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PERIODIC SOLUTIONS FOR NONLINEAR
FRACTIONAL DIFFERENTIAL SYSTEMS

SAID ABBAS, MOUFFAK BENCHOHRA, SOUFYANE BOURIAH AND JUAN J. NIETO

(Communicated by Michal Feckan)

Abstract. In this paper, we establish some existence and uniqueness results for periodic solu-
tions for a class of fractional differential equations with the Caputo fractional derivative. The
arguments are based upon the Banach contraction principle, and Schaefer’s fixed point theorem.

1. Introduction

Recently, fractional differential equations [11, 15, 16, 17, 19] have been studied
intensively [1, 2, 3, 4, 5, 9, 21]. The mathematical modeling of many real world phe-
nomena based on fractional order operators is regarded as better and improved than the
one depending on integer-order operators. In particular, fractional calculus has played a
significant role in the recent development of special functions and integral transforms,
signal processing, control theory, bioengineering and biomedical, viscoelasticity, fi-
nance, stochastic processes, wave and diffusion phenomena, plasma physics, social sci-
ences, etc. The motivation for this work arises from both the development of the theory
of fractional calculus itself and its wide application to various fields of science, such as
physics, chemistry, biological, electromagnetic of complex media, robotics, economics,
etc. Much attention has been paid to the existence and uniqueness of the solutions of
fractional dynamic systems [0, 7, 8, 10, 14] on account of the fact that existence is the
fundamental problem and a necessary condition for considering some other properties
for fractional dynamic systems, such as controllability, stability, etc. In [18] the authors
provide some existence results for the dynamical system

DY x(t) — A DB x(1) = f(1,x(t)); 1 €J:=[0,T], (L.1)
x(0) =x9, ¥'(0) =xj. (1.2)

Motivated by the previous work [ 18], the purpose of this paper is to establish some exis-
tence and uniqueness results for the following functional fractional differential equation

“D.x(1) = A D x(t) = f (1,(0). D x(0) DEx(0)) 5 1€ :=[0,7), (13)
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with the periodic conditions
x(0) =x(T), «'(0)=x(T), (1.4)

where T > 0, "Dg‘ is the Caputo fractional derivative of order o, 0 < 8 <1 < ¢ <2,
I+ <o, f:JxR"xR"xR" — R" is a given continuous function, and A is an
R™ ™" invertible matrix.

The present paper is organized as follows: In Section 2, some notations are in-
troduced and we recall some concepts of preliminaries about fractional calculus and
auxiliary results. The main results are presented in Section 3; by applying the Banach
fixed point theorem and Schaefer’s fixed point theorem. In the last Section, we give an
illustrative example.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper. By C(J,R") we denote the Banach space of continuous
functions from J into R” with the norm

[l = sup{{lx(e)[| -7 € /3,

where || - || denotes a suitable complete norm on R”.
Denote L!(J,R") the Banach space of measurable functions u : J — R" that are
Lebesgue integrable with norm

T
Il = [ (o) ar

Let AC(J,IR") be the space of absolutely continuous valued functions on J, and set

AC"()) ={x:J =R :x X X, . x" D eC(,R") and x"~ D € AC(J,R")}.

By
C'(J,R") = {x:J — R" where x' € C(J,R")},

we denote the Banach space with the norm
[l = max{[|x]eo, [l }-

DEFINITION 1. ([15]) The Riemann-Liouville fractional integral of order o > 0
of a function h € L'((a,b],R") is given by

1% h(1) = m/:(t—s)“—lh(s)ds, t € (a,b],

where T is the Euler gamma function defined by

I'¢)= /()erté‘le"dt; E>0.
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DEFINITION 2. ([15]) The Riemann-Liouville fractional derivative of order o >
0 of a function i € L' ((a,b],R") is given by

o 1 d\" [t h(s) .
Da+h(l‘) = m (E) L md&‘, te (a,b],

provided the right hand side is well defined for almost every ¢ € (a,b), where n =
[a] + 1, [o] denotes the integer part of the real number o.

