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Abstract. In this paper, we study the existence of solutions for nonlinear second-order ordinary
differential equations and inclusions with nonlinearity depending upon the unknown function
together with its first derivative, supplemented with a new kind of integral and multi-strip bound-
ary conditions. Krasnoselskii fixed point theorem and Banach contraction mapping principle are
employed to prove the existence and uniqueness results for the single-valued boundary value
problem. In the multi-valued case the nonlinear alternative of Leray-Schauder type is the key
tool for studying convex valued right-hand side, while the case of non-convex valued right-hand
side is handled with the aid of a fixed point theorem for contractive multivalued maps due to
Covitz and Nadler. Examples are constructed for the illustration of the obtained results.

1. Introduction

In this paper, we introduce a new kind of integral and multi-strip boundary con-
ditions, which relate the distribution of the unknown function (and its derivative) on
the given arbitrary interval with a sum of sub-strips conditions defined on finite many
segments of the given domain and solve a second order nonlinear ordinary differential
equation equipped with these conditions. Precisely, in the first part of the paper, we
investigate the following single-valued boundary value problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′′(t) = f (t,u(t),u′(t)), −∞ < a < t < T < ∞,∫ T

a
u(s)ds =

m

∑
j=1

γ j

∫ η j

ξ j

u(s)ds+ λ1,

∫ T

a
u′(s)ds =

m

∑
j=1

ρ j

∫ η j

ξ j

u′(s)ds+ λ2,

(1)

where f : [a,T ]×R×R→ R is a given continuous function, a < ξ1 < η1 < ξ2 < η2 <
.. . < ξm < ηm < T, γ j,ρ j ∈ R

+ ( j = 1,2, . . . ,m) and λ1,λ2 ∈ R. In the second part of

Mathematics subject classification (2010): 34B10, 34B15, 34A60.
Keywords and phrases: Ordinary differential equations and inclusions, nonlocal, multi-strip, existence,

fixed point.

c© � � , Zagreb
Paper DEA-11-07

183

http://dx.doi.org/10.7153/dea-2019-11-07


184 B. AHMAD, A. ALSAEDI, M. ALSULAMI AND S. K. NTOUYAS

the paper, we investigate the following multi-valued boundary value problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′′(t) ∈ F(t,u(t),u′(t)), −∞ < a < t < T < ∞,∫ T

a
u(s)ds =

m

∑
j=1

γ j

∫ η j

ξ j

u(s)ds+ λ1,

∫ T

a
u′(s)ds =

m

∑
j=1

ρ j

∫ η j

ξ j

u′(s)ds+ λ2,

(2)

where F : [a,T ]×R×R → P(R) is a multivalued map, P(R) is the family of all
nonempty subsets of R.

The importance of boundary value problems is well-recognized in view of their
extensive applications in applied sciences and engineering [34]. Much of the litera-
ture on the topic deals with classical boundary conditions. However, in order to model
the physical problem involving the data available at arbitrary interior points or finite
many segments of the given domain, one needs to apply the concept of nonlocal con-
ditions. For examples and details of nonlocal nonlinear boundary value problems, see
([23, 19, 2, 31, 11, 24, 18, 17, 4, 6, 33, 5]) and the references cited therein. In case of ar-
bitrarily shaped domain, integral boundary conditions act as more realistic and practical
tools. Examples of such conditions can be found in numerous fields such as thermal and
hydrodynamic problems, undergroundwater flow, blood flow problems, chemical engi-
neering, population dynamics, thermoelasticity, etc. For a detailed account of these con-
ditions, we refer the reader to a series of papers ([9, 26, 22, 30, 25, 1, 7, 3, 29, 20, 16, 8])
and the references cited therein.

The rest of the paper is organized as follows. In Section 2, we prove an auxiliary
lemma related to the linear variant of the problem (1). The existence and uniqueness
results for the given single-valued boundary value problem together with illustrative
examples are presented in Section 3. Section 4 deals with the existence of solutions
for multi-valued boundary value problem (2) involving convex valued as well as non-
convex valued maps.

2. Preliminary result

The following lemma plays a key role in defining the solution for the boundary
value problem (1).

LEMMA 1. Let g ∈C([a,T ],R) and
[
T −a−

m

∑
j=1

γ j(η j − ξ j)
][

T −a−
m

∑
j=1

ρ j(η j − ξ j)
]
�= 0.

