps be further illuminated
through an alternative inquiry into the relationship required between coefficients p(x) ,
q(x) in satisfying the pairs of differential equations for Φ11 , Φ21 and Φ12 , Φ22 . This
can be posed through two problem statements which are subsequently resolved by an
appropriate developmental sequence.

PROBLEM 1. Find the resulting p(x) , q(x) relation such that, for an explicit
Φ11(x,x0) related to Φ21(x,x0) by eq. (13), d

dxΦ11 = Φ21(x,x0) with Φi j(x0,x0) = δi j ,
eq. (15) is also satisfied.

PROBLEM 2. Find the resulting p(x) , q(x) relation such that, for an explicit
Φ12(x,x0) related to Φ22(x,x0) by eq. (14), d

dxΦ12 = Φ22(x,x0) with Φi j(x0,x0) = δi j ,
eq. (16) is also satisfied.
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Since the form of these differential equation pairs is identical, the coefficient rela-
tions obtained from each problem must be the same.

These two problems are resolved in the following three steps.
Step 1: For some parameter a �= 0, consider the elementary solution

Φ11(x,x0) = φ11(x,x0) = e−
x−x0

a

for which φ11(x0,x0) = 1 and d
dxφ11 = Φ21 = − 1

aφ11 . Then
(

d
dxΦ21 = 1

a2 φ11

)
=

−qφ11− p
(− 1

aφ11
)
=

(−q+ p
a

)
φ11 . This equality requires the p -q relation of eq. (3),

but Φ21(x0,x0) �= 0. Hence this choice of Φ11 = φ11 and Φ21 does not present a solu-
tion to Problem 1.

Step 2: For φ11(x,x0) defined above, consider

Φ12(x,x0) =
∫ x

x0

φ11(x,x′) e−aQ(x′,x0) dx′

from eqs. (18), (21), and (22). Then d
dx Φ12 = Φ22 = e−aQ − 1

a Φ12 as in eq. (20), and
from this, d

dxΦ22 = −aq e−aQ − 1
a Φ22 . Since the latter must also agree with d

dxΦ22 =
−qΦ12 − pΦ22 of eq. (16), equating these last two results and substituting for Φ22

from above leads to the p -q relation of eq. (3). Since Φ12(x0,x0) and Φ22(x0,x0)
agree with δi j , these two so-defined fundamental matrix elements satisfy Problem 2
with eq. (3) resulting.

Step 3: For φ11(x,x0) defined above, consider

Φ11(x,x0) = φ11(x,x0)+
1
a

Φ12(x,x0)

from eqs. (17), (21), and (22). Then d
dxΦ11 = Φ21 = − 1

aφ11 + 1
a

d
dxΦ12 . But, from

Step 2, d
dxΦ12 = e−aQ − 1

a Φ12 , which leads to d
dxΦ21 = 1

a2 φ11 − qe−aQ − 1
a2 e−aQ +

1
a3 Φ12 . Since the latter must also satisfy eq. (15), d

dxΦ21 =−qΦ11− pΦ21 , substituting
for these last two matrix elements and matching terms also demonstrates that p(x) , q(x)
must be related by constraint (3). Since Φ11(x0,x0) and Φ21(x0,x0) both equal δi j ,
these matrix elements constitute a solution pair for Problem 1 under the constraint of
eq. (3).

Hence, both problem solutions do lead to the same p -q relation (3) as expected
and required.