DEFINITION 3. ([15]) The Caputo fractional of order o0 > 0 of a function h €
AC"((a,b],R") is defined via the above Riemann-Liouville derivatives by

n=1p&) (4
OEDY h k!( )(t—a)"D (t); t € (a,b].

k=0
DEFINITION 4. ([15]) For a function & € AC"(J), the Caputo fractional-order
derivative of order a of # is defined by

L s
(D) (1) = T(n— oc)/o (t —s)"(‘)"“ds’

LEMMA 1. ([15]) From the definition of fractional integrals and Caputo deriva-
tives, we have

CD;erh(t) == <D3+

o (cpa & hN0)
1§ (°D§.h(1)) :h(t)—k% a fs >0 n—l<a<n.
Especially, when 1 < a0 < 2, then we have

1§ (°DE.h(t)) = h(t) — h(0) —th'(0).

LEMMA 2. ([15]) Let o >0 and h € C(J,R"). Then
holds on J.

LEMMA 3. ([12]) Let 0< B <1< & <2, and x € C'(J,R"). Then we have

x(0)r%P
1% ("Dg+x(t)> =177 (x(0)) — %'

We state the following generalization of Gronwall’s lemma for singular kernels.

LEMMA 4. ([20]) Let v :[0,T] — [0,4o0) be a real function and o(-) is a
nonnegative, locally integrable function on [0,T]. Assume that there are constants a
>0 and 0 < o < 1 such that

1
V() <o) +a/ (t1— )% (s)ds.
0
Then, there exists a constant K = K (o) such that

v (1) < a)(t)—i—Ka/Ot (t—s) %o (s)ds, foreveryte[0,T].
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THEOREM 1. ([13]) (Banach’s fixed point theorem) Let C be a non-empty closed
subset of a Banach space X, then any contraction mapping T of C into itself has a
unique fixed point.

THEOREM 2. [13] (Schaefer’s fixed point theorem) Let X be a Banach space,
and N : X — X completely continuous operator.

Ifthe set & ={y € X : y= ANy, for some A € (0,1)} is bounded, then N has
fixed points.

3. Existence of solutions

LEMMA 5. Forany x € C'(J,R") and 0 < B < 1, we have
T'-B T'-B
D5 e < g 1 e, @ 50 (DY x]e < =]

r2-p) I'(2-B)

Proof. Obviously, when 8 = 1, the conclusions are true. So, we only consider the
case 0 < 8 < 1. In fact, by Definition 4, for any x € C'(J,R") and ¢ € J, we have

1

|CD§+_X(Z)| = m /Ot(t—s)_ﬁx/(s)ds

< Wl gy =) P
1= ,

= m”x [
T'- ,

<ty -
-

X F(z—ﬁ)”le g

LEMMA 6. Let h € C(J,R"). The function x € C'(J,R") is a periodic solution of
the fractional differential problem

DY x(t) — ADE x(1) = h(t), t € J, 3.1)

x(0) =x(T), «(0)=x(T), (3.2)
if and only if, x is a solution of the fractional integral equation
AreP A '

— - ! o~ _ No—p—1
(1) (1 P 1)> (0) +1¢(0) + o /O (t — )% P 1x(s)ds
1 ! a—1
g /0 (t — )% h(s)ds, (3.3)
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with
x(0) = TP %(a—p - 1)/0T(T — 5)*P2x(s)ds
I+B—a _ —1 T
: r(rofo_‘ 1)ﬁ)A /O (T —5)""h(s)ds, (34)
and
A

T
X (0) = — $)%B2x(5)ds
) 5y, (70 P

(@ B)T(a
—_— ! T —5)%2h(s)ds
e e h Y

—ﬁ/oT(T —§)%B-Ix(s)ds
T
—%@C) /0 (T — )% Uh(s)ds. (3.5)

Proof. Let x € C'(J,R") be a solution of (3.1)—(3.2). Then, we have
I8 (“Dgx(t) — ADP x(1)) = (I&-h) (1)
From Lemma 1, we get

o—p t
x(t) = x(0) 41/ (0) — r(;t_ﬁﬂ)x(owr(aA_m /O (t—s)% P~ x(s)ds

Lo
+m/0 (t — )% h(s)ds.

