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ON A HINGED PLATE EQUATION OF NONCONSTANT THICKNESS

CRISTIAN-PAUL DANET

(Communicated by Ulisse Stefanelli)

Abstract. This note is concerned with the problem of existence and uniqueness of solutions for a
fourth order boundary value problem that models the deflection of a hinged plate of nonconstant
thickness.

1. Introduction

In this note we consider a planar bounded hinged plate Ω , ∂Ω ∈C2 of thickness
D � D0 > 0, D ∈ C2(Ω) with an external vertical load f ∈ C(IR). The physically
relevant Steklov boundary value problem for the hinged plate is (see [4], p. 7){

Δ(D(x)Δu)− (1−ν)[D,u]+ c(x) f (u) = 0 inΩ,

u = Δu− (1−ν)k ∂u
∂n = 0 on∂Ω.

(1)

Here c ∈ C0(Ω), cM � c(x) � cm > 0 in Ω,0 < ν < 1 is the elastic constant
(Poisson ratio), [u,v] = uxxvyy−2uxyvxy +vxxuyy and k is the curvature of Ω. The paper
[8], p. 153–154 explains why the above boundary condition is physically relevant. On
polygonal domains the boundary condition leads to u = Δu = 0 on ∂Ω with some
singularity in the corners.

Note that the author (see [3]) studied using P functions methods the same equation
but under the boundary conditions u = Δu = 0 on ∂Ω and proved that if

(i1) Δ(1/c) � 0,
(i2) ΔD � (1−ν)2/2(1−2ν) , ΔD−4D−1|∇D|2 � 0,

(i3) F(s) =
∫ s
0 f (t)dt � 0, f ′c > γ > 0, γ � D � Di jDi j , FF

′′ − (F ′)2 � 0,

(i4) ∂D
∂n −2kD < 0 on ∂Ω,

then the only classical solution (C4(Ω)∩C2(Ω)) is the trivial one.
It is the purpose of this note to use variational methods to show that existence/uni-

queness results can be obtained only under the relaxed assumption (i3) , namely if

F(s) � −β |s|α , where β > 0, 1 � α < 2 (2)
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and/or
f ′ � 0 in IR.

We mention that the methods developed in [3] can’t be applied to the problem (1).
Interestig positivity preserving properties related to the hinged plate model can be found
in the works [2], [7], [8] and [9].

2. Main results

Let X(Ω) = W 2,2(Ω)∩W 1,2
0 (Ω) .

A weak solution of (1) is a function u ∈ X(Ω) such that∫
Ω

[
D
(
ΔuΔϕ − (1−ν)(uxxϕxx +uyyϕyy −2uxyϕxy)

)
+ c(x) fϕ

]
dx = 0 ∀ϕ ∈ X(Ω).

It is well known (see [6], Chapter 1) that X(Ω) becomes a Hilbert space endowed
with the scalar product

(u,v) →
∫

Ω
ΔuΔvdx, u,v ∈ X(Ω).

This scalar product induces a norm equivalent to || · ||W 2,2(Ω) .

Weak solutions of (1) are critical points of the elastic energy functional J : X(Ω)→
IR

J(u) =
∫

Ω

[D
2

(
(Δu)2− (1−ν)[u,u]

)
+ c(x)F(u)

]
dx.

LEMMA 2.1. Suppose that F satisfies (2). Then there exists a minimizer ũ ∈
X(Ω) of J. If in addition we admit that f ′ � 0 then the minimizer is unique.

Proof. Let us first establish that J is coercive.
By the Cauchy inequality

F(u) � −εu2−C(ε,α)β
2

2−α , where ε > 0. (3)

We next use the inequality (see [5], p. 222)

det A det B �
(

traceAB
n

)n

, A,B � 0

to show that (we have taken A=D2u, B=I2 )

[u,u]/2 = det D2u � (Δu)2/4, (4)

where D2u is the Hessian matrix.
Combining Poincare’s inequality and inequality (23)(we take into account that

u = 0 on ∂Ω), p. 20 in [6] we obtain that for all u ∈W 2,2(Ω)∩W 1,2
0 (Ω)∫

Ω
u2dx � d2

∫
Ω
(Δu)2dx, (5)
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where d is the width of a strip containing Ω.
Consequently by (3), (4) and (5) we get

J(u) � D0(1+ ν)
4

|| u ||2X(Ω) −εd2CM || u ||2X(Ω) −C(ε,α,β ,CM ,Ω).

Hence J is coercive if we choose ε sufficiently small.
We now show that J(u) is weakly lower semicontinous on the reflexive space

X(Ω).
Since

(Δu)2 − (1−ν)[u,u] = ν(uxx +uyy)2 +(1−ν)(u2
xx +2u2

xy +u2
yy)

we get that

J1(u) =
1
2

∫
Ω

D
(
(Δu)2− (1−ν)[u,u]

)
dx

is convex.
Hence J(u) can be represented as the sum J(u) = J1(u)+ J2(u), where J1(u) is

convex and J2(u) =
∫

Ω c(x)F(u)dx is sequentially weakly continous.
Therefore, J(u) is weakly lower semicontinous by Criterion (6.1.3) in [1], p. 301.
We obtain thus the existence of the minimizer as required.
If f ′ � 0 then J(u) is convex and uniqueness of the minimizer follows. �

We are now able to prove the main result.

THEOREM 2.1. Suppose that F satisfies (2). Then the boundary value problem
(1) has at least one weak solution. If f ′ � 0 in IR then the weak solution is unique. If
in addition F � 0 in IR then the unique solution is the trivial one.

If we suppose that

∂Ω ∈C4, f ∈C0(IR), D ∈C2(Ω), c ∈C0(Ω), (6)

then the boundary value problem (1) admits a unique strong solution u ∈W 4,2(Ω).
Moreover if we admit that

∂Ω ∈C6, f ∈C2(IR), f ′′ ∈ L∞(IR), D ∈C4(Ω), c ∈C2(Ω), (7)

then the solution is a classical solution.

Proof. The existence part of the theorem follows from Lemma 2.1, since the min-
imizer is the solution to (1).

If the assumption (6) is satisfied then the result follows by Theorem 2.20, p. 46,
[4].

To show the regularity we use a bootstrapping argument and Theorem 2.20, p. 46,
[4], which is a version of the classical result of Agmon-Douglis-Nirenberg.

Since f ∈C2(IR) , f ′′ ∈ L∞(IR) , u ∈W 2,2(Ω) it follows that f (u(x)) ∈W 2,2(Ω).
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Now by Theorem 2.20, [4] (take k = 6, m = 2, p = 2) it follows that there exists
a solution to (1) in W 6,2(Ω).

Consequently, u∈C4,1(Ω) by the Sobolev imbedding theorem, i.e. u is a classical
solution.

f ′ � 0 and F � 0 implies f (0) = 0 and hence u ≡ 0 is the unique solution. �
REMARK. If α = 2 we can see that proof of Theorem 2.1 still holds if

CMβd2 <
D0(1+ ν)

4
.
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