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ULAM–HYERS–RASSIAS STABILITY OF A NONLINEAR

STOCHASTIC ITO–VOLTERRA INTEGRAL EQUATION
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(Communicated by Marek T. Malinowski)

Abstract. In this paper, by using the classical Banach contraction principle, we investigate and
establish the stability in the sense of Ulam-Hyers and in the sense of Ulam-Hyers-Rassias for the
following stochastic integral equation

Xt = ξt +
∫ t

0
A(t,s,Xs)ds+

∫ t

0
B(t,s,Xs)dWs,

where
∫ t
0 B(t,s,Xs)dWs is Ito integral.

1. Introduction

The study of stability problems for various functional equations originated from a
famous talk given by Ulam in 1940. In the talk, Ulam discussed a problem concerning
the stability of homomorphisms (see [24] and [25]). More precisely, he proposed the
following problem:

Given a group G1 , a metric group (G2,d) and a positive number ε , does there
exist a δ > 0 such that if a function f : G1 −→ G2 satisfies the following inequality

d( f (xy), f (x) f (y)) < δ ,

for all x,y ∈ G1 , then there exists a homomorphism T : G1 −→ G2 such that:

d( f (x),T (x)) < ε,

for all x ∈ G1 ?
When this problem has a solution, we say that the homomorphisms from G1 to G2

are stable, or that the equation defining group homomorphisms is stable (in the sense of
Ulam).

In 1941, D.H. Hyers (see [8]) gave a partial solution of Ulam’s problem under the
assumption that G1 and G2 are Banach spaces. In 1950, T. Aoki (see [2]) studied the
stability problem for additive mappings by using unbounded Cauchy differences (see
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also [16]). In 1978, Th.M. Rassias (see [22]) studied a similar problem. The stability
considered in [22] is often called the Ulam-Hyers-Rassias stability.

In [21], V. Radu introduced a simple and nice proof for the Hyers-Ulam stability of
the Cauchy additive functional equation. Using the idea of V. Radu, S.M. Jung proved
in [11] the Hyers-Ulam-Rassias stability of some Volterra integral equations defined
on an finite interval. After that, in [5], L.P. Castro and D.A. Ramos investigated the
stability of Volterra integral equation of second kind for not only the finite case but also
the infinite case. A simple proof of Jung’s problem was later given in [23] by using
some Gronwall lemmas.

In the references, at the end of this paper, we have listed other papers dealing with
the stability of functional equations.

For a large amount of information on the stability of functional equations, the
reader is invited to consult the books [7], [9] and [12] (see also the papers [1], [4],
[26], and others). Especially, in [4], the authors presented some recent developments in
Ulam’s type stability.

We point out that a fixed point method was used to investigate the stability of
several functional equations. Works along these lines are achieved by L. Cǎdariu, V.
Radu (see [6] and [21]), and H.A. Kenary et al ([14]). Fixed point methods were also
used to study the stability of differential equations (see [13], [17], and other related
papers).

Recently, N.P.N Ngoc ([18]) and X. Zhao ([27]) established the stability to stochas-
tic differential equations on finite intervals. In this paper, we first introduce the notion
of Hyers-Ulam-Rassias stability to the stochastic Ito-Volterra integral equation and then
prove that kind of equations on not only finite but also infinite intervals has the Ulam-
Hyers-Rassias stability.

2. Definitions and Preliminaries

Fix a probability space (Ω,F ,P) . Let ‖ · ‖2 = (E| · |2) 1
2 be a norm of the space

L2(Ω,P) . Let Wt be a Brownian motion defined in (Ω,F ,P) and let {Ft ,t ∈ I} be
the natural filtration associated to Wt , where I ⊂ R ( I = [0,T ] or I = [0,∞)).

Denote by L2
ad(I,Ω) the space of stochastic processes f (t,ω) such that each

f (t,ω) is adapted to the filtration {Ft} and E
(∫

I | f (t)|2dt
)

< ∞ .
Let A(t,s,x) and B(t,s,x) be measurable functions of s,t ∈ S and x ∈ R , where

S = {(s, t)∈ I2 : 0 � s � t} . Consider the stochastic integral equation of Volterra second
type:

Xt = ξt +
∫ t

0
A(t,s,Xs)ds+

∫ t

0
B(t,s,Xs)dWs,t ∈ I, (1)

where ξt is a Ft -adapted process.
About the existence and uniqueness of solution of Equation (1), we refer to [10]

and [20] for more detail.
In the following definitions, we introduce the stability in the sense Ulam-Hyers

and Ulam-Hyers-Rassias of the stochastic integral equation.



