EXISTENCE THEORY FOR NONLINEAR STURM–LIOUVILLE PROBLEMS WITH NON–LOCAL BOUNDARY CONDITIONS

DANIEL MARONCELLI AND JESÚS RODRÍGUEZ

(Communicated by Lingju Kong)

Abstract. In this work we provide conditions for the existence of solutions to nonlinear Sturm-Liouville problems of the form

\[(p(t)x'(t))' + q(t)x(t) + \lambda x(t) = f(x(t))\]

subject to non-local boundary conditions

\[ax(0) + bx'(0) = \eta_1(x) \quad \text{and} \quad cx(1) + dx'(1) = \eta_2(x).\]

Our approach will be topological, utilizing Schaefer’s fixed point theorem and the Lyapunov-Schmidt procedure.

1. Introduction

In this paper we provide criteria for the solvability of nonlinear Sturm-Liouville problems of the form,

\[(p(t)x'(t))' + q(t)x(t) + \lambda x(t) = f(x(t)) \quad t \in [0, 1],\] (1)

subject to non-local boundary conditions

\[ax(0) + bx'(0) = \eta_1(x) \quad \text{and} \quad cx(1) + dx'(1) = \eta_2(x).\] (2)

There are several standard ways in which one may define a solution to problem (1)–(2), and so to maintain completeness, we mention that in this paper we will be interested in proving the existence of classical solutions to (1)–(2). Formally, by a solution to (1)–(2) we mean a function \(x : [0, 1] \to \mathbb{R}\) such that \(px'\) is continuously differentiable and satisfies (1)–(2).

Throughout our analysis, we will assume that \(p, q : [0, 1] \to \mathbb{R}\) are continuous, \(p(t) > 0\) for all \(t \in [0, 1]\), \(a^2 + b^2 > 0\) and \(c^2 + d^2 > 0\), \(\lambda\) is an eigenvalue of the associated linear Sturm-Liouville problem, \(f : \mathbb{R} \to \mathbb{R}\) is continuous, and for \(i = 1, 2\),

\[\eta_i(x) = \int_{[0, 1]} g_i(x) d\mu_i,\]

where \(g_1, g_2 : \mathbb{R} \to \mathbb{R}\) are continuous and \(\mu_1\) and \(\mu_2\) are finite Borel measures on \([0, 1]\).

The focus of this paper is the analysis of nonlinear Sturm-Liouville problems at resonance subject to non-local boundary conditions, where by resonance we mean that

\[\text{Mathematics subject classification (2010): 34B24.}\]

\[\text{Keywords and phrases: Existence theory, Sturm-Liouville problem, boundary conditions.}\]
the linear homogeneous problem (7)–(8) has nontrivial solutions. Since the pioneering work of Landesman-Lazer, [12], much has been written about resonant nonlinear Sturm-Liouville boundary value problems with linear boundary conditions. Pertinent references from the point of view of this paper are [2, 4, 5, 6, 8, 11, 12, 14, 15, 18, 19]. Less has been said in regard to problems with nonlocal boundary conditions, even for the case of nonresonance; readers interested in results in this direction may consult [1, 7, 10, 13, 17, 20, 21, 22, 23].

The novelty of this work is due in large part to the generality of the nonlinear boundary conditions \(\eta_1 \) and \(\eta_2 \). As an important special case we point out that, by taking \(\mu_1 \) and \(\mu_2 \) to be point-supported measures, our integral boundary conditions allow for nonlinear multipoint boundary conditions of the form

\[
\eta_1(x) = \sum_{k=1}^{n} f_k(x(t_k)), \quad \eta_2(x) = \sum_{j=1}^{m} h_j(x(t_j)),
\]

where each \(f_k, h_j \) is a continuous function and each \(t_k, t_j \in [0, 1] \).

Our main result, Theorem 3.1, provides conditions for the existence of solutions to (1)–(2) under a suitable interaction of the eigenspace of the linear Sturm-Liouville problem and the nonlinearities in both the differential equation and the boundary conditions. We would like to remark that the result we obtain in Theorem 3.1 constitutes a significant extension of the work found in [15] by allowing for much more generality in the boundary conditions, (2).

2. Preliminaries

The nonlinear boundary value problem (1)–(2) will be viewed as an operator equation. We let \(C := C[0, 1] \) denote the space of real-valued continuous functions topologized by the supremum norm, \(\| \cdot \|_C \). As usual, \(L^2 := L^2[0, 1] \) will denote the space of real-valued square-integrable functions defined on \([0, 1]\). The topology on \(L^2 \) will be that induced by the standard \(L^2 \)-norm, \(\| \cdot \|_{L^2} \). We use \(H^2 \) to denote the Sobolev space of functions with two weak derivatives in \(L^2 \); that is,

\[
H^2 = \{ x \in L^2 \mid x' \text{ is absolutely continuous and } x'' \in L^2 \}.
\]

Unless otherwise stated, the topology on \(H^2 \) will be the subspace topology inherited from \(L^2 \). However, we will, on several occasions, topologize \(H^2 \) with the Sobolev norm,

\[
\| x \|_{H^2} = \| x \|_{L^2} + \| x' \|_{L^2} + \| x'' \|_{L^2}.
\]