Applying conditions (3.2), we obtain (3.4) and (3.5). Thus, x is solution of the inte-
gral equation (3.3).

Conversely, assume that x satisfies the fractional integral equation (3.3), and us-
ing the fact that D, is the left inverse of I, and the fact that “D{j, C = 0, where C
is a constant, we get

DY, x(t) — A°DE, x(t) = h(r), foreachr € J.
Also, we can easily show that
x(0) = x(T) and X' (0) = x'(T).

We are now in a position to state and prove our existence result for the problem
(1.3)—(1.4) based on Banach’s fixed point, we need to give the following hypothesis:

(H) There exist constants Li,L, > 0 and 0 < L3z < 1 such that
£t u,v,w) = f(t,, v, w)[| < Ly [lu—al| + La|lv = v + L[|w — w]|

forany u,v,w, i, v,w € R andr € J.
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Set

INo—p+1 (a—B+1)

TOLT(2—B)+ TP+ (L3)|A| + Ly)
(a4 T2 —B)(1—L3)

Al|T*P Al|T*P
R1=< 4] )+1>M1+r ||

+TM27

3] 2 7
Toa—-p+1) ' T(a—p)
T 'LT(2—B)+T% P (Ls]A| +Lo)
T()r2—B)(1-Ls) ’

Ry = M)+

where
TPT(o = B)|A~"| [LiT(2 = B)+ T' P (L3 Al| + Lo)]
I(o)T'(2—B)(1 - Ls) ’

My =1+

and
o, T 20— B) T2 =)+ 7' P (Ls]|A| + Ly)] | 277 P~'|A]
2T (o~ B)[(a+ )T(2—B)(1 L) T(a—B+1)

THEOREM 3. Assume that (H) holds. If
max{R1,R>} < 1, (3.6)
then the problem (1.3)—(1.4) has a unique solution on J.

Proof. Transform the problem (1.3)—(1.4) into a fixed point problem. Consider
the operator N : C'(J,R") — C'(J,R") defined by

Ar®B A t e
(NX)(Z) = <l—m> B1+ZB2+W‘/O (Z—S) ﬁ 1x(s)ds

e (3.7)
+m/0 (t—5)* 'g(s)ds,

with
B =T"F%gq—-p— 1)/0T(T—s)a7ﬁ72x(s)ds
TP (a—B)A~" (T o
oot J, T (s
and
= A ! — )% B2x(5)ds
B apa B T M
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_—TFI(O!) /OT(T — )% Lg(s)ds,

where g € C(J,R") be such that
8(0) = f (1,x(0). D x(01), (1) + A“Df x(1) )
For every x € C'(J,R") and each ¢ € J, we have

(0~ Bt A
1F(a—!3+1) Bl+r(a_ﬁ_1)/0(l—s) B=2x(s)ds

+m/0 (t —5)* 2g(s)ds.

(Nx)'(1) = By -

(3.8)

It is clear that (Nx)' € C(J,R"), consequently, N is well defined.
Clearly, the fixed points of operator N are solutions of problem (1.3)—(1.4).
Let x,y € C'(J,R"). Then for z € J, we have

INoa—B+1

[ -
(o~ B) @ =s P a() = (s

I .
ey (9" ) hts) s,

o—pB
1) (1) — (V) ()] < <1+ il )> \By— Bul| + T||Bs— B

+

with
B =T"BF%q-p— 1)/0T(T — 5)*B2y(s)ds
T'*B-oT(a—B)A~1 (T o
Fa—1) /0 (T —5)*2h(s)ds,
and
5 A r o B
5= BT gy 0