Differ. Equ. Appl. 10, No. 4 (2018), 397–411. 399

DEFINITION 1. Equation (1) is said to have the Ulam-Hyers stability with respect
to ε if there exists a constant Mε > 0 such that for each solution Xt ∈ L2

ad(I,Ω) of the
following inequation

‖Xt − ξt −
∫ t

0
A(t,s,Xs)ds−

∫ t

0
B(t,s,Xs)dWs‖2 � ε,∀t ∈ I, (2)

there exists a solution Ut ∈ L2
ad(I,Ω) of Equation (1) such that:

‖Xt −Ut‖2 � Mε ε,∀t ∈ I,

where Mε is a constant that does not depend on Xt .

DEFINITION 2. Equation (1) is said to have the Ulam-Hyers-Rassias stability with
respect to u(t) if there exists a constant Mu > 0 such that for each solution Xt ∈
L2

ad(I,Ω) of the following inequation

‖Xt − ξt −
∫ t

0
A(t,s,Xs)ds−

∫ t

0
B(t,s,Xs)dWs‖2 � u(t),∀t ∈ I, (3)

there exists a solution Ut ∈ L2
ad(I,Ω) of the equation (1) such that:

‖Xt −Ut‖2 � Muu(t),∀t ∈ I,

where Mu is a constant that does not depend on Xt .

In order to show that Equation (1) is stable in the sense of Ulam-Hyers and Ulam-
Hyers-Rassias, we shall need some definitions and remarks in [20].

DEFINITION 3. ([20]) Let Cu denote the space of all processes in L2
ad(I,Ω) that

satisfy the following condition

‖x(t)‖2 � Ku(t),∀t ∈ I,

where u(t) > 0 is a given continuous function and K is some positive constant.

REMARK 1. It is well known that Cu is a Banach space when a norm ‖ · ‖Cu is
defined by

‖x‖Cu = sup
t∈I

{‖x(t,ω‖2

u(t)

}
.

DEFINITION 4. ([20]) If u(t) = 1,∀t ∈ I in Definition 3, we shall denote the cor-
responding Cu by Cb .

DEFINITION 5. ([20]) Let C1,u denote the space of all processes x(t,s;ω) in C1 =
{x(t,s;ω) : ‖x‖ := sup(s,t)∈S ‖x(t,s;ω)‖2 < ∞} such that

‖x(t,s)‖2 � Ku(t)u(s),∀(s,t) ∈ S,

for some constant K > 0 and bounded positive continuous function u(t) .
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DEFINITION 6. ([20]) If u(t) = 1,∀t ∈ I in Definition 5, we shall denote the cor-
responding C1,u by C1,b .

REMARK 2. It is known that C1,u is a Banach space with the norm ‖·‖C1,u defined
by

‖x‖C1,u = sup
(s,t)∈S

{‖x(t,s)‖2

u(t)u(s)

}
.

We define the integral operators Λ1 , Λ2 as follows:

(Λ1x)(t,ω) =
∫ t

0
x(t,s;ω)ds,

(Λ2x)(t,ω) =
∫ t

0
x(t,s;ω)dWs.

REMARK 3. According to [20], with suitable conditions, (C1,u,Cu) is admissible
with respect to both Λ1 and Λ2 . It means that Λ1(C1,u) ⊂Cu and Λ2(C1,u) ⊂Cu . In
this case, there are constants K1 and K2 such that:{

‖Λ1x‖Cu � K1‖x‖C1,u ,

‖Λ2x‖Cu � K2‖x‖C1,u .

We now introduce Banach’s fixed point theory. This theorem will play an impor-
tant role in proving our main theorems.