4. Further Interpretation from the Diagonalization of Matrix A

Additional insight on the implications of the constraint eq. (3), p(x) = aq(x)+ 1
a

on the initial-value problem can be obtained through a diagonalization of

A =
[

0 1
−q(x) −p(x)

]
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of equation (12). The two eigenvalues , λ±(x) , satisfy the characteristic equation

λ 2 + p(x)λ +q(x) = 0 (25)

and hence

λ±(x) = −1
2

p(x)± 1
2

√
p2(x)−4q(x). (26)

As usual, the sum of the eigenvalues is −p(x) and their product is q(x) . For p(x) =
aq(x)+ 1

a , this becomes

λ±(x) = −1
2

(
aq(x)+

1
a

)
± 1

2

√(
aq(x)− 1

a

)2

= −1
2

(
aq(x)+

1
a

)
± 1

2

∣∣∣∣aq(x)− 1
a

∣∣∣∣ . (27)

Given q(x) , for regions of x and the value of the constant a (either positive or
negative) such that aq(x)− 1

a > 0, then

λ+ = −1
a

, (28)

λ−(x) = −aq(x). (29)

Note that the sum and product of the eigenvalues are as required and that one eigenvalue
is constant for this x -region. For the same a -value but for other regions of x such
that aq(x)− 1

a < 0, then

λ+(x) = −aq(x), (30)

λ− = −1
a
. (31)

Lastly, for values of x such that aq(x)− 1
a = 0, the eigenvalues are equal:

λ+ = λ− = −1
a
. (32)

A key observation is that for a given value of the parameter a �= 0, for each of the
separate regions of x defined by aq(x)− 1

a being positive, negative, or zero, at least
one of the eigenvalues λ± is constant.

If eq. (5) is used as an illustrative eigenvalue example, q(x) = sinh2(x) with pa-
rameter a = 1. From eq. (27),

λ± = −1
2

[
sinh2(x)+1

]± 1
2

∣∣sinh2(x)−1
∣∣ . (33)

Since sinh2(x) = xp = 1 for ±(xp = 0.881374), sinh2(x)−1 > 0 for |x| > xp , and

λ+ = −1
a

= −1, (34)
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λ−(x) = −aq(x) = −sinh2(x) (35)

for this x -region. Similarly, for |x| < xp ,

λ+(x) = −sinh2(x) and (36)

λ− = −1
a
, (37)

and for |x| = xp ,

λ+ = λ− = −1
a

= −1. (38)

For the case in which aq(x)− 1
a �= 0 and λ+ �= λ− , the eigenvectors p1−(x) ,

p1+(x) can be chosen so as to form the modal matrix P1(x)

P1(x) =
[
p1−(x) p1+(x)

]
=

[
1 1
λ− λ+

]
, (39)

for which det
(
P1(x)

)
= Δp �= 0. From this and the previous observations on the eigen-

values, matrix diagonalization can be shown to provide an alternative yet equivalent
pathway to the analysis and results of Section 3 as follows.

PROPOSITION 1. Diagonalization of matrix A within the fundamental matrix re-
lation of (12) under the condition of (3) also leads to the general results of equations
(17) through (22) for the initial value problem of (1) and (2).

Proof. Case 1: λ+ �= λ− .

A(x) = P1(x)ΛΛΛΛ(x)P1(x)−1 = P1(x)
[

λ−(x) 0
0 λ+(x)

]
P1(x)−1 (40)

can be used to transform eq. (12) to

P1(x)−1 d
dx

ΦΦΦΦ(x,x0) = ΛΛΛΛ(x)P1(x)−1ΦΦΦΦ(x,x0), (41)

or

[
λ+

d
dxΦ11− d

dx Φ21 λ+
d
dx Φ12− d

dx Φ22

−λ− d
dxΦ11 + d

dxΦ21 −λ− d
dxΦ12 + d

dxΦ22

]
=

[
λ−(x) 0

0 λ+(x)

][
λ+Φ11 −Φ21 λ+Φ12−Φ22

−λ−Φ11 + Φ21 −λ−Φ12 + Φ22

]
. (42)

At this point, we reconsider the effect on eq. (42) of the specific constraint eq. (3),
p(x) = aq(x)+ 1

a , for nonzero real constant a . For the subcase of aq(x)− 1
a > 0 and the

corresponding regions in x for which this is true, the eigenvalues are given by eqs. (28)
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and (29). With λ+ being constant, the two top-row differential equations from eq. (42)
are, for the top left element,(