Then the solution of the equation u′′(t) = g(t), t ∈ [a,T ] subject to the integral and
multi-strip boundary conditions of (1) is given by

u(t) =
∫ t

a
(t − s)g(s)ds+

1
A1A2

[
− 1

2

∫ T

a

(
2χ(t)+A1(T − s)

)
(T − s)g(s)ds

+A1λ1 + λ2χ(t)+
m

∑
j=1

∫ η j

ξ j

∫ s

a

(
ρ jχ(t)+ γ jA1(s− p)

)
g(p)dpds

]
,

(3)
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where
χ(t) = A2(t−a)−A3, (4)

A1 = T −a−
m

∑
j=1

ρ j(η j − ξ j), A2 = T −a−
m

∑
j=1

γ j(η j − ξ j),

A3 =
(T −a)2

2
− 1

2

m

∑
j=1

γ j

[
(η j −a)2− (ξ j −a)2

]
.

(5)

Proof. Integrating both sides of the equation u′′(t) = g(t) from a to t , we obtain

u(t) = c1 + c2(t −a)+
∫ t

a
(t − s)g(s)ds, (6)

where c1 and c2 are unknown arbitrary real constants. Using the boundary conditions
of (1) in (6) together with the notations (4) and (5), we find that

c1 =
1

A1A2

[∫ T

a

(
A3(T − s)−A1

(T − s)2

2

)
g(s)ds+A1λ1

+
m

∑
j=1

∫ η j

ξ j

∫ s

a

(
A1γ j(s− p)−A3ρ j

)
g(p)dpds−A3λ2

]
,

c2 =
1
A1

[
−

∫ T

a
(T − s)g(s)ds+

m

∑
j=1

ρ j

∫ η j

ξ j

∫ s

a
g(p)dpds+ λ2

]
.

Inserting the values c1 and c2 in (6) yields the solution (3). The converse of the Lemma
follows by direct computation. This completes the proof. �

3. The single-valued case

Let Π = C1([a,T ],R) denote the Banach space endowed with the norm defined
by ‖u‖Π = ‖u‖+ ‖u′‖ = supt∈[a,T ] |u(t)|+ supt∈[a,T ] |u′(t)| . In view of Lemma 1, we
transform boundary value problem (1) into an equivalent fixed point problem as

u = S u, (7)

where S : Π → Π is defined by

(S u)(t) =
∫ t

a
(t− s) f (s,u(s),u′(s))ds

− 1
2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s) f (s,u(s),u′(s))ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
f (p,u(p),u′(p))dpds

+
1

A1A2

[
A1λ1 + χ(t)λ2

]
.

(8)
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Note that

(S u)′(t) =
∫ t

a
f (s,u(s),u′(s))ds+

1
A1

[ m

∑
j=1

ρ j

∫ η j

ξ j

∫ s

a
f (p,u(p),u′(p))dpds

−
∫ T

a
(T − s) f (s,u(s),u′(s))ds+ λ2

]
.

(9)

For computational convenience in the forthcoming analysis, we set

Q = (T−a)2
2 +

∣∣∣A2(T−a)−A3
A1A2

∣∣∣
[

(T−a)2
2 + ∑m

j=1 ρ j

(
(η j−a)2

2 − (ξ j−a)2

2

)
+ |λ2|

]

+
1

|A2|
[ (T −a)3

3!
+

m

∑
j=1

γ j

( (η j −a)3

3!
− (ξ j −a)3

3!

)
+ |λ1|

]
,

(10)

Q1 = (T −a)+
1

|A1|
[ (T −a)2

2
+

m

∑
j=1

ρ j

((η j −a)2

2
− (ξ j −a)2

2

)
+ |λ2|

]
. (11)

Now we are ready to present our main results. For that, we need the following
assumptions:

(H1) Let f : [a,T ]×R×R→ R be a continuous function such that

| f (t,u,u′)− f (t,v,v′)| � �
(|u− v|+ |u′− v′|), ∀t ∈ [a,T ], � > 0, u,v,u′,v′ ∈ R;

(H2) �(Q+Q1) < 1, where Q and Q1 are defined by (10) and (11) respectively.

In the first result we prove the existence of solutions for the problem (1) by apply-
ing Krasnoselskii’s fixed point theorem [32].

LEMMA 2. (Krasnoselskii’s fixed point theorem). Let Y be a closed bounded,
convex and nonempty subset of a Banach space X . Let φ1,φ2 be the operators mapping
Y into X such that
(i) φ1y1 + φ2y2 ∈ Y whenever y1,y2 ∈ Y ;
(ii) φ1 is compact and continuous; and
(iii) φ2 is a contraction mapping.
Then there exists y ∈ Y such that y = φ1y+ φ2y.