On occasion, we may also view \(H^2 \) as a subspace of \(C \). We will use \(| \cdot | \) to denote the Euclidean norm on \(\mathbb{R}^2 \) and \(\langle \cdot, \cdot \rangle_2, \langle \cdot, \cdot \rangle_S, \) and \(\langle \cdot, \cdot \rangle_\mathbb{R} \) will denote the inner products on \(L^2, H^2, \) and \(\mathbb{R}^2 \), respectively. Weak convergence in \(L^2 \) will be denoted by \(\overset{w}{\rightharpoonup} \) and weak convergence in the Sobolev space \(H^2 \) will be denoted by \(\overset{S}{\rightharpoonup} \). We make \(L^2 \times \mathbb{R}^2 \)
an inner product space with inner product
\[
\begin{bmatrix}
 h \\
 w_1 \\
 w_2
\end{bmatrix}, \begin{bmatrix}
 g \\
 v_1 \\
 v_2
\end{bmatrix} := m \left(\langle h, g \rangle_2 + \left[\begin{bmatrix}
 w_1 \\
 w_2
\end{bmatrix}, \begin{bmatrix}
 v_1 \\
 v_2
\end{bmatrix} \right] \right),
\]
(3)
where \(m \) is a positive constant which will be chosen later, and we will use \(\| \cdot \|_{L^2 \times \mathbb{R}^2} \) to denote the norm generated by this inner product. Lastly, we give \(C \times \mathbb{R}^2 \) the product topology, and we will use \(\| \cdot \|_{C \times \mathbb{R}^2} \) to denote the standard product norm on this space.

Linear boundary operators \(B_1 \) and \(B_2 \) will be defined as follows:
\[
B_1 : H^2 \to \mathbb{R} \text{ is given by } B_1 x = ax(0) + bx'(0)
\]
and \(B_2 : H^2 \to \mathbb{R} \) is given by
\[
B_2 x = cx(1) + dx'(1).
\]

We define \(\mathcal{L} : H^2 \to L^2 \times \mathbb{R}^2 \)
\[
\mathcal{L} x = \begin{bmatrix}
\mathcal{A} x \\
B_1 x \\
B_2 x
\end{bmatrix},
\]
where \(\mathcal{A} : H^2 \to L^2 \) is defined by
\[
\mathcal{A} x(t) = (p(t)x'(t))' + (q(t) + \lambda)x(t).
\]

Similarly, we define a nonlinear operator \(\mathcal{G} : H^2 \to L^2 \times \mathbb{R}^2 \) by
\[
\mathcal{G} (x) = \begin{bmatrix}
\mathcal{F}(x) \\
\eta_1(x) \\
\eta_2(x)
\end{bmatrix},
\]
where \(\mathcal{F}(x)(t) = f(x(t)) \) and, as before, for \(i = 1, 2 \), \(\eta_i(x) = \int_{[0,1]} g_i(x) d\mu_i \). Solving the nonlinear boundary value problem (1)–(2) is now equivalent to solving
\[
\mathcal{L} x = \mathcal{G}(x).
\]
(4)

The study of the nonlinear boundary value problem (1)–(2) will be intimately related to the linear nonhomogeneous boundary value problem
\[
(p(t)x'(t))' + q(t)x(t) + \lambda x(t) = h(t), \quad t \in [0,1]
\]
(5)
\[
ax(0) + bx'(0) = w_1 \quad \text{and} \quad cx(1) + dx'(1) = w_2,
\]
(6)
where \(h \) is an element of \(L^2 \) and \(w_1 \) and \(w_2 \) are elements of \(\mathbb{R} \). Using our notation from above, we have that solving (5)–(6) is equivalent to solving
\[
\mathcal{L} x = \begin{bmatrix}
h \\
w_1 \\
w_2
\end{bmatrix}.
\]
We begin our study of the nonlinear boundary value problem (1)–(2) by analyzing (5)–(6). To aid in this analysis, we first recall some well-known facts regarding the linear homogeneous Sturm-Liouville problem

\[(p(t)x'(t))' + q(t)x(t) + \lambda x(t) = 0\]

\[ax(0) + bx'(0) = 0 \quad \text{and} \quad cx(1) + dx'(1) = 0.\]

(7) (8)

For those readers interested in a more detailed introduction to linear Sturm-Liouville problems, we suggest [9].

It is well known that λ is a simple eigenvalue; that is, $\text{Ker}(\mathcal{L})$ is one-dimensional. We may therefore choose a vector, ψ, which forms a basis for $\text{Ker}(\mathcal{L})$. Without loss of generality, we will assume $\|\psi\|_{L^2} = 1$. Since (7) is a second-order linear homogeneous differential equation, we may choose ϕ satisfying (7) so that $\{\psi, \phi\}$ forms a basis for the solution space of this linear homogeneous problem. We will assume $\langle \psi, \phi \rangle_2 = 0$.

For $u, v \in H^2$, let $wr(u, v)$ denote the Wronskian of u and v; that is, $wr(u, v) = uv' - vu'$. It follows from standard ode theory that if u and v are linearly independent solutions to (7), then $p \cdot wr(u, v)$ is a nonzero constant. We will assume that ϕ has been chosen so that $p \cdot wr(\psi, \phi) = 1$ and define $\omega : [0, 1] \times [0, 1] \to \mathbb{R}$ by

\[\omega(t, s) = \begin{cases}
\psi(t)\phi(s) & \text{if } 0 \leq t \leq s \leq 1 \\
\psi(s)\phi(t) & \text{if } 0 \leq s \leq t \leq 1.
\end{cases}\]

As a reminder to the reader, ω is often referred to as a fundamental solution of (7).