1 T o A T o« pe
Ty 7 MO gy [, (T s

1 T
_ T — a—1
Tnayé( $)% h(s)ds,
where i € C(J,R") be such that

h(e) = f (13005 D, (1), h(e) + ADY (1))

From (H), for each ¢ € J we have

lg(®) = h(@)|] < Lullx(t) —y(@)|| + La

DY x(r) ~ Dl ()|
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+La 5(6) + ADEx(1) — () —A‘Déiy( ol

\LIH)C(I) ( )H‘i‘L2

CDgﬂC 0+y H
Dl x(1) = DY, »(0)|

< Lillx() =y(@)[ + Lallg(r) = h(1)[| + (L3 || Al + L2)

+L3(1g(1) = h(e) ]| + Ls[|All

DY (x(r) = (1)) ||

Thus
L Ls||A|| + Ly B
o) =0 < T2=ate) —>0 + 2R o (a0
Ly L3||A[[+ Lo ||c B (o
< gt T of )|

Then, by using Lemma 5, we get

Ly TP LA+ L),
18(t) —h(1)]| < l_—L3||x—YH1+ T2—B)(1-Ly) [l =[x 59)

_ LTQR—B)+ TP (Ls]|A| +L») =y
T2 B)(1—Ls) "

Using (3.9) we obtain

B _ —1 _ 1-B
1B~ Bil < [T R Gty e [
= Millx =yl
and
N T (20— B) [LiITQ2=B) +T" P (Ls]|Al| + Lo)]
1B2=B2| g[ (@~ B)M(a+ D2 B)(1—Ly)
27 F1jA|
m lx =yl
= My|lx—yl1.

Therefore, for each t € J we have

AP AP
M+ TMy+ —
(1‘(a—[5+1)7L IR v Py Y

T*LT(2—B)+ T B (L3 Al + Ly)

I(Nx)(2) = (Ny) ()] <

T(o+ T2 —B)(1—Ls) e =1l
=Ry [lx =yl
On the other hand, for each ¢t € J we have
s o, (a=B)A| TPt .
[(Nx)' (1) = (Ny) (1) || < ||B2— B2 + |B1 — Byl

MNa—B+1)
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_ a7 — )% B2 |x(s) — y(s)||ds
P ) 9 ) ()l

1T o
Py 9 e (sl
Using (3.9) we get

(e—p)lAfreP" AT P!
Ta—B+1) ' T(e—P)
T 'LT(2—B)+ TP (L3)|Al + Lo)
T(a)I(2—B)(1—Lo)

= Ralx—yll1-

I(Nx)' (1) = (Ny) (O] <

M> +

llx =yl

Thus
[N(x) = N()[l1 < max{Ry,Ra}|lx— 1.

By (3.6), the operator N is a contraction. Hence, by the Banach contraction principle,
the operator N has a unique fixed point which is the unique solution of (1.3)—(1.4).
Our second result is based on Schaefer’s fixed point theorem. Set

2HAIIT"“ﬁ‘1 2)A|2T* P 4 TP )
I'(o Fla—B+1)
+D<(2a B)(T*+ T 1)+T/3F(a—B)HA‘1H+2T“‘1+ T%20 — B) )

R=1+

)
)
(a—B)T(ec+1) (o) (a—B)T(e+1)

Ly (L3||A|| + Lo)T' P

P Lt a-wmrep)

THEOREM 4. Assume that (H) holds. If R < 1, then the problem (1.3)—(1.4)
has at least one solution on J.

Proof. Let N be the operator defined in (3.7). The proof will be given in several
steps.