λ+ = −1
a

)
d
dx

Φ11− d
dx

Φ21 = (λ−(x) = −aq(x))
[(

λ+ = −1
a

)
Φ11−Φ21

]
, (43)

or
d
dx

[Φ11 +aΦ21] = −aq(x) [Φ11 +aΦ21] , (44)

and for the top right element,

d
dx

[Φ12 +aΦ22] = −aq(x)[Φ12 +aΦ22] . (45)

Eq. (44) is the same as eq. (23), and eqs. (44) and (45) result in the v1 , v2 normal mode
combinations previously seen in Section 3 that lead to the fundamental matrix elements
of eqs. (17) to (22) for use in the solution eq. (11).

For the subcase of aq(x)− 1
a < 0 and its corresponding x -regions, the eigenvalues

are now given by eqs. (30) and (31). The eigenvalues exchange roles from the case
above, and we instead consider the two bottom row differential equations from eq. (42).
From the bottom left, we have

−
(

λ− = −1
a

)
d
dx

Φ11 +
d
dx

Φ21 =

(
λ+(x) = −aq(x)

)[
−

(
λ− = −1

a

)
Φ11 + Φ21

]
, (46)

which repeats eq. (44) while the bottom right element of (42) correspondingly leads to
eq. (45). Once again, the results of Theorem 1 follow and apply to this region for x .

Case 2: λ+ = λ− =
(
λa = − 1

a

)
. In this case for which aq(x)− 1

a = 0, the eigen-
values are repeated and constant, and the diagonalization of eq. (40) must be replaced
by the Jordan Canonical Form. For eigenvectors p2− and p2+ chosen to form the
modal matrix P2 , we have

P2 =
[
p2− p2+

]
=

[
1 1
λa λa +1

]
(47)

where λa = − 1
a . Then

A = P2JP2
−1 = P2

[
λa 1
0 λa

]
P2

−1. (48)

From eq. (12),

P2
−1 d

dx
ΦΦΦΦ(x,x0) = JP2

−1ΦΦΦΦ(x,x0), (49)

or
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[
(λa +1) d

dxΦ11 − d
dxΦ21 (λa +1) d

dxΦ12− d
dx Φ22

−λa
d
dx Φ11 + d

dxΦ21 −λa
d
dx Φ12 + d

dxΦ22

]
=

[
λa 1
0 λa

][
(λa +1)Φ11−Φ21 (λa +1)Φ12−Φ22

−λaΦ11 + Φ21 −λaΦ12 + Φ22

]
. (50)

The bottom row left element is seen to produce the differential equation

1
a

(
d
dx

Φ11

)
+

d
dx

Φ21 = −1
a

[
1
a

Φ11 + Φ21

]
(51)

which is equal to eqs. (44) and (23) since −aq(x) =− 1
a . The bottom row right element

is correspondingly seen to reproduce eq. (45), and the top row elements of eq. (50)
repeat this process for eqs. (44) and (45). Hence the results of Theorem 1 follow and
also apply to the regions of x for which aq(x)− 1

a = 0.
In summary, the matrix diagonalization of A has independently demonstrated the

applicability of Theorem 1 for the initial value problem described by eqs. (1), (2),
and (3) by separately verifying its equivalence for each region of x demarcated by
positive, negative, or zero values of the expression aq(x)− 1

a .

5. Examples: Application to equations (4) and (5)

If the coefficient q(x) of eq. (1) is directly integrable and hence is assumed to
possess an antiderivative function Q(x) , then eq. (21) is alternately expressible as

Q(x,x0) = Q(x)−Q(x0) (52)

for Q(x) =
∫

q(x′)dx′ . Consequently result (22) becomes

Ia(x,x0) = e−
x
a eaQ(x0)

∫ x

x0

e−aQ(x′)+ x′
a dx′, (53)

which redefines the two key fundamental matrix elements Φ11(x,x0) and Φ12(x,x0) of
equations (17), (18) for use in eq. (11). Note that if the integrand within Ia(x,x0) is also
integrable, then at least the homogeneous solution associated with eq. (11) would be of
closed form, since both Φ11 and Φ12 would be. Otherwise, the resulting integral-form
solution (53) must be evaluated through numerical rather than symbolic integration.
The two sample equations in (4) and (5) are chosen to illustrate application of the results
of equations (11) and (17) through (22).