If we define $K : L^2 \to H^2$ by

\[Kh(t) = \int_0^1 \omega(t, s)h(s)ds,\]

(10)

then it is easy to verify that K is self-adjoint, compact, and satisfies $\mathcal{A}Kh = h$ for every $h \in L^2$. Differentiating under the integral symbol, one easily establishes that for every $h \in L^2$, $B_1Kh = \langle h, \phi \rangle_2B_1\psi = 0$ and $B_2Kh = \langle h, \psi \rangle_2B_2\phi$. Let

\[v_1 = B_1\phi \quad \text{and} \quad v_2 = B_2\phi.\]

Since ϕ satisfies (7) and is linearly independent of ψ, we must have $B_1\phi \neq 0$ and $B_2\phi \neq 0$; this is a consequence of the uniqueness of solutions to initial value problems and that fact the linear Sturm-Liouville boundary conditions can be thought of as an orthogonality condition.

With the above ideas in hand, we are now in a position characterize the range of \mathcal{L}. We have the following result.

Proposition 2.1. Let $h \in L^2$ and $w_1, w_2 \in \mathbb{R}$. Then $\vec{h} := \begin{bmatrix} h \\ w_1 \\ w_2 \end{bmatrix} \in \text{Im}(\mathcal{L})$ if and only if $\langle \vec{h}, \vec{\psi} \rangle = 0$, where $\vec{\psi} := \begin{bmatrix} \psi \\ v_1^{-1} \\ -v_2^{-1} \end{bmatrix}$. That is, in $L^2 \times \mathbb{R}^2$, $\text{Im}(\mathcal{L}) = \{\vec{\psi}\}^\perp$.

Proof. \(\mathcal{L}x = \begin{bmatrix} h \\ w_1 \\ w_2 \end{bmatrix} \) if and only if \(\mathcal{A}x = h, B_1x = w_1, \) and \(B_2x = w_2. \) However, \(\mathcal{A}x = h \) if and only if \(x = c_1\psi + c_2\phi + Kh, \) for some real numbers \(c_1, c_2. \) Applying the boundary map \(B_1 \) and recalling \(B_1Kh = 0, \) we get \(B_1(c_1\psi + c_2\phi + Kh) = c_2v_1. \) Similarly, using \(B_2Kh = \langle h, \psi \rangle_2B_2\phi, \) we get \(B_2(c_1\psi + c_2\phi + Kh) = (c_2 + \langle h, \psi \rangle_2)v_2. \)

Now,

\[
c_2v_1 = w_1 \quad \text{and} \quad (c_2 + \langle h, \psi \rangle_2)v_2 = w_2
\]

if and only if

\[
c_2 = \frac{w_1}{v_1} \quad \text{and} \quad \langle h, \psi \rangle_2 = \frac{w_2}{v_2} - \frac{w_1}{v_1} = \left\langle \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \begin{bmatrix} -v_1^{-1} \\ v_2^{-1} \end{bmatrix} \right\rangle_\mathbb{R},
\]

which happens if and only if \(\langle \tilde{h}, \tilde{\psi} \rangle = 0. \) \(\square \)

With this characterization of the \(\text{Im}(\mathcal{L}) \) in hand, we make the following definitions which will play a crucial role in our ability to analyze the nonlinear Sturm-Liouville problem, \((1)\)–\((2), \) using a projection scheme.

Definition 2.2. Define \(P : L^2 \rightarrow L^2 \) by \(Px = \langle x, \psi \rangle_2\psi. \)

It is clear that \(P \) is the orthogonal projection onto \(\text{Ker}(\mathcal{L}) \).

Now, choose \(m, \) see \((3), \) to be \(m = \frac{1}{1 + \left| \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right|^2}. \) With this choice of \(m, \) \(\bar{\psi} \) is a unit vector in \(L^2 \times \mathbb{R}^2. \)

Definition 2.3. Define \(Q : L^2 \times \mathbb{R}^2 \rightarrow L^2 \times \mathbb{R}^2 \) by

\[
Q \left(\begin{bmatrix} h \\ w_1 \\ w_2 \end{bmatrix} \right) = \left\langle \begin{bmatrix} h \\ w_1 \\ w_2 \end{bmatrix}, \bar{\psi} \right\rangle \bar{\psi}.
\]

From Proposition 2.1, we have that \(Q \) is the orthogonal projection of \(L^2 \times \mathbb{R}^2 \) on \(\text{Im}(\mathcal{L})^\perp. \) Thus, \(I - Q, \) is a projection onto the \(\text{Im}(\mathcal{L}). \)

In our analysis of the nonlinear Sturm-Liouville problem we will use a projection scheme often referred to as the Lyapunov-Schmidt procedure. The use of the Lyapunov-Schmidt reduction will allow us to write the operator equation \((4)\) as an equivalent equation in which a fixed point argument may be applied to prove the existence of solutions. Interested readers may consult \([3, 16]\) for a more detailed account of these ideas.