Step 1: N is continuous.
Let {x,} be a sequence such that x, — x in C'(J,R"). Then for each 7 € J,

10 - )0l < (LT3 15— 4+ 7B B

X Xn X F(O{—ﬁ—l—l) 1 ny 2 ny
7”AH ! — )2 B x(s) = x, ()| ds
ety fy 9P ) (o)l

1

! o—1
*m/o (T —5)"lg(s) — gnls)llds,
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where B, ,B,, € R", with

By, =T %a—B - 1)/0T(T—s)°‘_ﬁ_2xn(5)ds
1+B—a _ -1 T
. r(rogo_‘l)B)A fi -9 etsas

= A ' —5) B2y, (5)ds
an - (O{— )F(a—B—l)/o (T ) n( )d
_|_—l /T(T — )% 2g,(s)ds
(=B (a—1) Jo o

and g, € C(J,R") such that
gnt) = f (130(1).€ DR 30(0), 80 (1) + ADY %, (1) ).
From (H) for each 7 € J we have

lg(®) = gn(t)]l < Lulle(r) = xa(0) ||+L2Hg (1) +A“Df (1) = galt) = ADxo (0)|

+L3 CD§+X 0+xn H

< Lu||x(1) = xa(2) | +Lz||g( ) —gn(1)]
+LaAll||Df,x(0) ~ Dl 1)
+Ls || D x(r) - g+x,,(t)

< Llx(t) (0| + Lallg(6) — g (0)]
+(LallAl+ L) [Dh, (x() —xa(0))|

Thus

le6) = 80l € 750 5, 0)]

LAl +La |,
3‘1‘17'2;2 ‘Dg+(x(l‘)—xn(t))H

Ly L3||All + Lo
S o el =T

CD§+ (x —2xn)

=3
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Then, by using Lemma 5, we obtain

B Ly TP (Ls||Al + L),

le(t) —ga(?)]] < L G- B) (-1 [l — x4 510
_ LT2-B)+T1"F (L3HA||+L2)||X_X I

r2-pB)(1-Ls) "

[l = x|+

Hence,
- TPT(a—B) A~ [LiT(2 - B)+ TP (L3 || A| + Ly)]
1B =Bnfl < {1 F(e)r2—B)(1—L)
X [|x = xa 11
= Mi]x —xul[1,
and
By B, | < T% (20— B) [LiT(2— B) + TP (Ls||A[| + Lo)]
182~ Brall < (o~ B)T(a+ DN B)(1—Ly)
27 P1)A|
m [l — a1
= Ma||x — xu]|1-

Therefore, for each ¢ € J we get

|| TP 1 M T || TP
T(a—B+1) ! *TT(a—B+1)

TOLT(2—B)+ TP+ (L3 ||A| + Lo)

[(Nx) (1) = (N ) (1)[| <

T(o+ D)2 - B)(1—Ly) o=l
= R1||x—x,,H1.
On the other hand, for each r € J we have
- (a=p)llA|T* P! -
[[(Nx)' (£) = (Nxa) (1) || < [|B2 — B, || + |B1 — By, ||

INo—B+1)

N ] ! — )% B2 x(s) — xu(s)||ds
e ) (9 ) )l

1 T .
T 9 ) a9
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Using (3.10) we get
(o= pliafrer-t - ajre P
T(o—B+1) " Ta—-B)
T LT(2 — ) + TP (Ls||Al| + Lo)
F(e)l(2—B)(1—-Ls)

= RQHX—anl.

[(Nx)'(£) = (Nxa) ()| < | M2+

[l = a1

Thus, ||Nx— Nx,||; — 0 as n — oo, which implies that the operator N is continuous.
Step 2: N maps bounded sets into bounded sets in C'(J,R").