5.1. Example eq. (4), Homogeneous Version

Since (4) has p(x) = 2
(
q(x) = x

)
+ 1

2 , parameter a = 2, Q(x) = x2

2 , and equa-
tions (52) and (53) become

Q(x,x0) =
(

Q(x) =
x2

2

)
−

(
Q(x0) =

x2
0

2

)
(54)
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and

Ia=2(x,x0) = e−
x
2 ex0

2
∫ x

x0

e
−

(
(x′)2− x′

2

)
dx′. (55)

Completing the square within the integrand of eq. (55) gives

Ia=2(x,x0) =
√

π
2

e−
x
2 ex2

0+
1
16

[
2√
π

∫ x

x0

e−(x′− 1
4 )2 dx′

]
, (56)

or, for eq. (18),

Φ12(x,x0) = Ia=2(x,x0) =
√

π
2

e−
x
2 ex2

0+ 1
16

[
erf

(
x− 1

4

)
− erf

(
x0− 1

4

)]
. (57)

Similarly, from eq. (17),

Φ11(x,x0) = e−
(x−x0)

2 +
1
2
Ia=2(x,x0), (58)

and hence the homogeneous solution of eq. (4) is, from eq. (11),

yh(x,x0) = e−
(x−x0)

2 y0 + Ia=2(x,x0)
[y0

2
+ ẏ0

]
(59)

for Ia=2(x,x0) defined by eq. (57).

5.2. Example eq. (4), Nonhomogeneous Version

The corresponding general form for the particular solution yp(x,x0) of eq. (4) for
any excitation f (x) would entail yet another integration of eq. (57),

yp(x,x0) =
∫ x

x0

Ia=2(x,x′) f (x′)dx′, (60)

which would generally require numerical integration.
However, of particular interest in linear system analysis is the system step re-

sponse [12] (for zero initial conditions). Formally, for a unit step excitation applied
at x1 � x0 , f (x′) = u(x′ − x1) , eq. (60) becomes

ystep(x,x1) =
∫ x

x1

Ia=2(x,x′)dx′. (61)

5.3. Example eq. (5), Homogeneous Version

For eq. (5), parameter a = 1, q(x) = sinh2(x) , and equations (52) and (53) become

Q(x,x0) =
∫ x

x0

sinh2(x′)dx′ =
1
4

[
sinh(2x)−2x

]− 1
4

[
sinh(2x0)−2x0

]
(62)

and

Ia=1(x,x0) = e−xe
1
4

[
sinh(2x0)−2x0

] ∫ x

x0

e−
1
4 sinh(2x′)+ 3

2 x′ dx′. (63)
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This last equation is not integrable symbolically and requires numerical integration.
The corresponding matrix elements are

Φ12(x,x0) = Ia=1(x,x0) (64)

and
Φ11(x,x0) = e−(x−x0) + Ia=1(x,x0). (65)

As in the previous example, a concise integral form for the homogeneous solution
of eq. (5) is from eq. (11),

yh(x,x0) = e−(x−x0)y0 + Ia=1(x,x0)(y0 + ẏ0). (66)

5.4. Example eq. (5), Nonhomogeneous Version

As in Section 5.2, under zero initial conditions, the response to a unit step at x = x1

is

ystep(x,x1) =
∫ x

x0

Ia=1(x,x′)
[
f (x′) = u(x′ − x1)