Proposition 2.4. Solving \(\mathcal{L}x = \mathcal{G}(x) \) is equivalent to solving the system

\[
(I - P)x - M(I - Q)\mathcal{G}(x) = 0
\]

and

\[
\left(\langle \mathcal{F}(x), \psi \rangle_2 + \left\langle \begin{bmatrix} \eta_1(x) \\ \eta_2(x) \end{bmatrix}, \begin{bmatrix} -v_1^{-1} \\ v_2^{-1} \end{bmatrix} \right\rangle_\mathbb{R} \right) \psi = 0,
\]
where \(M \) denotes \(\left(L_{H^2 \cap \text{Ker}(\mathcal{D})^\perp} \right)^{-1} \).

Proof.

\[
\begin{align*}
\mathcal{L}x = \mathcal{G}(x) &\iff \\
\end{align*}
\]

3. Main results

We now come to our main result. In what follows, we will assume that the non-linear integral boundary operators \(\eta_1 \) and \(\eta_2 \) are induced by bounded continuous functions \(g_1 \) and \(g_2 \).

To simplify the statement of the theorem, we introduce the following notation. For \(i = 1, 2 \), we let

\[
g_{i,+}(+\infty) := \limsup_{x \to +\infty} g_i(x),
\]
\[g_i,(-\infty) := \liminf_{x \to -\infty} g_i(x), \]
\[g_i,(+\infty) := \limsup_{x \to +\infty} g_i(x), \]
and
\[g_i,(-\infty) := \liminf_{x \to -\infty} \sigma_i(x). \]

We define \(\Theta := \{ t \mid \psi(t) = 0 \} \), \(\Theta^+ := \{ t \mid \psi(t) > 0 \} \), and \(\Theta^- := \{ t \mid \psi(t) < 0 \} \). From Standard Sturm-Liouville theory, we have that \(\Theta_0 \) is a finite set consisting of simple zeros. In what follows, this fact will be used several times, possibly without explicit mention. Finally, for \(i = 1, 2 \), we let
\[J_i,\pm = g_i,\pm(\pm\infty)\mu_i(\Theta^+) + g_i,\pm(-\infty)\mu_i(\Theta^-). \]

Theorem 3.1. Suppose that the following conditions hold:

C1. The function \(f \) is “sublinear”; that is, there exists real numbers \(M_1, M_2 \) and \(\beta \), with \(0 \leq \beta < 1 \), such that for every \(x \in \mathbb{R} \), \(|f(x)| \leq M_1|x|^\beta + M_2 \);

C2. There exist positive real numbers \(\hat{z} \) and \(J \) such that for all \(z > \hat{z} \),
\[f(-z) \leq -J < 0 < J \leq f(z); \]

C3. For \(i = 1, 2 \), \(\mu_i(\Theta_0) = 0 \), where again \(u_i \) is the Borel measure in the definition of the boundary operator \(\eta_i \);

C4. \(-J \int_0^1 |\psi| dt < \left(\begin{bmatrix} J_{1,\text{sgn}(-v_1)} & v_1^{-1} \\ J_{2,\text{sgn}(v_2)} & -v_2^{-1} \end{bmatrix} \right) \), where for a real number, \(v \), \(\text{sgn}(v) = + \) if \(v > 0 \) and \(\text{sgn}(v) = - \) if \(v < 0 \);

then, there exists a solution to (1)–(2).

Proof. We start by defining \(T : L^2 \to H^2 \) by
\[T(x) = Px - (\langle \mathcal{F}(x), \psi \rangle_2 + \left(\begin{bmatrix} \eta_1(x) \\ \eta_2(x) \end{bmatrix} \right)_2 + M(I - Q)\mathcal{F}(x). \]

From Proposition 2.4, we have that the solutions to (1)–(2) are the fixed points of \(T \). Since \(M \) is an integral mapping from \(L^2 \) into \(H^2 \), it is compact, and thus so is \(T \). We will show that
\[FP := \{ x \in H^2 \mid x = \gamma T(x) \text{ for some } \gamma \in (0, 1) \} \]
is a priori bounded in \(L^2 \). A fixed point will then follow from an application of Schaefer’s fixed point theorem.

To this end, suppose that there exist sequences \(\{x_n\}_{n \in \mathbb{N}} \) and \(\{\gamma_n\}_{n \in \mathbb{N}} \) in \(H^2 \) and \((0, 1) \), respectively, with \(\|x_n\|_{L^2} \to \infty \) and \(x_n = \gamma_n T(x_n) \). Let \(y_n = \frac{x_n}{\|x_n\|_{H^2}} \). Since
the closed unit ball in the Sobelov space \(H^2 \) is weakly compact, by going to a subsequence if necessary, we may assume that \(y_n \xrightarrow{S} y \), for some \(y \in H^2 \). Again, going to a subsequence if necessary, we may assume that \(y_n \) converges to some \(y \in [0, 1] \).

