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Abstract. In this paper, we obtain the best constant in the Lyapunov-type inequality for third-
order linear differential equations under the non-conjugate boundary conditions by bounding the
Green function of the same problem. In this direction, to the best of our knowledge, there is no
paper dealing with Lyapunov-type inequalities for the non-conjugate boundary value problems.
By using such inequalities, we obtain sharp lower bounds for the eigenvalues of corresponding
equations.

1. Introduction

There has been a great deal of research work on the theory of higher order differ-
ential equations for different types of boundary value problems. We refer the reader
to the papers by Cabada [7], Jackson [19], Klaasen [20], Ma [23], Torres [27], Ward
[30], Webb [31], Yang [32, 33], Yang [34, 35], Zhang and Sun [36], the monographs
by Coppel [8], Gregus [16], Mawhin [24], and the references cited therein. There are
also some useful methods to obtain Lyapunov-type inequalities for various types of
boundary value problems [5, 25, 26]. Now, we give one of these methods as follows:

In 1954, Nehari [25] started with the Green’s function

G(t,s) =

⎧⎪⎪⎨
⎪⎪⎩

(s−a)(b− t)
b−a

; a � s � t

(t−a)(b− s)
b−a

; t � s � b

(1.1)

of the following problem
y′′ +q(t)y = 0 (1.2)
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y(a) = y(b) = 0, (1.3)

where a,b ∈ R with a < b are consecutive zeros and y(t) �≡ 0 for t ∈ (a,b) . Thus, he
wrote the nontrivial solution

y(t) =
∫ b

a
G(t,s)q(s)y(s)ds (1.4)

for the problem (1.2)-(1.3). Then, by taking the absolute value of both sides of equation
(1.4), choosing t = t0 where |y(t)| is maximized and canceling out |y(t0)| on both sides
of corresponding inequality, he obtained

1 � max
a�t�b

∫ b

a
|G(t,s)| |q(s)|ds. (1.5)

Here, if we find H (s) such that max
a�t�b

|G(t,s)| � H (s) , then we obtain the following

inequality

1 �
∫ b

a
H(s) |q(s)|ds. (1.6)

Note that we can put H(t) =
(t−a)(b− t)

b−a
in the above problem. Moreover, if we

take the absolute maximum of the function H(t) for all t ∈ [a,b] , then we obtain the
following inequality

4
b−a

�
∫ b

a
|q(s)|ds (1.7)

from (1.6), which is known as Lyapunov inequality [22]. This argument and its vari-
ants have been used many times to establish such an inequality. We see in the litera-
ture that by bounding G(t,s) in various ways, we can obtain the best constant in the
Lyapunov-type inequalities for different boundary value problems. Thus, the inequal-
ity (1.7) provides a lower bound for the distance between two consecutive zeros of y .
The inequality (1.7) is the best possible in the sense that if the constant 4 in the left
hand side of (1.7) is replaced by any larger constant, then there exists an example of
(1.2) for which (1.7) no longer holds (see [17, p. 345], [21, p. 267]). This result has
found many applications in areas like eigenvalue problems, stability, oscillation theory,
disconjugate, etc. Since then, there have been several results to generalize the above
linear equation in many directions [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 17, 18, 21, 28, 29].
More recently, (2n) th order Green’s functions have been typically used to deal with
(2n+1)th order Lyapunov-type inequalities [1, 14, 15].

In this paper, we consider new Lyapunov-type inequalities for third-order linear
differential equations of the form

y′′′ +q(t)y = 0, (1.8)

where q ∈ C ([0,∞),R) and y(t) is a real solution of the equation (1.8) satisfying the
non-conjugate boundary conditions

y(a) = y′ (a) = y′ (b) = 0, (BC1)
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or
y′ (a) = y(b) = y′ (b) = 0 (BC2)

a,b ∈ R with a < b are two points and y(t) �≡ 0 for t ∈ (a,b) .
To the best of our knowledge, there is no paper dealing with Lyapunov-type in-

equalities for the equation (1.8) under one of the non-conjugate boundary conditions
(BC i ) for i = 1,2, by means of the properties of Green’s functions. In this paper,
we investigate the third-order linear differential equation (1.8) under one of the non-
conjugate boundary conditions (BC i ) for i = 1,2. Firstly, we construct Green’s func-
tions, constant sign, for the equation (1.8) under one of the conditions (BC i ) for i = 1,2.
And then, by using the Green’s functions, we obtain the best constant in Lyapunov-type
inequalities for the same problems. Finally, by using such inequalities, we obtain sharp
lower bounds for the eigenvalues of corresponding equations.

