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ON A HINGED PLATE EQUATION OF NONCONSTANT THICKNESS

CRISTIAN-PAUL DANET

(Communicated by Ulisse Stefanelli)

Abstract. This note is concerned with the problem of existence and uniqueness of solutions for a
fourth order boundary value problem that models the deflection of a hinged plate of nonconstant
thickness.

1. Introduction

In this note we consider a planar bounded hinged plate Q, dQ € C? of thickness
D> Dy >0, D& C*Q) with an external vertical load f € C(IR). The physically
relevant Steklov boundary value problem for the hinged plate is (see [4], p. 7)

A(D(x)Au) — (1 = v)[D,u] + c(x) f(u) =0 inQ,

1
u=Au—(1-v)k%*=0o0noQ. M

Here ¢ € C%(Q), ey = c(x) = ¢ >0 in Q,0 < v < 1 is the elastic constant
(Poisson ratio), [u,V] = txVyy — 2UxyVxy + Vicltyy and k is the curvature of . The paper
[8], p. 153—154 explains why the above boundary condition is physically relevant. On
polygonal domains the boundary condition leads to u = Au =0 on dQ with some
singularity in the corners.

Note that the author (see [3]) studied using P functions methods the same equation
but under the boundary conditions u = Au = 0 on dQ and proved that if

(i1) A(l/ec) <0,

(i) AD>=(1—-v)?/2(1—2v), AD—4D~'|VD|*> >0,

(i3) F(s)= [ f()dt >0, fle>y>0, y>D>DiDij, FF' — (F')? >0,

(is) 92 —2kD <0 on 9Q,
then the only classical solution (C*(Q) NC?(Q)) is the trivial one.

It is the purpose of this note to use variational methods to show that existence/uni-
queness results can be obtained only under the relaxed assumption (i3), namely if

F(s) > —Bls|*, where B>0, 1< <2 )
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and/or
f >0inIR.

We mention that the methods developed in [3] can’t be applied to the problem (1).
Interestig positivity preserving properties related to the hinged plate model can be found
in the works [2], [7], [8] and [9].

2. Main results

Let X (Q) = W22(Q)NW, *(Q).
A weak solution of (1) is a function u € X(Q) such that

/Q [D(AMA(P — (1= V) (axPax + tyy @y — 21ty Pxy)) —|—c(x)f(p} dx=0 Ve eX(Q).

It is well known (see [6], Chapter 1) that X (Q) becomes a Hilbert space endowed
with the scalar product

(u7v)—>/ Aulvdx, u,v e X(Q).
Q

This scalar product induces a norm equivalent to || - [[y22(q) -

Weak solutions of (1) are critical points of the elastic energy functional J : X (Q) —
R

Ju) = /Q [g (A — (1= V)l + (o) ()] v

LEMMA 2.1. Suppose that F satisfies (2). Then there exists a minimizer ii €
X(Q) of J. If in addition we admit that ' > 0 then the minimizer is unique.

Proof. Let us first establish that J is coercive.
By the Cauchy inequality

F(u) > —euw® —Cle,a)Bza, wheree > 0. 3)

We next use the inequality (see [5], p. 222)

n
t AB
det A det B < ( race ) . AB>0
n
to show that (we have taken A=D?u, B=I,)
[u,u] /2 = det D*u < (Au)? /4, (4)

where D?u is the Hessian matrix.
Combining Poincare’s inequality and inequality (23)(we take into account that
u=0 on dQ), p. 20 in [6] we obtain that for all u € W22(Q)NW,*(Q2)

/ Wldx < d? / (Au)?dx, (5)
Q Q
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where d is the width of a strip containing Q.
Consequently by (3), (4) and (5) we get

Do(l +V>

Ju) > —

[ u H;zf(g) —ed’Cy || u Hi(g) —C(e,a,B,Cn, Q).

Hence J is coercive if we choose € sufficiently small.
We now show that J(u) is weakly lower semicontinous on the reflexive space

X(Q).
Since
(Au)* — (1= ) [, u] = V(e + 10yy)> + (1= V) (i + 203, +165,)
we get that
J() = %/QD<(Au)2— (1= V)] )dx
1S convex.

Hence J(u) can be represented as the sum J(u) = J; (u) + J2(u), where J;(u) is
convex and Ja(u) = [, c(x)F (u)dx is sequentially weakly continous.

Therefore, J(u) is weakly lower semicontinous by Criterion (6.1.3) in [1], p. 301.

We obtain thus the existence of the minimizer as required.

If f/ >0 then J(u) is convex and uniqueness of the minimizer follows. [J

We are now able to prove the main result.

THEOREM 2.1. Suppose that F satisfies (2). Then the boundary value problem
(1) has at least one weak solution. If f' > 0 in IR then the weak solution is unique. If
in addition F > 0 in IR then the unique solution is the trivial one.

If we suppose that

Qe feCR), DeC*Q), ceC'Q), (6)

then the boundary value problem (1) admits a unique strong solution u € W*2(Q).
Moreover if we admit that

Qe feC*(R), f’€L(R), DcC*Q), ccC*(Q), (7)

then the solution is a classical solution.

Proof. The existence part of the theorem follows from Lemma 2.1, since the min-
imizer is the solution to (1).

If the assumption (6) is satisfied then the result follows by Theorem 2.20, p. 46,
[4].

To show the regularity we use a bootstrapping argument and Theorem 2.20, p. 46,
[4], which is a version of the classical result of Agmon-Douglis-Nirenberg.

Since f € C*(R), f" € L”(R), u € W>?(Q) it follows that f(u(x)) € W??(Q).
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Now by Theorem 2.20, [4] (take k =6, m =2, p = 2) it follows that there exists

a solution to (1) in W62(Q).

Consequently, u € C*1(Q) by the Sobolev imbedding theorem, i.e. u is a classical

solution.

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

f'>0and F >0 implies f(0) =0 and hence u = 0 is the unique solution. [

REMARK. If o =2 we can see that proof of Theorem 2.1 still holds if

(lwl3d2 <:£29£%ft)iz.
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