]
dx′ =

∫ x

x1

Ia=1(x,x′)dx′ (67)

for Ia=1(x,x′) defined by eq. (63) and for x1 � x0 .
It has been pointed out that a general form for particular solutions of eq. (1) has

been determined in [2]. As presented there, a widely-applicable integral-form result,
which is contingent upon finding a Riccati differential equation solution r(x) to

d
dx

r(x) = q(x)− p(x)r(x)+ r2(x), (68)

is given by Theorem 6.1 in [2]

yp(x) = e−
∫

r(x)dx
∫

e
∫ (

2r(x)−p(x)
)

dx
{∫

f (x)e
∫
(p(x)−r(x))dx dx

}
dx. (69)

Note that this method requires two consecutive integrations of the forcing term f (x)
of eq. (1) in contrast to the single integral within eq. (11). A more exact rendering of
eq. (69) which incorporates the details of the interleaved integration process over the
region (x0,x) is

yp(x) = e−
∫ x
x3=x0

r(x3)dx3

∫ x

x1=x0

e
∫ x1
x3=x0

(
2r(x3)−p(x3)

)
dx3{F(x1)}dx1 (70)

where

F(x1) =
∫ x1

x2=x0

f (x2)e
∫ x2
x3=x0

(
p(x3)−r(x3)

)
dx3 dx2. (71)

As indicated in [2], the special case of eq. (1) under constraint (3) admits the
simple Riccati solution r(x) = 1

a . In employing the Q(x,x0) definition of eq. (21),
eq. (70) becomes

yp(x) = e−
x
a

∫ x

x1=x0

e
x1
a −aQ(x1,x0)

{∫ x1

x2=x0

eaQ(x2,x0) f (x2)dx2

}
dx1 (72)
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which can be condensed to

yp(x) = e−
x
a

∫ x

x1=x0

∫ x1

x2=x0

U(x1,x0)V (x2,x0)dx2 dx1 (73)

for
U(x,x0) = e

x
a−aQ(x,x0) and V (x,x0) = eaQ(x,x0) f (x). (74)

For comparison, substitution of eq. (22) into the particular solution part of eq. (11) gives

yp(x) = e−
x
a

∫ x

x2=x0

{∫ x

x1=x2

e
x1
a −aQ(x1,x0)dx1

}
eaQ(x2,x0) f (x2)dx2 (75)

which can be expressed as

yp(x) = e−
x
a

∫ x

x2=x0

∫ x

x1=x2

U(x1,x0)V (x2,x0)dx1 dx2. (76)

Eq. (76) is seen to be a double integral equivalent to eq. (73) over the same region in
the (x1,x2) plane with the order of integration interchanged. Hence the method of [2]
and the linear systems method presented here are in exact agreement on the form of the
particular solutions of eq. (1) subject to constraint (3).

6. Discussion

A general integral-form solution to the second-order variable coefficient system
of equations (1), (2) for arbitrary real function q(x) under the constraint of eq. (3)
for p(x) has been provided by equations (11) and (17) through (22). This methodology
provides solutions to second-order differential equations such as (4) and (5) and all
similar equations following the constraint (3).

An examination of extensive tables of solutions and methods for the linear second
order, initial-value problems of equations (1) to (3) such as that provided by Zwill-
inger [15] and Murphy [11] shows that, of the 569 separate results listed for example
in the latter, the solution methodology presented here is clearly applicable as an alter-
nate approach for about seven of the equations. Also, although there is arbitrariness
in q(x) , the availability of only a single adjustable parameter a , together with the form
of eq. (3), restrict p(x) such that almost none of the well-known special function equa-
tions of physics falls within its domain of applicability. An exception is the confluent
hypergeometric equation [1], xÿ(x)+(C− x)ẏ(x)−Ay(x) = 0, under the parameter se-
lection A = C for relationship parameter a = −1.