THEOREM 1. ([3]) (Banach’s fixed point theorem) Suppose (X ,d) is a complete
metric space and T : X → X is a contraction (for some λ ∈ [0,1)), d(T (x),T (y) �
λd(x,y) for all x,y ∈ X . Also suppose that u ∈ X ,δ > 0 , and d(u,T (u)) � δ . Then
there exists a unique p ∈ X such that p = T (p) . Moreover,

d(u, p) � δ
1−λ

. (4)

In the rest of the paper, we shall use the following operator

Λ(Xt) = ξt +
∫ t

0
A(t,s,Xs)ds+

∫ t

0
B(t,s,Xs)dWs.

3. Ulam-Hyers-Rassias stability on a finite interval

In this section, we show that Equation (1) on the finite interval I = [0,T ] , under
some conditions given in [10], has Ulam-Hyers-Rassias property. Furthermore, this
equation also has a unique solution.
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THEOREM 2. (Ulam-Hyers stability) We suppose that the following assumptions
are satisfied:

a) ξt ∈Cb;

b)

{
|A(t,s,Xs)| � K(1+ |Xs|),∀0 � s � t � T,a.s;

|B(t,s,Xs)| � K(1+ |Xs|),∀0 � s � t � T,a.s;

c)

{
|A(t,s,Xs)−A(t,s,Ys)| � α1|Xs−Ys|,∀0 � s � t � T,a.s;

|B(t,s,Xs)−B(t,s,Ys)| � α2|Xs−Ys|,∀0 � s � t � T,a.s;

d) (α1T + α2
√

T ) < 1 .
Then:

i) Equation (1) has a unique solution belonging to the space Cb .
ii) Equation (1) has the Ulam-Hyers stability.

Proof. For all Xt ∈ Cb , using the triangle inequality, the estimation ‖∫ t
0 ·ds‖2 �∫ t

0 ‖ · ‖2ds and Ito isometry, we get

‖Λ(Xt)‖2 � ‖ξt‖2 +‖
∫ t

0
A(t,s,Xs)ds‖2 +‖

∫ t

0
B(t,s,Xs)dWs‖2

� ‖ξt‖2 +
∫ t

0
‖A(t,s,Xs)‖2ds+

√∫ t

0
‖B(t,s,Xs)‖2

2ds

� ‖ξt‖2 +
∫ t

0
K(1+‖Xs‖2)ds+

√∫ t

0
K2(1+‖Xs‖2)2ds

� ‖ξt‖Cb +K(T +
√

T )(1+‖Xs‖Cb),

which implies that ‖Λ(Xt)‖Cb � ‖ξt‖Cb + K(T +
√

T )(1 + ‖Xs‖Cb) . Hence, Λ(Cb) ⊂
Cb .

Furthermore, we have

‖Λ(Xt)−Λ(Yt)‖2 �

� ‖
∫ t

0
A(t,s,Xs)−A(t,s,Ys)ds‖2 +‖

∫ t

0
B(t,s,Xs)−B(t,s,Ys)dWs‖2

�
∫ t

0
‖A(t,s,Xs)−A(t,s,Ys)‖2ds+

√∫ t

0
‖B(t,s,Xs)−B(t,s,Ys)‖2

2ds

�
∫ t

0
α1‖Xs−Ys‖2ds+

√∫ t

0
α2

2‖Xs−Ys‖2
2ds

� (α1T + α2

√
T )‖Xs−Ys‖Cb ,

which implies that ‖Λ(Xt)−Λ(Xt)‖Cb � (α1T + α2
√

T )‖Xs −Ys‖Cb . By assumption
d), the mapping Λ is strictly contractive. Thus, by the Banach’s fixed point principle,
Equation (1) has a unique solution Ut ∈Cb .

Let Xt ∈Cb be a solution of Inequation (2). It means that ‖Xt −Λ(Xt)‖2 � ε,∀t ∈
[0,T ] , from which we get ‖Xt −Λ(Xt)‖Cb � ε . By the estimate (4) in Theorem 1, we
obtain

‖Xt −Ut‖Cb � ε
1−M1

, (5)
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where M1 = α1T + α2
√

T . On the other hand, we have

‖Xt −Ut‖2 � ‖Xt −Ut‖Cb ,∀t ∈ [0,T ]. (6)

Thus, ‖Xt −Ut‖2 � ε
1−M1

, which implies that Equation (1) is stable in the sense

Ulam-Hyers and completes the proof.