2. Main results

We state an important lemma which we will use in the proofs of our main results.
In this lemma, we construct the Green’s functions for third-order nonhomogeneous
differential equations

y′′′ = g(t) (2.1)

under one of the non-conjugate boundary conditions (BC i ) for i = 1,2 as follows.

LEMMA 1. If y(t) is a solution of (2.1) satisfying one of the non-conjugate bound-
ary conditions (BCi ) for i = 1,2 , then

y(t) =
∫ b

a
Gi (t,s)g(s)ds (2.2)

holds, respectively, where

G1 (t,s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1 (t,s) := − (s−a)2 (b− t)
2(b−a)

− (t− s)(s−a)(2b−a− t)
2(b−a)

; a � s � t

g2 (t,s) := − (t −a)2 (b− s)
2(b−a)

; t � s � b

(2.3)
and

G2 (t,s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g3 (t,s) :=
(s−a)(b− t)2

2(b−a)
; a � s � t

g4 (t,s) :=
(t−a)(b− s)2

2(b−a)
+

(s− t)(b− s)(b+ t−2a)
2(b−a)

; t � s � b.

(2.4)

Proof. Integrating equation (2.1) from a to t to find the solution y(t) , we get

y′′ (t) = d2 +
∫ t

a
g(s)ds, (2.5)
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y′ (t) = d1 +d2 (t−a)+
∫ t

a
(t − s)g(s)ds, (2.6)

y(t) = d0 +d1 (t−a)+d2
(t −a)2

2
+

∫ t

a

(t − s)2

2
g(s)ds. (2.7)

Thus, the general solution of (2.1) is (2.7). By using the boundary conditions (BC1 ),
we find the constants d0 , d1 , and d2 . Thus, y(a) = y′(a) = 0 imply d0 = d1 = 0, and
y′ (b) = 0 implies

d2 = −
∫ b

a

b− s
b−a

g(s)ds. (2.8)

Substituting the constants d0 , d1 , and d2 in the general solution (2.7), we get (2.2) for
i = 1. Similarly, by using the boundary conditions (BC2 ), we obtain (2.2) for i = 2,
and hence the proof is omitted. This completes the proof. �

REMARK 1. It is easy to see that the functions G1 (t,s) and G2 (t,s) are constant
sign, namely, G1 (t,s) � 0 and G2 (t,s) � 0 for all t,s ∈ [a,b] .

Now, we give one of main results of this paper.

THEOREM 1. If y(t) is a nontrivial solution of the third-order linear differen-
tial equations (1.8) satisfying the non-conjugate boundary conditions (BC1 ), then the
inequality

1 �
∫ b

a
|G1 (t0,s)| |q(s)|ds (2.9)

holds, where G1 (t,s) is given in (2.3) and |y(t0)| = max{|y(t)| : a � t � b} .

Proof. Let y(a) = y′ (a) = y′ (b) = 0 where a,b ∈ R with a < b are two points,
and y is not identically zero on (a,b) . From (1.8) and (2.2) for i = 1, we get

|y(t)| �
∫ b

a
|G1 (t,s)| |q(s)| |y(s)|ds. (2.10)

Pick t0 ∈ (a,b) so that |y(t0)| = max{|y(t)| : a � t � b} . From (2.10), we have

|y(t0)| �
∫ b

a
|G1 (t0,s)| |q(s)| |y(s)|ds

� |y(t0)|
∫ b

a
|G1 (t0,s)| |q(s)|ds. (2.11)

After dividing by |y(t0)| to the inequality (2.11), we obtain the inequality (2.9). This
completes the proof. �

It is easy to see that the following result for (BC2 ) can be easily obtained from
those for (BC1 ) and hence the proof is omitted.
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THEOREM 2. If y(t) is a nontrivial solution of the third-order linear differen-
tial equations (1.8) satisfying the non-conjugate boundary conditions (BC2 ), then the
inequality

1 �
∫ b

a
G2 (t0,s) |q(s)|ds (2.12)

holds, where G2 (t,s) is given in (2.4) and |y(t0)| = max{|y(t)| : a � t � b} .