Now,
\[
y_n = \frac{x_n}{\|x_n\|_{H^2}} = \gamma_n \frac{T(x_n)}{\|x_n\|_{H^2}}
\]

\[
P_{x_n} - \left(\langle \mathcal{F}(x_n), \psi \rangle_2 + \left\langle \begin{bmatrix} \eta_1(x_n) \\ \eta_2(x_n) \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle \right) \psi + M(I - Q)\mathcal{G}(x_n)
\]

\[
= \gamma_n \frac{P_{x_n} - \left(\langle \mathcal{F}(x_n), \psi \rangle_2 + \left\langle \begin{bmatrix} \eta_1(x_n) \\ \eta_2(x_n) \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle \right) \psi + M(I - Q)\mathcal{G}(x_n)}{\|x_n\|_{H^2}}.
\]

Since \(f \) is sublinear (See C1) and \(g_1 \) and \(g_2 \) are bounded, it follows that
\[
\|\mathcal{G}(x)\|_{L^2 \times \mathbb{R}^2} \leq K_1 \|x\|_{L^2} + K_2,
\]
and
\[
\|\mathcal{G}(x)\|_{C \times \mathbb{R}^2} \leq K_1 \|x\|_{C} + K_2,
\]
for some positive real numbers \(K_1 \) and \(K_2 \) and every \(x \in H^2 \). Thus, from (11),
\[
\gamma_n \frac{\langle \mathcal{F}(x_n), \psi \rangle_2 + \left\langle \begin{bmatrix} \eta_1(x_n) \\ \eta_2(x_n) \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle \psi + M(I - Q)\mathcal{G}(x_n)}{\|x_n\|_{H^2}} \xrightarrow{2} 0,
\]
so that
\[
P_{x_n} - \left(\langle \mathcal{F}(x_n), \psi \rangle_2 + \left\langle \begin{bmatrix} \eta_1(x_n) \\ \eta_2(x_n) \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle \right) \psi + M(I - Q)\mathcal{G}(x_n)
\]

\[
= \gamma_n \frac{P_{x_n} - \left(\langle \mathcal{F}(x_n), \psi \rangle_2 + \left\langle \begin{bmatrix} \eta_1(x_n) \\ \eta_2(x_n) \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle \right) \psi + M(I - Q)\mathcal{G}(x_n)}{\|x_n\|_{H^2}} \xrightarrow{2} \gamma Py.
\]

Since \(y_n \xrightarrow{S} y \), \(y_n \xrightarrow{2} y \), so that we conclude \(y = \gamma Py \). Applying \(P \) gives
\[
P_{y} = \gamma P^2 y = \gamma Py,
\]
from which we deduce that \(\gamma = 1 \) or \(Py = 0 \). Since \(\|y\|_{H^2} = 1 \), it follows that \(\gamma = 1 \).

Thus, \(Py = y \) and we deduce that \(y = \pm \frac{1}{\|\psi\|_{H^2}} \psi \). We will assume that \(y = \frac{1}{\|\psi\|_{H^2}} \psi \), as the other case is similar.

Now, by the compact embedding of \(H^2 \) in \(C \), we have, since \(y_n \xrightarrow{S} y \), that \(y_n \rightarrow y \) in \(C \). Using the fact that \(y_n \xrightarrow{2} \frac{1}{\|\psi\|_{H^2}} \psi \), we have that
\[
\langle y_n, \psi \rangle_2 \rightarrow \frac{1}{\|\psi\|_{H^2}} \langle \psi, \psi \rangle_2 = \frac{1}{\|\psi\|_{H^2}}.
\]
However, \(\langle x_n, \psi \rangle_2 \neq \|x_n\|_{H^2} \langle y_n, \psi \rangle_2 \), so that \(\langle x_n, \psi \rangle_2 \rightarrow \infty \), since \(\|x_n\|_{H^2} \rightarrow \infty \). Without loss of generality, we will assume from now on that \(\langle x_n, \psi \rangle_2 > 0 \) for each \(n \).

From \(x_n = \gamma_n T(x_n) \), it follows that for each \(n \)

\[
(I - P)x_n = \gamma_n M(I - Q)\mathcal{G}(x_n)
\]

and

\[
Px_n = \gamma_n Px_n - \gamma_n \left(\langle \mathcal{F}(x_n), \psi \rangle_2 + \left\langle \eta_1(x_n), \eta_2(x_n) \right\rangle R \psi \right).
\]

This is equivalent to

\[
(I - P)x_n = \gamma_n M(I - Q)\mathcal{G}(x_n) \tag{14}
\]

and

\[
(1 - \gamma_n)\langle x_n, \psi \rangle_2 + \gamma_n \left(\langle \mathcal{F}(x_n), \psi \rangle_2 + \left\langle \eta_1(x_n), \eta_2(x_n) \right\rangle R \psi \right) = 0. \tag{15}
\]

Let \(v_n \) denote \((I - P)x_n \). From (12) and (14), we have that

\[
\|v_n\|_C \leq \gamma_n \|M(I - Q)\| (K_1 \|x_n\|_C + K_2) \leq D_1 \|x_n\|_C + D_2,
\]

where \(\|M(I - Q)\| \) denotes the operator norm of \(M(I - Q) \) and for \(i = 1, 2 \), \(D_i = \|M(I - Q)\| K_i \). Applying the compact embedding theorem again, we may assume, by scaling each \(D_i \), that

\[
\|v_n\|_C \leq D_1 \|x_n\|_{H^2} + D_2.
\]

However, from (13) we have that \(\frac{\langle x_n, \psi \rangle_2}{\|x_n\|_{H^2}} \rightarrow \frac{1}{\|\psi\|_{H^2}} \), so that by rescaling one more time, we may assume

\[
\|v_n\|_C \leq D_1 \langle x_n, \psi \rangle_2 + D_2. \tag{16}
\]