THEOREM 3. (Ulam-Hyers-Rassias stability) We suppose that the following as-
sumptions are satisfied:

a) ξt ∈ L2
ad([0,T ],Ω);

b)

{
|A(t,s,Xs)| � K(1+ |Xs|),∀0 � s � t � T,a.s;

|B(t,s,Xs)| � K(1+ |Xs|),∀0 � s � t � T,a.s;

c)

{
|A(t,s,Xs)−A(t,s,Ys)| � α1|Xs−Ys|,∀0 � s � t � T,a.s;

|B(t,s,Xs)−B(t,s,Ys)| � α2|Xs−Ys|,∀0 � s � t � T,a.s;

d) The function u(t) is positive and there exists a constant Nu > 0 such that

∫ t

0
u2(s)ds � Nuu

2(t),∀t ∈ [0,T ];

e)
√

2(Tα2
1 + α2

2 )Nu < 1 .
Then:

i) Equation (1) has a unique solution belonging to the space L2
ad([0,T ],Ω) .

ii) Equation (1) has the Ulam-Hyers-Rassias stability with respect to u(t) .

Proof.

For all Xt ,Yt ∈ L2
ad([0,T ],Ω) , we set

du(Xt ,Yt) = sup
t∈[0,T ]

‖Xt −Yt‖2

u(t)
< ∞.

Notice that Λ(L2
ad([0,T ],Ω)) ⊂ L2

ad([0,T ],Ω) and (L2
ad([0,T ],Ω),du) is a com-

plete metric space.

We assert that Λ is strictly contractive on L2
ad([0,T ],Ω) . Given any Xt ,Yt ∈

L2
ad([0,T ],Ω) , let MXt ,Yt ∈ [0,∞) be an arbitrary constant such that du(Xt ,Yt) � MXt ,Yt ,

from which we deduce that

‖Xt −Yt‖2 � MXt ,Yt u(t),∀t ∈ [0,T ]. (7)
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Using the inequality ‖x+y‖2
2 � 2(‖x‖2

2 +‖y‖2
2) , Schwarz inequality and Ito isom-

etry, we have the following estimates:

‖Λ(Xt)−Λ(Yt)‖2
2 �

� 2

(
‖
∫ t

0
A(t,s,Xs)−A(t,s,Ys)ds‖2

2 +‖
∫ t

0
B(t,s,Xs)−B(t,s,Ys)dWs‖2

2

)

� 2

(
T
∫ t

0
‖A(t,s,Xs)−A(t,s,Ys)‖2

2ds+
∫ t

0
‖B(t,s,Xs)−B(t,s,Ys)‖2

2ds

)

� 2

(
T
∫ t

0
α2

1‖Xs−Ys‖2
2ds+

∫ t

0
α2

2‖Xs−Ys‖2
2ds

)

� 2(Tα2
1 + α2

2 )
∫ t

0
‖Xs−Ys‖2

2ds.

Therefore,

‖Λ(Xt)−Λ(Yt)‖2
2 � 2(Tα2

1 + α2
2 )
∫ t

0
M2

Xt ,Yt
u2(s)ds

� 2(Tα2
1 + α2

2 )M2
Xt ,Yt

Nuu
2(t).

Hence,
‖Λ(Xt)−Λ(Yt)‖2 � M2MXt ,Yt u(t), (8)

where M2 =
√

2(Tα2
1 + α2

2 )Nu . It implies that du(Λ(Xt),Λ(Yt )) � M2MXt ,Yt . We may

conclude that du(Λ(Xt),Λ(Yt )) � M2du(Xt ,Yt) for any Xt ,Yt ∈ L2
ad([0,T ],Ω) . By as-

sumption e), the mapping Λ is strictly contractive on the metric space (L2
ad([0,T ],Ω),du) .

Thus, by the Banach’s fixed point principle, Equation (1) has a unique solution.
Let Xt be a solution of Inequation (3) and let Ut be the solution of Equation (1).

From ‖Xt −Λ(Xt)‖2 � u(t),∀t ∈ [0,T ] , we get du(Xt ,Λ(Xt)) � 1. By the triangle
inequality, we have

du(Xt ,Ut) � du(Xt ,Λ(Xt))+du(Λ(Xt),Ut )
� du(Xt ,Λ(Xt))+du(Λ(Xt),Λ(Ut ))
� 1+M2du(Xt ,Ut),

which implies that

du(Xt ,Ut) � 1
1−M2

. (9)

Hence,
‖Xt −Ut‖2 � Muu(t), (10)

where Mu =
1

1−M2
. It means that Equation (1) has the Ulam-Hyers-Rassias stability.