Now, we find the absolute minimum of Green’s function G1 (t,s) . Consider

g1 (t,s) = − (s−a)2 (b− t)
2(b−a)

− (t − s)(s−a)(2b−a− t)
2(b−a)

(2.13)

for a � s � t . g1 (t,s) takes its minimum value at the point (t0,s0) =
(

b,
a+b

2

)
, and

its minimum value is g1

(
b,

a+b
2

)
= − (b−a)2

8
. Thus, we have

g1 (t,s) � g1

(
b,

a+b
2

)
= − (b−a)2

8
for a � s � t .

Moreover, we have

g2 (t,s) = − (t−a)2 (b− s)
2(b−a)

� g2 (s) := − (s−a)2 (b− s)
2(b−a)

� g2

(
a+2b

3

)
= −2(b−a)2

27
for t � s � b.

Therefore, we get

G1 (t,s) � min

{
− (b−a)2

8
,−2(b−a)2

27

}
= − (b−a)2

8
(2.14)

for all t,s ∈ [a,b] . Similarly, by finding the absolute maximum of Green’s function
G2 (t,s) , we have

G2 (t,s) � (b−a)2

8
(2.15)

for all t,s ∈ [a,b] . Note that if we use the inequality (2.14) in (2.9) and (2.15) in (2.12),
then we have the following result. Hence, the proof is omitted.

THEOREM 3. If y(t) is a nontrivial solution of the third-order linear differential
equations (1.8) satisfying one of the non-conjugate boundary conditions (BCi ) for i =
1,2 , then the inequality

8

(b−a)2
�

∫ b

a
|q(s)|ds (2.16)

holds.
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REMARK 2. We believe that the Lyapunov-type inequality in Theorem 3 is the
best possibility for the equation (1.8) under one of the boundary conditions (BC i ) for
i = 1,2 in the sense that the constant 8 in the left hand side of the inequality (2.16)
cannot be replaced by any larger constant.

Here, we note that the following inequalities can be given from the Green’s func-
tions (2.3) and (2.4):

g1 (t,s) � − (s−a)2 (b− s)
2(b−a)

− (b− s)(s−a)(2b−a− s)
2(b−a)

= −(s−a)(b− s), (2.17)

g2 (t,s) � − (s−a)2 (b− s)
2(b−a)

, (2.18)

g3 (t,s) � (s−a)(b− s)2

2(b−a)
, (2.19)

g4 (t,s) � (s−a)(b− s)2

2(b−a)
+

(s−a)(b− s)(b+ s−2a)
2(b−a)

= (s−a)(b− s) . (2.20)

Hence we get

G1 (t,s) � min

{
−(s−a)(b− s) ,− (s−a)2 (b− s)

2(b−a)

}
= −(s−a)(b− s) (2.21)

G2 (t,s) � max

{
(s−a)(b− s)2

2(b−a)
,(s−a)(b− s)

}
= (s−a)(b− s) . (2.22)

Therefore, if we use the inequality (2.21) in (2.9) and (2.22) in (2.12), then we have the
following result.

THEOREM 4. If y(t) is a nontrivial solution of the third-order linear differential
equations (1.8) satisfying one of the non-conjugate boundary conditions (BCi ) for i =
1,2 , then the inequality

1 �
∫ b

a
(s−a)(b− s)|q(s)|ds (2.23)

holds.

We may adopt a different point of view and use (2.16) to obtain an extension of
the following oscillation criterion due originally to Liapounoff (cf. [5]): y′′(t) and
y′′ (t)y−1 (t) are continuous for a � t � b , with y(a) = y(b) = 0, then

4
b−a

�
∫ b

a

∣∣y′′ (s)y−1 (s)
∣∣ds (2.24)
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from the inequality (1.7). Thus, (2.16) leads to the following extension: If y′′′(t) and
y′′′ (t)y−1 (t) are continuous for a � t � b , y(t) has one of the non-conjugate boundary
conditions (BC i ) for i = 1,2, then

8

(b−a)2
�

∫ b

a

∣∣y′′′ (s)y−1 (s)
∣∣ds.

Now, we give an another application of the obtained Lyapunov-type inequality
(2.16) for the following eigenvalue problem: If y(t) is a nontrivial solution of the
equation

y′′′ + λh(t)y = 0 (2.25)

under one of the non-conjugate boundary conditions (BC i ) for i = 1,2, then we have

8

(b−a)2
∫ b
a |h(s)|ds

� |λ | . (2.26)
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