Indeed, it is enough to show that for any n* > 0, there exists a positive constant ¢ such

that for each x € By« = {x € C'(J,R") : ||x||; < n*}, we have ||[N(x)||; < ¢. We have

foreach r € J,

@)l = |7 (1,50, 8(6) + AD,x(1).¢ D x(1)) = £(6,0,0,0) + £(2,0,0,0)

< Lu|lx(0)]| + Lsllg(t) + A°DE x(t) | + LD x(1) | + 11 (2,0,0,0) |
< L[]l + Lallg(0) | + (Ls[|A]| + Lo) | DB x4 £7,
where
1" =sup||f(2,0,0,0)].
teJ
Thus
L3||Al| + Lo A
ls@ll < 7=~ H oo + 7IID oo+ ———-
1—-Ls
Then, by using Lemma 5, we have
(L3HA||+L2) A
Ly <L3||AH+L2>T1 A f
< || 1+ [Ixl[1 + ———
1- (1-L3)['(2-P) 1-1;
Ly, (LAl +L)TF
< =M, 3.11
L P aore-p " Tion M GO

which implies that

31l < T o p ) [ (T ) P2t s

)“2llg(s)llds

THPor (o~ ﬁ 1A~ IH/
(o
Tﬂl"(a—ﬂ)llA il

< *
<N+ S0

M1 = M2,
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and
| A

(=BT (@—B—1)
1 T .
TR, 0 e )las

T
T[‘(O?!ﬁ)/o (T_S)a_ﬁ_le(S)”ds
b o @9 eoas
N Y
S T(a—B+1) (a—B)T(a+1)

Thus (3.7) implies

1Bz <

@9 P as

+

M1 I=M3.

|A|| TP ATk, r*

Nx))|| < M, +TM M My =/
NI < M2+ T+ 5 5 ™ Fa—pr D" Tar =0
On the other hand we have, foreach t € J

o— A Tocfﬁfl A Tafﬁfl o1

H(N’x)(t)||<M3+( AiiAl w4 14 “+ My =10,

Ta—p+1) > T(a—p) I(c)
Thus, ||Nx||; < max{¢;,{} :=4.

Step 3: N maps bounded sets into equicontinuous sets of C'(J,R").
Let 11,1 € J, 11 <t2, By+ be a bounded set of C'(J,R") as in Step 2, and let x € By-.
Then

[(Nx)(12) = (Nx) (1)

<Mt 1)+ g )
s [ -9 =928 as
s | [t [ -9 - -9 4
<Mt )+ g 5 )
o 7 =) o ),

As 1] — 1y, the right-hand side of the above inequality tends to zero. Now from (3.8),
we have
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I(N'x)(22) = (N"x) (1)

o (- ﬁ)||AHM2(téx pot_ by

Fla—p+1)
+r(o|¢|/i_[?*_ ) /otl {(tz SO U s)afﬁﬂ ds
_ (a(amgz:zlvgz(,g bt _ oo
o g

As t; — 1y, the right-hand side of the above inequality tends to zero. As a consequence
of Steps 1 to 3 together with the Ascoli-Arzela theorem, we can conclude that N :
C'(J,R") — C'(J,R") is completely continuous.

Step 4: A priori bounds.
Now it remains to show that the set

E={xcC'(J,R") :x=AN(x) forsome 0 <A < 1}

is bounded. Let x € E, then x = AN(x) for some 0 < A < 1. Thus, for each t € J we
have
2A1%~P AA

x(t) = AB1 + AtBy — Tla—B+ I)Bl + T(a—B) /Ot(t—s)a—ﬁ—lx(s)ds

Aot o
+m/0(t—s) lg(s)ds.

From (H), for each t € J we have
gl = | (r.(0): D (). 8(4) +A“Df x(0)) = £(0.0,0,0) + £(1,0,0,0) |

< Laflx(0)]| + Lallg(t) + A“DY x(t) | + Lal|“Df x(0) || + [ £(2,0,0,0) |
< L [[x]le + Lallg ()| + (L3 [Al| + Lo) | D ]+ .

e I+ r
Ls||A +L2
I8l < T et 108 e+ T
3
Then, by using Lemma 5, we have
(LslAll +L)T' P f
lsOIl < 1= H [l oo +- S W=t =
(1-L3)I'(2—-B) Ls
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S 1-Ly (1-Ly)(2-B) 1—Ls