For the moment, fix \(t \in \mathcal{O}_+ \cup \mathcal{O}_- \). Since

\[
|x_n(t)| \geq \langle x_n, \psi \rangle_2 |\psi(t)| - |v_n(t)| \\
\geq \langle x_n, \psi \rangle_2 |\psi(t)| - \|v_n\|_C,
\]

we have, using (16), that

\[
\lim_{n \to \infty} x_n(t) = \pm \infty, \text{ whenever } t \in \mathcal{O}_\pm. \tag{17}
\]

Define

\[
E_n = \{ t \mid \|\psi(t)\| \geq \varepsilon_n \},
\]
where $\varepsilon_n = \frac{\hat{z} + \|v_n\|_C}{\langle x_n, \psi \rangle_2}$. If $t \in E_n$, then

$$|x_n(t)| \geq \langle x_n, \psi \rangle_2 |\psi(t)| - |v_n(t)| \geq \langle x_n, \psi \rangle_2 |\psi(t)| - \|v_n\|_C,$$

$$\geq \langle x_n, \psi \rangle_2 \left(\frac{\hat{z} + \|v_n\|_C}{\langle x_n, \psi \rangle_2} \right) - \|v_n\|_C = \hat{z}.$$

This gives, using C2, that

$$\int_0^1 f(x_n)\psi dt = \int_{E_n} f(x_n)\psi dt + \int_{E_n^c} f(x_n)\psi dt \geq J \int_{E_n} |\psi| dt + \int_{E_n^c} f(x_n)\psi dt \geq J \int_{E_n} |\psi| dt - \int_{E_n^c} |f(x_n)\psi| dt.$$

We claim that $\int_{E_n^c} |f(x_n)\psi| dt \to 0$, so that by Lebesgue’s Dominated Convergence Theorem,

$$\liminf_{n \to \infty} \int_0^1 f(x_n)\psi dt \geq \liminf_{n \to \infty} J \int_{E_n} |\psi| dt = J \int_0^1 |\psi| dt. \quad (18)$$

To see that $\int_{E_n^c} |f(x_n)\psi| dt \to 0$, first note that for any $t \in E_n^c$

$$|x_n(t)| \leq \langle x_n, \psi \rangle_2 e_n + \|v_n\|_C \leq \langle x_n, \psi \rangle_2 \left(\frac{\hat{z} + \|v_n\|_C}{\langle x_n, \psi \rangle_2} \right) + \|v_n\|_C = \hat{z} + 2\|v_n\|_C \leq \hat{z} + 2(D_1\langle x_n, \psi \rangle_2^\beta + D_2) \quad (\text{using } (16)).$$

It then follows, from C1, that

$$|f(x_n)(t)| \leq M_1|x_n(t)|^\beta + M_2 \leq M_1(\hat{z} + 2(D_1\langle x_n, \psi \rangle_2^\beta + D_2))^\beta + M_2,$$

which gives that

$$\int_{E_n^c} |f(x_n)\psi| dt \leq (M_1(\hat{z} + 2(D_1\langle x_n, \psi \rangle_2^\beta + D_2))^\beta + M_2)E_n\mu_L(E_n^c),$$
where μ_L denotes Lebesgue measure on $[0, 1]$.

Since $\frac{\|v_n\|_C}{\langle x_n, \psi \rangle_2} \to 0$, we have that $E_n^c \to \emptyset_0$. Further, since \emptyset_0 consists of finitely many simple zeros, it follows from the Mean Value Theorem that there exists a positive constant, say L, with

$$\mu_L(E_n^c) \leq L \varepsilon_n.$$

We then have that

$$\int_{E_n^c} |f(x_n)\psi| dt \leq (M_1(\hat{z} + 2(D_1\langle x_n, \psi \rangle_2^β + D_2))^β + M_2)L\varepsilon_n^2$$

$$= (M_1(\hat{z} + 2(D_1\langle x_n, \psi \rangle_2^β + D_2))^β + M_2)L\left(\frac{\hat{z} + \|v_n\|_C}{\langle x_n, \psi \rangle_2}\right)^2$$

$$\leq (M_1(\hat{z} + 2(D_1\langle x_n, \psi \rangle_2^β + D_2))^β + M_2)L\left(\frac{\hat{z} + D_1\langle x_n, \psi \rangle_2^β + D_2}{\langle x_n, \psi \rangle_2}\right)^2,$$

so that

$$\int_{E_n^c} |f(x_n)\psi| dt \leq R\frac{\langle x_n, \psi \rangle_2^{2β^2}}{\langle x_n, \psi \rangle_2^2},$$

for some positive constant R. Letting $n \to \infty$, and using the fact that $β < 1$, we conclude that

$$\int_{E_n^c} |f(x_n)\psi| dt \to 0.$$

We now look to analyze $\liminf_{n \to \infty} \int_0^1 g_i(x_n) d\mu_i$ and $\limsup_{n \to \infty} \int_0^1 g_i(x_n) d\mu_i$, for $i = 1, 2$. From (17), if $t \in \emptyset_+$, then

$$g_{i,-}(+∞) \leq \liminf_{n \to \infty} g_i(x_n)(t) \quad \text{and} \quad \limsup_{n \to \infty} g_i(x_n)(t) \leq g_{i,+}(+∞).$$