More generally, however, from the fundamental matrix methodology presented
here, the concise nature of the integral-form or truly closed-form solutions when avail-
able for equations (1), (2) adhering to eq. (3) can serve as a superior option to symbolic
solutions provided by various commercial mathematics programs. That is, their solu-
tions can, at times, be long and unwieldy or even nonexistent. For example, in the
case of eq. (4), MATLAB’s dsolve command outputs the result, eq. (57), exactly as
presented here. However, for eq. (5), it produces a lengthy answer for Φ12(x,x0) in
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Figure 1: Second-order linear system diagram

terms of the Heun Doubleconfluent function [8], HeunD(α,β ,γ,δ ,x) , stretching over
more than one screen. Although the complicated expression using this function repre-
sents a closed-form result unlike the integral form eq. (63) appearing in equations (64)
and (65), it appears to be difficult to use practically. Alternatively, other versions of
MATLAB present solutions for eq. (5) that are also of integral form and involve var-
ious combinations of tanh(x/2) and its integral. Maple also provides long symbolic
results with HeunD, and one version of Mathematica failed to provide any solution at
all to eq. (5). In contrast, the results generally provided by equations (11) and (17) to
(22) are relatively simple and concise and directly encompass both homogeneous and
nonhomogeneous forms of the differential equation.

One important area of complementarity between the fundamental matrix method-
ology presented here and commercial mathematics programs was supplied by the lat-
ter’s simulation capability. For example, MATLAB’s Simulink simulation program
proved to be more convenient in checking results obtained from equations (11) and (17)
to (22) than comparison with various mathematics programs’ symbolic outputs. To see
this connection, it is useful to recreate an ”analog computer” simulation diagram [12]
that pictures equations (1) or (6), (7), (8) of the corresponding linear system as shown
in Fig. 1. The second-order system is comprised of two integrators, a summing de-
vice, and two (negative) feedback amplifiers of variable amplification p(x) , q(x) . The
input f (x) from the source on the left together with any initial energy y0 , ẏ0 in the
integrators produces an output y(x) on the right. By tracing the signal pathways, for
example, leading into the summing device from p(x) , q(x) , and f (x) , it can be seen
that ÿ(x) is the output of the summing device that equals −p(x)ẏ(x)−q(x)y(x)+ f (x)
as per eq. (1).

Furthermore, it can also be seen from Fig. 1 that each of the simulation waveforms
for Φi j can be obtained from equation (11) with f (x) = 0 through appropriate choice
for initial conditions y0 , ẏ0 . That is, by choosing either (1,0) or (0,1) for (y0, ẏ0) in
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integrators 1,2 of Fig. 1, eq. (11) shows that the former condition produces the output
y(x) = Φ11(x,x0) and the latter gives y(x) = Φ12(x,x0) . Similarly, the ẏ(x) output leads
to Φ21 and Φ22 as seen from equations (13) and (14). These Φi j waveforms were then
each compared directly to mathematical outputs constructed as systems in Simulink
as per the corresponding predictions from equations (17) to (22). Agreement was ob-
tained when the differences between these predicted waveforms and the corresponding
simulation outputs were found to be zero, as expected. These matrix elements can be
graphically constructed from either the theoretical form or simulation data. An illustra-
tive three-dimensional visualization of Φ11(x,x0) and Φ12(x,x0) for eq. (4) is shown in
Figures 2 and 3 respectively. These surfaces display the matrix elements’ variation in x
for progressing values of x0 , summarizing their behavior in an insightful way. Recall
that these elements are nonzero only for x � x0 .

Figure 2: Φ11(x,x0) for eq. (4) plotted over the range (0,2) for x and x0

Figure 3: Φ12(x,x0) for eq. (4) plotted over the range (0,2) for x and x0



ROMEO PASCONE, Differ. Equ. Appl. 10, No. 1 (2018), 131–146. 145

7. Conclusions

In summary, for those second-order linear equations conforming to the constraint
of eq. (3), the fundamental matrix methodology of equations (11) and (17) to (22)
provides integral-form results for those equations in both the homogeneous and nonho-
mogeneous cases. These results are sometimes of closed form and often simpler than
symbolic integration results provided by commercial mathematics programs which, for
some program versions in some cases, fail to provide any symbolic solutions to equa-
tions of type (3) at all.
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