The proof of the theorem thus is complete.
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4. Ulam-Hyers-Rassias stability on an infinite interval

In this section, we investigate the stability of Equation (1) on the infinite interval
I = [0,∞) making use of some results given in the paper [20]. In the first two theorems,
we use the triangle inequality, the estimation ‖∫ t

0 ·ds‖2 �
∫ t
0 ‖ ·‖2ds and Ito isometry in

order to evaluate the L2 -norm of Λ(Xt)−Λ(Yt) . In the last two theorems, by using Re-
mark 3, we quickly obtain estimations for ‖Λ(Xt)−Λ(Yt)‖Cb and ‖Λ(Xt)−Λ(Yt)‖Cu .

THEOREM 4. (Ulam-Hyers stability) We suppose that the following assumptions
are satisfied:

a) supt�0
∫ t
0(γ(t,s)+ γ2(t,s))ds < ∞;

b) ξt ∈Cb;

c)

{
|A(t,s,Xs)| � γ(t,s)|Xs|,∀0 � s � t,a.s;

|B(t,s,Xs)| � γ(t,s)|Xs|,∀0 � s � t,a.s;

d)

{
|A(t,s,Xs)−A(t,s,Ys)| � α1γ(t,s)|Xs −Ys|,∀0 � s � t,a.s;

|B(t,s,Xs)−B(t,s,Ys)| � α2γ(t,s)|Xs −Ys|,∀0 � s � t,a.s;

e) supt�0

(
α1
∫ t
0 γ(t,s)ds+ α2

√∫ t
0 γ2(t,s)ds

)
< 1 .

Then:
i) Equation (1) has a unique solution belonging to the space Cb .
ii) Equation (1) has the Ulam-Hyers stability.

Proof.
For all Xt ∈Cb , we have

‖Λ(Xt)‖2 � ‖ξt‖2 +‖
∫ t

0
A(t,s,Xs)ds‖2 +‖

∫ t

0
B(t,s,Xs)dWs‖2

� ‖ξt‖2 +
∫ t

0
‖A(t,s,Xs)‖2ds+

√∫ t

0
‖B(t,s,Xs)‖2

2ds

� ‖ξt‖2 +
∫ t

0
γ(t,s)‖Xs‖2ds+

√∫ t

0
γ2(t,s)‖Xs‖2

2ds

� ‖ξt‖Cb +‖Xs‖Cb sup
t�0

(∫ t

0
γ(t,s)ds+

√∫ t

0
γ2(t,s)ds

)
.

Hence,

‖Λ(Xt)‖Cb � ‖ξt‖Cb +‖Xs‖Cb sup
t�0

(∫ t

0
γ(t,s)ds+

√∫ t

0
γ2(t,s)ds

)
, (11)

which implies that Λ(Cb) ⊂Cb.
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As in Theorem 2, we have

‖Λ(Xt)−Λ(Yt)‖2 �

�
∫ t

0
‖A(t,s,Xs)−A(t,s,Ys)‖2ds+

√∫ t

0
‖B(t,s,Xs)−B(t,s,Ys)‖2

2ds

�
∫ t

0
α1γ(t,s)‖Xs−Ys‖2ds+

√∫ t

0
α2

2 γ2(t,s)‖Xs−Ys‖2
2ds

� sup
t�0

(
α1

∫ t

0
γ(t,s)ds+ α2

√∫ t

0
γ2(t,s)ds

)
‖Xs−Ys‖Cb .

Hence,

‖Λ(Xt)−Λ(Yt)‖Cb � sup
t�0

(
α1

∫ t

0
γ(t,s)ds+ α2

√∫ t

0
γ2(t,s)ds

)
‖Xs−Ys‖Cb .

By assumption e), Λ is a contraction. Therefore, there exists unique solution
U(t) ∈Cb of Equation (1) such that Λ(Ut) = Ut ,t � 0.

We assume that Xt is a solution of Inequation (2). We have ‖Xt −Λ(Xt)‖2 �
ε,∀t � 0, which implies that ‖Xt −Λ(Xt)‖Cb � ε . By the estimate (4) in Theorem 1,
we obtain

‖Xt −Ut‖Cb � ε
1−M3

, (12)

where M3 = supt�0

(
α1
∫ t
0 γ(t,s)ds+ α2

√∫ t
0 γ2(t,s)ds

)
. Hence, ‖Xt−Ut‖2 � ε

1−M3
for all t � 0, which shows that the stochastic integral equation (1) is stable in the sense
of Ulam-Hyers and completes the proof.