Similarly, for each $t \in \emptyset_-$ and each $i, i = 1, 2,$

$$g_{i,-}(−∞) \leq \liminf_{n \to \infty} g_i(x_n)(t) \quad \text{and} \quad \limsup_{n \to \infty} g_i(x_n)(t) \leq g_{i,+}(−∞).$$

Since g_1 and g_2 are bounded, we have, by Fatou’s lemma, that for each i,

$$J_{i,-} = g_{i,-}(+∞)\mu_i(\emptyset_+) + g_{i,-}(−∞)\mu_i(\emptyset_-)$$

$$= \int_{\emptyset_+} g_{i,-}(+∞)d\mu_i + \int_{\emptyset_-} g_{i,-}(−∞)d\mu_i$$

$$\leq \liminf_{n \to \infty} g_i(x_n)d\mu_i$$

$$= \int_{[0,1]} \liminf_{n \to \infty} g_i(x_n)d\mu_i \quad \text{(using C3)}$$

$$\leq \liminf_{n \to \infty} \int_{[0,1]} g_i(x_n)d\mu_i$$

$$\leq \limsup_{n \to \infty} \int_{[0,1]} g_i(x_n)d\mu_i.$$
must be a priori bounded, and the proof is complete.

Suppose for the moment that \(v_1 > 0 \) and \(-v_2 > 0 \) and let \(s \) and \(r \) be positive real numbers. Using the definitions of limit inferior and limit superior, see (18) and (19), there exists an \(n_s \) and an \(n_r \) such that if \(n \geq n_s \), then

\[
\int_0^1 |\psi| dt - s < \langle f(x_n), \psi \rangle_2 < \langle \mathcal{F}(x_n), \psi \rangle_2,
\]

and if \(n \geq n_r \), then

\[
J_{i,-} - r < \int_{[0,1]} g_i(x_n) d\mu_i < J_{i,+} + r.
\]

Since \(v_1 > 0 \) and \(-v_2 > 0 \), it follows that

\[
\left\langle \begin{bmatrix} J_{1,-} - r & v_1^{-1} \\ J_{2,-} - r & -v_2^{-1} \end{bmatrix} \right\rangle \leq \left\langle \int_{[0,1]} g_1(x_n) d\mu_1 \right\rangle \leq \left\langle \int_{[0,1]} g_2(x_n) d\mu_2 \right\rangle \leq \left\langle \begin{bmatrix} J_{1,+} + r & v_1^{-1} \\ J_{2,+} + r & -v_2^{-1} \end{bmatrix} \right\rangle.
\]

However,

\[
\left\langle \begin{bmatrix} J_{1,-} & v_1^{-1} \\ J_{2,-} & -v_2^{-1} \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} J_{1,\text{sgn}(v_1)} & v_1^{-1} \\ J_{2,\text{sgn}(v_2)} & -v_2^{-1} \end{bmatrix} \right\rangle > -J \int_0^1 |\psi| dt.
\]

Thus, it follows, from (20), (21), (22), and (23), that we may choose \(r \) and \(s \) small enough so that

\[
\langle \mathcal{F}(x_n), \psi \rangle_2 + \left\langle \begin{bmatrix} \eta_1(x_n) \\ \eta_2(x_n) \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle > 0,
\]

for large enough \(n \). The other cases for the sign of \(v_1 \) and \(-v_2 \) are similar. In each case, the conclusion in (24) holds. Recalling that \(\langle x_n, \psi \rangle_2 \to +\infty \), we have that for large enough \(n \),

\[
(1 - \gamma_n) \langle x_n, \psi \rangle_2 + \gamma_n \left(\langle \mathcal{F}(x_n), \psi \rangle_2 + \left\langle \begin{bmatrix} \eta_1(x_n) \\ \eta_2(x_n) \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle \right) > 0.
\]

However, this contradicts the fact that by (15),

\[
(1 - \gamma_n) \langle x_n, \psi \rangle_2 + \gamma_n \left(\langle \mathcal{F}(x_n), \psi \rangle_2 + \left\langle \begin{bmatrix} \eta_1(x_n) \\ \eta_2(x_n) \end{bmatrix}, \begin{bmatrix} v_1^{-1} \\ -v_2^{-1} \end{bmatrix} \right\rangle \right) = 0.
\]

Thus,

\[
FP := \{ x \in H^2 \mid x = \gamma T(x) \text{ for some } \gamma \in (0,1) \}
\]

must be a priori bounded, and the proof is complete. \(\square \)
Remark 3.2. If $\eta_1 = \eta_2 = 0$, then by choosing for each i, $i = 1, 2$, $g_i = 0$ and μ_i to be Lebesgue measure on $[0, 1]$, we have that $J_{i, \pm} = 0$. Thus, condition C4 of Theorem 3.1 is trivially satisfied. This shows that Theorem 3.1 is a generalization of the result found in [15], where they analyze linear homogeneous boundary conditions.

The following corollary isolates the special case in which the boundary operators η_1 and η_2 are generated by bounded continuous function g_1 and g_2 for which we assume that for $i = 1, 2$, $g_i(\pm \infty) := \lim_{x \to \pm \infty} g_i(x)$ exists.