Ly | (Ls||Al+Lo)T" P I
[x[l: +

>k

/
<D )
\Mh+1_u

which implies that

T
Bl < TP~ o —B=1) [ (T =9)" P 2x(s) ds

+ )% 2llg(s)lds

Tﬁl“((x ﬁ)HA il 1 (L3||A|| + Ly)T' B
) 1+< (o) ) <l—L3+ (1—L3)[(2—B) )]”xl

fTPT (= B)l|AY|

TP “Fa B )iA~ 1II/

+

(- L)
< [ re gty rToTepia
and
Han\( . ”(A s ) =9 s
T @9 leolas
+Tr(”(f_ 5 /OT<T—s>“ P + s [ (79 )l
< [ () (P ) |
' [
< ?('?a—Tﬁfl) oo ptarn®| W+ [ L)

Thus, for each ¢ € J, we have

A TP |A|| TP
< ||Bi|| +T||B B
N T L (L3||A|| + Ly)T' B el + T
Ta+1) [1-L3y = (1—L3)[(2—B) - L)M(a+1)

+

TOT(a—B)[A~| | (2a—p)T® re T
<[< M) (@ B(a+1)  (a—B)(@) r<a+1>>D
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allAf TP TP (o~ B) A" 1

e | M
Qo —B)T*f*
(1-L3)(oc—B)T (o + 1)
Taf* Tocf*

T—m)e—pB(e)  (0-Lyat1)

(20— B)f* (T +27%) 27+ TPT (e~ B)|jA~"|f"
(1~ Ls)(or— B+ 1) (- LyT(@)

< Rflx[h +

Thus,
(o —B)f(T* 1 +2T%)
(1-L3)(a—B)T(a+1)
27 f* + TPT (= B) A~ |1
(1-L3)I(a) '

[1llee < RJx 1+

(3.12)

On the other hand, for each ¢t € J we have
(o B)|jAl| T P! |A| TP
oa—prn 2T T p)
Tail Ll (L3HA||+L2)T17[5 HXH +
T(a) [1-Ls  (1-LyT2—p) | """ (1-Ls)[ ()
Q0BT 27! 24T P11+ —B)
s K(a—ﬂmaﬂ)* (@) )D+ Fa—B+1)
(2(X _ ﬁ)Ta_lf* 2Ta—1f*
(1—Ly)(a—B)T(a+1)  (1—Ly)(a)

¥ @I < |B2|+ [l

/|1

Hence

(o —B)f(r* +21%) 27 ' 4 TPT (o - B)|A~" |1/
(1—Ls)(o = B)T (e +1) (1= L3)T(ex)

1l < Rllxl1 +

(3.13)
From (3.12) and (3.13), we get

el < R, + QORI (1421 | 277 4 TP (o B)lJA~ T
b "= Ly)(a—B)T(a+1) (1—Ly)[(a) :

Since R < 1, then
(20— B)fH (T +27%) 27+ TPT(a - B)lJA" I/
(I=R)(1—L3)(o— ) (a+1) (I-R)(1 - L3)I(c) -

This shows that the set E is bounded. As a consequence of Schaefer’s fixed point
theorem, we deduce that N has a fixed point which is a solution of problem (1.3)—(1.4).

[lxl[1 < V.
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4. An example

Consider the following fractional differential equation

“DZ,x(t) — A D, x(1) = f(t,x(t) DP x(1),c DY x(t )) te0,1], 4.1)

with the periodic conditions

x(0) =x(1), ¥(0)=x(1), 4.2)

where f:[0,1] x R? x R? x R? — R? such that, f = (f1,f>) with

¢i>0,xyzcR? A= (

t2

T+ e+ T+ Tl

filt,x,y,2) = =1,2,
21

02 ) B= % and o = % It is clear that the hypothesis (H)

is satisfied. A simple computations show that all conditions of Theorem 4 are satisfied
for an appropriate choice of the constants c;. It follows that the problem (4.1)—(4.2) has
at least one solution defined on [0, 1].
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