
D ifferential
Equations

& Applications

Volume 10, Number 2 (2018), 227–234 doi:10.7153/dea-2018-10-15

UNIFORM EXPONENTIAL STABILITY IN THE SENSE OF HYERS

AND ULAM FOR PERIODIC TIME VARYING LINEAR SYSTEMS

BAKHT ZADA

(Communicated by Satoshi Tanaka)

Abstract. We prove that the uniform exponential stability of time depended p -periodic system

Ψ̇(t) = Π(t)Ψ(t), t ∈ R+, Ψ(t) ∈ C
n

is equivalent to its Hyers–Ulam stability. As a tool, we consider the exact solution of the Cauchy
problem {

Θ̇(t) = Π(t)Θ(t)+ eiαtζ (t), t ∈ R+

Θ(0) = Θ0

as the approximate solution of Ψ̇(t) = Π(t)Ψ(t), t ∈ R+, Ψ(t)∈ Cn , where α is any real num-
ber, ζ (t) with ζ (0) = 0 , is a p -periodic bounded function on the Banach space S (R+,Cn) .
More precisely we prove that the system Ψ̇(t) = Π(t)Ψ(t), t ∈ R+, Ψ(t) ∈ Cn is Hyers–Ulam
stable if and only if it is exponentially stable. We argue that Hyers-Ulam stability concept is
quite significant in realistic problems in numerical analysis and economics.

1. Introduction

Theory of stability is of great interest, the recent advances of stability theory inter-
act with spectral theory, harmonic analysis, modern topics of complex functions theory
and also with control theory. The main interest is the asymptotic behavior of solutions
and different types of stabilities in the study of such systems. Results related to stability
of different system can be found in [3, 6, 5, 7, 9, 16, 15, 4, 22].

In 1940, some open problems were posed by S. M. Ulam, see [19] and [20]. The
pursuit of solutions to these problems, to its generalizations and modifications for dif-
ferent classes of difference, functional, differential and integral equations, is a growing
region of research and has led to the development of what is now frequently called
Ulams type stability theory or the Hyers–Ulam stability theory. One of these problems
refers to the stability of a certain functional equation. To this problem, the first an-
swer was given by D. H. Hyers in 1941, [12]. Later on, it was called the Hyers–Ulam
problem and its study became a widely studied subject for many mathematicians. M.
Obłoza for the first time investigated the stability of differential equations, [17]. Just
after, C. Alsina and R. Ger, [1], proved Hyers-Ulam stability of first order linear dif-
ferential equations, which was then generalized for the Banach space valued first order
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linear differential equation, by S. E. Takahasi, H. Takagi, T. Miura and S. Miyajima
in [18]. Different researchers presented their works with different approaches to study
Hyers-Ulam stability, e.g., see [2, 11, 8, 10, 13, 14]. Very recently, in [21], Zada et
al. generalized the concept of Hyers–Ulam stability of the non-autonomous p -periodic
linear differential matrix system to its dichotomy.

In this paper we consider the first order linear non-autonomous system Ψ̇(t) =
Π(t)Ψ(t) , t ∈ R+ , Ψ(t) ∈ Cn . We show that the p -periodic system Ψ̇(t) = Π(t)Ψ(t)
is Hyers–Ulam stable if and only if it is exponentially stable.

2. Notation and preliminaries

Let C be a complex Banach space and S (C ) the Banach algebra of all bounded
linear operators acting on C . We denote by ‖ · ‖ , the norms in C and in S (C ) . R+
denotes the set of all positive real numbers and the spectral radius of W is denoted by
r(W ) .

A family U = {U(u,v) : u � v � 0}⊂S (C ) is known to be p -periodic evolution
family if

1. U(u,w)U(w,v) = U(u,v) for all u � v � w � 0,

2. U(u,u) = I for all u � 0,

3. for all x ∈ C , the map (u,v) �→ U(u,v)x : {(u,v) ∈ R2 : u � v � 0} → C , is
continuous,

4. U(u+ p,v+ p)= U(u,v) for all u � v � 0.

A p -periodic evolution family also satisfies:

• U(wp+u,wp+ v) = U(u,v) for all w ∈ N, for all u � v ∈ R+ ;

• U(up,vp) = U((u− v)p,0) = U(p,0)u−v for all u,v ∈ N, u � v .

The evolution family U is said to be exponentially bounded if there exist τ ∈ R and
Kτ � 0 such that

‖U(u,v)‖ � Kτe
τ(u−v), ∀ u � v � 0.

The evolution family is uniformly exponentially stable if there exist K > 0 and τ > 0
such that

‖U(u,v)‖ � Ke−τ(u−v), ∀ u � v � 0.