THEOREM 5. (Ulam-Hyers-Rassias stability) We suppose that the following as-
sumptions are satisfied:

a) u(t) > 0 is a continuous function and supt�0
∫ t
0(u(s)+u2(s))ds < ∞;

b) ξt ∈Cu ;

c)

{
|A(t,s,Xs)| � u(t) [z(t,ω)+ γ(t,s)|Xs|] ,∀0 � s � t < ∞,a.s;

|B(t,s,Xs)| � u(t) [z(t,ω)+ γ(t,s)|Xs|] ,∀0 � s � t < ∞,a.s;
for 0 � s � t < ∞ , where z(s,ω) is a second order stochastic process in Cu and γ(t,s)
is a bounded continuous function defined for 0 � s � t .

d)

{
|A(t,s,Xs)−A(t,s,Ys)| � α1u(t)|Xs−Ys|,∀0 � s � t < ∞,a.s;

|B(t,s,Xs)−B(t,s,Ys)| � α2u(t)|Xs−Ys|,∀0 � s � t < ∞,a.s;

e) supt�0

(
α1
∫ t
0 u(s)ds+ α2

√∫ t
0 u2(s)ds

)
< 1.

Then:
i) Equation (1) has a unique solution belonging to the space Cu .
ii) Equation (1) has the Ulam-Hyers-Rassias stability with respect to u(t) .
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Proof. According to [20], (C1,u,Cu) is admissible with respect to both the op-
erators Λ1 and Λ2 . Condition c) implies that A(t,s,Xs) and B(t,s,Xs) are in C1,u

whenever Xt ∈Cu . Therefore, Λ(Cu) ⊂Cu .
We show that if Xt ,Yt ∈Cu then (A(t,s,Xs)−A(t,s,Ys)) and (B(t,s,Xs)−B(t,s,Ys))

belong to C1,u .
From the condition d), we get

‖A(t,s,Xs)−A(t,s,Ys)‖2

u(t)u(s)
� α1u(t)‖Xs−Ys‖2

u(t)u(s)
= α1

‖Xs−Ys‖2

u(s)
� α1‖Xs−Ys‖Cu .

Thus, A(t,s,Xs)−A(t,s,Ys) ∈C1,u .
Similarly, we have B(t,s,Xs)−B(t,s,Ys) ∈C1,u .

Hence,

{∫ t
0 A(t,s,Xs)−A(t,s,Ys)ds ∈Cu;∫ t
0 B(t,s,Xs)−B(t,s,Ys)dWs ∈Cu;

As in Theorem 4, we have the following estimates:

‖Λ(Xt)−Λ(Yt)‖2 �

�
∫ t

0
‖A(t,s,Xs)−A(t,s,Ys)‖2ds+

√∫ t

0
‖B(t,s,Xs)−B(t,s,Ys)‖2

2ds

�
∫ t

0
α1u(t)‖Xs−Ys‖2ds+

√∫ t

0
α2

2u2(t)‖Xs−Ys‖2
2ds

� α1u(t)
∫ t

0
‖Xs−Ys‖2ds+ α2u(t)

√∫ t

0
‖Xs−Ys‖2

2ds.

Therefore,

‖Λ(Xt)−Λ(Yt)‖2

u(t)
�

� α1

∫ t

0
‖Xs−Ys‖2ds+ α2

√∫ t

0
‖Xs−Ys‖2

2ds

� α1

∫ t

0

‖Xs−Ys‖2

u(s)
u(s)ds+ α2

√∫ t

0

‖Xs−Ys‖2
2

u2(s)
u2(s)ds

� sup
t�0

(
α1

∫ t

0
u(s)ds+ α2

√∫ t

0
u2(s)ds

)
‖Xs−Ys‖Cu ,

from which we deduce that

‖Λ(Xt)−Λ(Yt)‖Cu � sup
t�0

(
α1

∫ t

0
u(s)ds+ α2

√∫ t

0
u2(s)ds

)
‖Xs−Ys‖Cu .
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By assumption e), the mapping Λ is strictly contractive. Thus, by the Banach’s
fixed point principle, there exits a unique solution (say) Ut in Cu of Equation (1).