Corollary 3.3. Suppose that the following conditions hold:

$C1^*$. The function f is “sublinear”; that is, there exists real numbers M_1, M_2 and β, with $0 \leq \beta < 1$, such that for every $x \in \mathbb{R}$, $|f(x)| \leq M_1 |x|^\beta + M_2$;

$C2^*$. There exist positive real numbers \hat{z} and J such that for all $z > \hat{z}$,

$$f(-z) \leq -J < 0 < J \leq f(z);$$

$C3^*$. For $i = 1, 2$, $\mu_i(\emptyset_0) = 0$, where again u_i is the Borel measure in the definition of the boundary operator η_i;

$C4^*$. For $i = 1, 2$, $g_i(\pm \infty) := \lim_{x \to \pm \infty} g_i(x)$ exists;

$C5^*$. $-J \int_0^1 |\psi| dt < \left< \begin{bmatrix} J_{1, +} \\ J_{2, +} \end{bmatrix}, \begin{bmatrix} v_{1, -}^{-1} \\ -v_{2, -}^{-1} \end{bmatrix} \right>_{\mathbb{R}}$;

then, there exists a solution to (1)–(2).

Proof. If for $i = 1, 2$, $g_i(\pm \infty) := \lim_{x \to \pm \infty} g_i(x)$ exist, then for each of these i, $J_{i, -} = J_{i, +}$.

4. Example

In this section we give a concrete example of the application of our main result, Theorem 3.1. We will use an interval of $[0, \pi]$ to simplify calculations.

Consider

$$x'' + m^2 x = f(x(t))$$

subject to

$$x(0) = \int_{[0, \pi]} g_1(x) du_1 \text{ and } x(\pi) = \int_{[0, \pi]} g_2(x) du_2$$

where f, g_1, and g_2 are real-valued continuous functions with g_1 and g_2 bounded.

It is well-known that the L^2-normalized eigenfunctions corresponding to the Dirichlet problem

$$x'' + m^2 x = 0$$
subject to boundary conditions

\[x(0) = 0 \text{ and } x(\pi) = 0, \]

are \(\pm \frac{2}{\pi} \sin(mt) \). We choose to take \(\psi(t) = \frac{2}{\pi} \sin(mt) \). This gives that \(\phi \), see (9), is \(-\frac{\pi}{2} \cos(mt) \). Thus, \(v_1 = \phi(0) = -\frac{\pi}{2} \) and \(v_2 = \phi(\pi) = \frac{\pi}{2} \). We also have that

\[
\mathcal{O}_+ = \begin{cases} \bigcup_{i=0}^{j} \left(\frac{2i\pi}{m}, \frac{(2i+1)\pi}{m} \right) & \text{if } m = 2j + 1 \\ \bigcup_{i=0}^{j} \left(\frac{2i\pi}{m}, \frac{(2i+1)\pi}{m} \right) & \text{if } m = 2j \end{cases}
\]

and

\[
\mathcal{O}_- = \begin{cases} \bigcup_{i=0}^{j} \left(\frac{(2i+1)\pi}{m}, \frac{(2i+2)\pi}{m} \right) & \text{if } m = 2j + 1 \\ \bigcup_{i=0}^{j} \left(\frac{(2i+1)\pi}{m}, \frac{(2i+2)\pi}{m} \right) & \text{if } m = 2j \end{cases}
\]

Suppose for the moment that conditions C1-C3 hold, since these can be trivially satisfied by any number of choices for \(f \) and \(\mu_1, \mu_2 \). Condition C4 of Theorem 3.1 in this specific problem becomes

\[
-\frac{4}{\pi} J < \left\langle \begin{bmatrix} J_{1,+} \\ J_{2,+} \end{bmatrix}, \begin{bmatrix} -\frac{2}{\pi} \\ -\frac{2}{\pi} \end{bmatrix} \right\rangle, \]

which is equivalent to \((J_{1,+} + J_{2,+}) < 2J \). It is clear that there are several bounded continuous functions \(g_1, g_2 \) and Borel measures \(\mu_1, \mu_2 \) which make the above inequality valid.

As a concrete example, let \(E_m = \{ t \mid \sin(mt) = 0 \} \) and fix \(t_0 \notin E_m \). Take \(\mu := \mu_1 = \mu_2 \) to be the measure point-supported at \(t_0 \); that is, for a subset \(A \) of \([0,1]\),

\[
\mu(A) = \begin{cases} 1 & \text{if } t_0 \in A \\ 0 & \text{if } t_0 \notin A \end{cases}
\]

Since \(t_0 \notin E_m \), we have that \(t_0 \) is in \(\mathcal{O}_+ \) or \(\mathcal{O}_- \). If for each \(i, i = 1,2 \), \(g_i(\pm\infty) := \lim_{x \to \pm\infty} g_i(x) \) exists, then when \(t \in \mathcal{O}_+, J_{i,+} = g_i(\infty) \). Similarly, when \(t \in \mathcal{O}_- \), then \(J_{i,+} = g_i(-\infty) \). Thus, if \(t_0 \in \mathcal{O}_\pm \), then provided \(g_1(\pm\infty) + g_2(\pm\infty) < 2J \), we have, from Corollary 3.3, that the nonlinear boundary value problem (25)–(26) has a solution. It is interesting to note that if \(t_0 \notin \bigcup_mE_m \), and both \(g_1(\infty) + g_2(\infty) < 2J \) and \(g_1(-\infty) + g_2(-\infty) < 2J \), then (25)–(26) has a solution for all eigenvalues \(m \).

REFERENCES

(Received May 24, 2017)