PROPOSITION 1. [3] Consider a strongly continuous and p-periodic evolution
family U = {U(u,v) : u � v � 0} acting on the Banach space C . Then the following
statement are equivalent:

(A) U is uniformly exponentially stable,

(B) there exist M,τ > 0 such that ‖U(s,0)‖ � Me−τs , for all s � 0 ,
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(C) let W = U(p,0) , then r(W ) < 1 ,

(D) let W = U(p,0) , for each α ∈ R , one has

sup
m�1

∥∥∥ m

∑
k=1

e−iαkW k
∥∥∥ := L(α) < ∞.

By S (R+,Cn) we denotes the space of all Cn –valued bounded functions with
“sup” norm and by X

p
0(R+,Cn) denotes the set of all continuous and p -periodic func-

tions ζ with ζ (0) = 0, where C
n the n -dimensional space of all n -tuples complex

numbers.

3. Main result

Consider the time dependent p -periodic system

Ψ̇(t) = Π(t)Ψ(t), t ∈ R+, Ψ(t) ∈ C
n, (1)

where Π(t + p) = Π(t) for all t ∈ R+ .
Let X

p
0(R+,Cn) be the space of all p -periodic bounded functions ζ (t) with

ζ (0) = 0. Consider the Cauchy problem{
Θ̇(t) = Π(t)Θ(t)+ eiαtζ (t), t ∈ R+

Θ(0) = Θ0.
(2)

The solution of the Cauchy problem (2) is

Θ(t) = U(t,0)Θ0 +
t∫

0

U(t,s)eiαsζ (s)ds. (3)

DEFINITION 1. Let ε be a positive number. If there exists a constant L > 0 such
that for every differentiable function Θ satisfying the relation

sup
t∈R+

‖Θ̇(t)−Π(t)Θ(t)‖� ε,

there exists an exact solution Ψ(t) of Ψ̇(t) = Π(t)Ψ(t) such that

sup
t∈R+

‖Θ(t)−Ψ(t)‖� Lε, (4)

then the system Ψ̇(t) = Π(t)Ψ(t) is said to be Hyers–Ulam stable.

REMARK 1. If Θ(t) is an approximate solution of Ψ̇(t) = Π(t)Ψ(t) then Θ̇(t) ≈
Π(t)Θ(t) . So let ζ (t) is an error function then Θ(t) is the exact solution of Θ̇(t) =
Λ(t)Θ(t)+ eiαtζ (t) .
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Thus with the help of Remark 1, Definition 1 can be modified as follows.

DEFINITION 2. Let ε be a positive real number. If there exists a constant L > 0
such that, for every differentiable function Θ(t) satisfying (2) and supt∈R+ ‖ζ (t)‖ � ε
for any t ∈R+ , there exists an exact solution Ψ(t) of Ψ̇(t)= Π(t)Ψ(t) with Ψ(0)= Θ0

such that (4) holds, then the system Ψ̇(t) = Π(t)Ψ(t) is said to be Hyers–Ulam stable.

The following Lemma will help us to prove our main results.

LEMMA 1. Let us consider the functions λ1,λ2 : [0, p]→ C , defined by;

λ1(s) =

{
s , s ∈ [0, p/2)

p− s, s ∈ [p/2, p]
and λ2(s) = s(p− s), s ∈ [0, p].

Let

ϒ j(α) =
p∫

0

λ j(s)eiαsds, where j ∈ {1,2}.

Then it is easy to verify that ϒ1(α) 	= 0 if and only if α ∈ G1 = C\{ 4nπ
p : n∈ Z\{0}}

and ϒ2(α) 	= 0 for all α ∈ G2 =
{ 4nπ

p : n ∈ Z\ {0}}.

Now we are in the position to state and prove our main result.

THEOREM 1. Let for any real number α the equation (3) represent the approx-
imate solution of the system Ψ̇(t) = Π(t)Ψ(t) , where eiαtζ (t) is the error function.
Then the following two statements hold true.

(1) If the system Ψ̇(t) = Π(t)Ψ(t) is uniformly exponentially stable then for any
ζ ∈ X

p
0(R+,Cn) and any real number α the system Ψ̇(t) = Π(t)Ψ(t) is Hyers–Ulam

stable.
(2) Let C := G1 ∪G2. If for each real number α and each p-periodic function

ζ (t) in G ⊂X
p
0(R+,Cn) , the system Ψ̇(t) = Π(t)Ψ(t) is Hyers–Ulam stable. Then the

system Ψ̇(t) = Π(t)Ψ(t) is uniformly exponentially stable.