Let Xt ∈Cu be a solution of Inequation (3). We have

‖Xt −Λ(Xt)‖2 � u(t), (13)

from which, we deduce the following inequality ‖Xt −Λ(Xt)‖Cu � 1.
By the triangle inequality, we get:

‖Xt −Ut‖Cu � ‖Xt −Λ(Xt)‖Cu +‖Λ(Xt)−Λ(Ut)‖Cu �
� 1+M4‖Xt −Yt‖Cu ,

where M4 = supt�0

(
α1
∫ t
0 u(s)ds+ α2

√∫ t
0 u2(s)ds

)
. Therefore,

‖Xt −Ut‖Cu � 1
1−M4

. (14)

Thus, ‖Xt −Ut‖2 � 1
1−M4

u(t),∀t � 0, which implies that Equation (1) has the Ulam-

Hyers-Rasiass stability with respect to u(t) . This ends the proof.

REMARK 4. Theorem 2 is a consequence of Theorem 5.

In the next two theorems, we keep the assumptions in Theorem 4 and Theorem 5.
Remark 3 will be used to evaluate ‖Λ(Xt)−Λ(Yt)‖Cb and ‖Λ(Xt)−Λ(Yt)‖Cu .

THEOREM 6. (Ulam-Hyers stability) Suppose that the assumptions a), b), c) and
d) in Theorem 4 together with the following assumption are satisfied:

e) (K1α1 + K2α2)sup0�s�t<∞ γ(t,s) < 1 , where K1,K2 are the constants in Re-
mark 3.
Then:

i) Equation (1) has a unique solution belonging to the space Cb .
ii) Equation (1) has the Ulam-Hyers stability.

Proof.
With Xt ∈Cb , we get the following estimates:

‖
∫ t

0
A(t,s,Xs)ds‖2 �

∫ t

0
‖A(t,s,Xs)‖2ds

�
∫ t

0
γ(t,s)‖Xs‖2ds

� ‖Xs‖Cb sup
t�0

∫ t

0
γ(t,s)ds < ∞,
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and

‖
∫ t

0
B(t,s,Xs)dWs‖2

2 =
∫ t

0
‖B(t,s,Xs)‖2

2ds

�
∫ t

0
γ2(t,s)‖Xs‖2

2ds

� ‖Xs‖2
Cb

sup
t�0

∫ t

0
γ2(t,s)ds < ∞.

Hence,
∫ t
0 A(t,s,Xs)ds ∈Cb,

∫ t
0 B(t,s,Xs)dWs ∈Cb .

As in Theorem 4, we have Λ(Cb) ∈Cb .
From

|Λ(Xt)−Λ(Yt)| � |
∫ t

0
A(t,s,Xs)−A(t,s,Ys)ds|

+ |
∫ t

0
B(t,s,Xs)−B(t,s,Ys)dWs|,

we get that

‖Λ(Xt)−Λ(Yt)‖Cb �

� ‖
∫ t

0
A(t,s,Xs)−A(t,s,Ys)ds‖Cb +‖

∫ t

0
B(t,s,Xs)−B(t,s,Ys)dWs‖Cb

� K1‖A(t,s,Xs)−A(t,s,Ys)‖C1,b +K2‖B(t,s,Xs)−B(t,s,Ys)‖C1,b .

We also have

|A(t,s,Xs)−A(t,s,Ys)| � α1γ(t,s)|Xs −Ys|,∀0 � s � t,

then
‖A(t,s,Xs)−A(t,s,Ys)‖C1,b � α1 sup

0�s�t<∞
γ(t,s)‖Xs −Ys‖Cb .

Similarly, we obtain

‖B(t,s,Xs)−B(t,s,Ys)‖C1,b � α2 sup
0�s�t<∞

γ(t,s)‖Xs −Ys‖Cb .

Therefore,

‖Λ(Xt)−Λ(Yt)‖Cb � (K1α1 +K2α2) sup
0�s�t<∞

γ(t,s)‖Xs −Ys‖Cb . (15)

According to Theorem 1, with Ut is the solution of Equation (1) and Xt is a solution

of Inequation (3), we have the following estimate ‖Xt −Ut‖2 � ε
1−M5

, where M5 =

(K1α1 +K2α2)sup0�s�t<∞ γ(t,s) , which implies that Equation (1) has the Ulam-Hyers
stability. This completes the proof.
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THEOREM 7. (Ulam-Hyers-Rassias stability) Suppose that the assumptions a),
b), c) and d) in Theorem 5 together with the following assumption are satisfied:

e)K1α1 +K2α2 < 1 , where K1,K2 are the constants in Remark 3.
Then:

i) Equation (1) has a unique solution belonging to the space Cu .
ii) Equation (1) has the Ulam-Hyers-Rassias stability with respect to u(t) .

Proof. We have

‖Λ(Xt)−Λ(Yt)‖Cu �

� ‖
∫ t

0
A(t,s,Xs)−A(t,s,Ys)ds‖Cu +‖

∫ t

0
B(t,s,Xs)−B(t,s,Ys)dWs‖Cu .

� K1‖A(t,s,Xs)−A(t,s,Ys)‖C1,u +K2‖B(t,s,Xs)−B(t,s,Ys)‖C1,u .

Thus,
‖A(t,s,Xs)−A(t,s,Ys)‖2

u(t)u(s)
� α1

‖Xs−Ys‖2

u(s)
� α1‖Xs−Ys‖Cu .

Therefore, ‖A(t,s,Xs)−A(t,s,Ys)‖C1,u � α1‖Xt −Yt‖Cu .
Similarly, we have ‖B(t,s,Xs)−B(t,s,Ys)‖C1,u � α2‖Xt −Yt‖Cu .
We get the following estimate

‖Λ(Xt)−Λ(Yt)‖Cu � (K1α1 +K2α2)‖Xt −Yt‖Cu . (16)

By assumption e), the mapping Λ is strictly contractive. Thus, according to the
Banach’s fixed point principle, Equation (1) has a unique solution Ut ∈Cu .

Using the estimate ‖Xt −Λ(Xt)‖Cu � 1 and the triangle inequality, we get that

‖Xt −Ut‖Cu � 1
1−M6

, (17)

where Xt is a solution of Inequation (3) and M6 = K1α1 +K2α2 .

Thus, ‖Xt −Ut‖2 � 1
1−M6

u(t) , which implies that Equation (1) has the Ulam-Hyers-

Rasiass stability with respect to u(t) .

5. Examples

In this section, we consider Section 3 with the case T = 1. Remark that u(t) =
t, t ∈ [0,1] , is a function satisfying the condition d) in Theorem 3 with Nu = 1

3 .
Consider the following stochastic integral equation

Xt = X0 +
∫ t

0
μXsds+

∫ t

0
σXsdWs, (18)

where μ and σ are constants. Here, ξ and the functions A , B are given by

ξ = X0, A(t,s,x) = μx, B(t,s,x) = σx,
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The functions A and B satisfy Lipschitz condition in x with Lipschitz constants μ and
σ , respectively. In the case μ + σ < 1, all the hypotheses of Theorem 2 are satisfied.
Hence, Equation (18) has Ulam-Hyer stability and its solution is a geometry Brownian
motion given by

Xt = X0 exp

((
μ − σ2

2

)
t + σWt

)
.

We continue considering the Langevin equation (see Example 10.1.1. in [15])

Xt = X0−
∫ t

0
αXsds+

∫ t

0
βdWs, (19)

where α,β are constants.
In the case T = 1 and u(t) = t , the condition e) in Theorem 3 is equivalent to

α2
1 + α2

2 < 3
2 . It is evident that the functions A = −αx and B = β satisfy Lipschitz

condition in x with Lipschitz constant |α| . Hence, with |α| <
√

3
2 , all the assumptions

of Theorem 3 are satisfied. Thus, Equation (19) has Ulam-Hyer-Rassias stability with
respect to u(t) = t and its solution is an Ornstein-Uhlenbeck process given by

Xt = e−αtx0 + β
∫ t

0
e−α(t−s)dWs.

Acknowledgement. The authors express their sincere gratitude to the editors and
anonymous referees for the careful reading of the original manuscript and useful com-
ments which have led to a significant improvement to our original manuscript.

RE F ER EN C ES

[1] M. AKKOUCHI, A. BOUNABAT, M. H. L. RHALI, Fixed point approach to the stability of an integral
equation in the sense of Ulam-Hyers-Rassias, Annales Mathematicae Silesianae 25 (2011), 27–44.

[2] T. AOKI, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950),
64–66.

[3] J. A. BAKER, The stability of certain functional equations, Proceedings of The American Mathemat-
ical Society, Volume 112, Number 3, July 1991.

[4] N. B. BELLOUT, J. BRZDEK, K. CIEPLINSKI,On some recent developments in Ulam’s type stability,
Abstract and Applied Analysis, Volume 2012, Article ID 716936, 41 pages.

[5] L. P. CASTRO, D.A. RAMOS, Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integral
equations, Banach J. Math. Anal. 3, 1 (2009), 36–43.
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