Proof. (1) Let ε > 0, and Ψ(t) is the exact solution of Ψ̇(t) = Π(t)Ψ(t) with
Ψ(0) = Θ0 and Θ(t) is the approximate solution, which is an exact solution of the
Cauchy problem (2) with supt∈R+ ‖ζ (t)‖ � ε . Then

sup
t∈R+

‖Θ(t)−Ψ(t)‖ = sup
t∈R+

‖U(t,0)Θ0 +
t∫

0

U(t,s)eiαsζ (s)ds−U(t,0)Θ0‖

= ‖
t∫

0

U(t,s)eiαsζ (s)ds‖
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�
t∫

0

‖U(t,s)eiαsζ (s)‖ds

�
t∫

0

‖U(t,s)‖‖ζ (s)‖ds

�
t∫

0

Ke−β (t−s)‖ζ (s)‖ds, where K > 0, β > 0

= Ke−β t

t∫
0

eβ s‖ζ (s)‖ ds

� Ke−β t

t∫
0

eβ sεds,

= ε
K
β

(1− e−β t)

� K
β

ε

= Lε, where L =
K
β

.

Thus sup
t∈R+

‖Θ(t)−Ψ(t)‖ � Lε . Which implies that the system Ψ̇(t) = Π(t)Ψ(t) is

Hyers–Ulam stable.
(2) Let W = U(p,0) , x ∈ Cn and ζ j ∈ X

p
0(R+,Cn) such that:

ζ j(s) = λ j(s)U(s,0)x, s ∈ [0, p].

where λ j(s) is defined in Lemma 1 for j = 1,2. Thus for any natural number n we
have

Θ j(np) =
np∫
0

U(np,s)eiαsζ j(s)ds

=
n−1

∑
k=0

kp+p∫
kp

U(np,s)eiαsζ j(s)ds

=
n−1

∑
k=0

p∫
0

U(np,kp+ r)eiα(kp+r)ζ j(kp+ r)dr

=
n−1

∑
k=0

p∫
0

eiαkpU
(
(n− k)p,r

)
eiαrλ j(r)U(r,0)xdr
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=
n−1

∑
k=0

eiαkpU
(
(n− k)p,0

)
x

p∫
0

eiαrλ j(r)dr

=
n−1

∑
k=0

eiαkpU
(
p,0

)n−k
xϒ j(α)

= ϒ j(α)
n−1

∑
k=0

eiαkpW n−kx.

In view of Lemma1 we may write

Θ1(np)
1

ϒ1(α)
=

n−1

∑
k=0

eiαkpW n−kx, for α ∈ G1, (5)

and

Θ2(np)
1

ϒ2(α)
=

n−1

∑
k=0

eiαkpW n−kx, for α ∈ G2. (6)

From our assumptions it is obvious that the system Ψ̇(t) = Π(t)Ψ(t) is Hyers-Ulam
stable, so

‖
np∫
0

U(np,s)eiαsζ j(s)ds‖ � Lε,

for any natural number n , we conclude that Θi(np) for i ∈ {1,2} are bounded func-
tions, i.e. there exist two constants L1 and L2 such that

‖Θ1(np)‖ � L1 and ‖Θ2(np)‖ � L2 for all n = 1,2,3 . . . .

Thus from (5) it follows that if α ∈ G1 then

∥∥∥n−1

∑
k=0

eiαkpW n−kx
∥∥∥ � L1

|ϒ1(α)| = E1, (7)

and from (6) it follows that if α ∈ G2 then

∥∥∥n−1

∑
k=0

eiαkpW n−kx
∥∥∥ � L2

|ϒ2(α)| = E2. (8)

Thus from (7) and (8), for any α ∈ G1∪G2 = C , we have

∥∥∥n−1

∑
k=0

eiαkpW n−kx
∥∥∥ � E1 +E2. (9)

Taking n− k = l then

n−1

∑
k=0

eiαkpW n−kx = eiαn
n

∑
l=1

e−iα l pW lx.
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So from (9) we have ∥∥∥ n

∑
l=1

e−iα l pW l
∥∥∥ � L < ∞.

By Proposition 1 we conclude that the system Ψ̇(t) = Π(t)Ψ(t) is uniformly exponen-
tially stable. �

COROLLARY 1. The system (1) is uniformly exponentially stable if and only if it
is Hyers–Ulam stable.

4. Conclusion

We showed that the uniform exponential stability of time dependent periodic sys-
tem is equivalent to its Hyers-Ulam stability. This concept has applicable importance, it
means that if one is studying Hyers–Ulam stable system then one does not have to reach
the exact solution, which is quite difficult or time consuming. All what is required is to
get a function which satisfies Definition 2. Hyers-Ulam stability guarantees that there
is a close exact solution.
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