THEOREM 1. Suppose that (H1) , (H2) and the following condition hold:

(H3) There exist a function θ ∈ C([a,T ],R+) with ‖θ‖ = supt∈[a,T ] |θ (t)| such that
| f (t,u,u′)| � θ (t), ∀(t,u,u′) ∈ [a,T ]×R×R.

Then the boundary value problem (1) has at least one solution on [a,T ].

Proof. Consider Br = {u ∈ Π : ‖u‖Π � r} with r � ‖θ‖(Q+Q1) and introduce
the operators S1 and S2 on Br as

(S1u)(t) =
∫ t

a
(t− s) f (s,u(s),u′(s))ds,
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(S2u)(t) = − 1
2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s) f (s,u(s),u′(s))ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
f (p,u(p),u′(p))dpds

+
1

A1A2

[
A1λ1 + χ(t)λ2

]
.

Moreover, we have

(S1u)′(t) =
∫ t

a
f (s,u(s),u′(s))ds, t ∈ [a,T ],

(S2u)′(t) =
1
A1

[ m

∑
j=1

ρ j

∫ η j

ξ j

∫ s

a
f (p,u(p),u′(p))dpds

−
∫ T

a
(T − s) f (s,u(s),u′(s))ds+ λ2

]
, t ∈ [a,T ].

Observe that S = S1 +S2. For u,v ∈ Br , we find that

‖S1u+S2v‖ = sup
t∈[a,T ]

{∣∣∣
∫ t

a
(t− s) f (s,u(s),u′(s))ds

− 1
2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s) f (s,v(s),v′(s))ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
f (p,v(p),v′(p))dpds

+
1

A1A2

[
A1λ1 + χ(t)λ2

]∣∣∣
}

� ‖θ‖ sup
t∈[a,T ]

{ (t−a)2

2

+
∣∣∣A2(t−a)−A3

A1A2

∣∣∣
[ (T −a)2

2
+

1
2

m

∑
j=1

|ρ j[(η j −a)2− (ξ j −a)2]|+ |λ2|
]

+
1

|A2|
[ (T −a)3

3!
+

1
3!

m

∑
j=1

|γ j[(η j −a)3− (ξ j −a)3]|+ |λ1|
]}

� ‖θ‖Q

and

‖(S1u)′ +(S2v)′‖
= sup

t∈[a,T ]

{∣∣∣
∫ t

a
f (s,u(s),u′(s))ds+

1
A1

[ m

∑
j=1

ρ j

∫ η j

ξ j

∫ s

a
f (p,v(p),v′(p))dpds

−
∫ T

a
(T − s) f (s,v(s),v′(s))ds+ λ2

]∣∣∣
}

� ‖θ‖ sup
t∈[a,T ]

{
(t−a)+

1
2|A1|

[ m

∑
j=1

|ρ j[(η j −a)2− (ξ j −a)2]|+(T −a)2 +2|λ2|
]}

� ‖θ‖Q1.
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In consequence, we obtain

‖S1u+S2v‖Π � ‖θ‖(Q+Q1) � r .

Thus S1u + S2v ∈ Br , which verifies the condition (i) in Lemma 2. Using the as-
sumption (H1) and (H2) , we obtain

‖S2u−S2v‖ � sup
t∈[a,T ]

{ 1
2|A1A2|

∫ T

a

[
2|χ(t)|+ |A1|(T − s)

]
(T − s)

×
∣∣∣ f (s,u(s),u′(s))− f (s,v(s),v′(s))

∣∣∣ds

+
1

|A1A2|
m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ j|χ(t)|+ γ j|A1|(s− p)

]

×
∣∣∣ f (p,u(p),u′(p))− f (p,v(p),v′(p))

∣∣∣dpds
}

� �
(
‖u− v‖+‖u′− v′‖

){∣∣∣A2(T −a)−A3

2A1A2

∣∣∣
[
(T −a)2

+
m

∑
j=1

|ρ j[(η j −a)2− (ξ j −a)2]|
]

+
1

6|A2|
[
(T −a)3 +

m

∑
j=1

|γ j[(η j −a)3− (ξ j −a)3]|
]

� �Q
(
‖u− v‖+‖u′− v′‖

)
� �Q‖u− v‖Π,

where

Q = Q− (T −a)2

2
−

∣∣∣λ2
A2(T −a)−A3)

A1A2

∣∣∣− |λ1|
|A2| , (12)

and

‖(S2u)′ − (S2v)′‖
� sup

t∈[a,T ]

{ 1
|A1|

[ m

∑
j=1

ρ j

∫ η j

ξ j

∫ s

a

∣∣∣ f (p,u(p),u′(p))− f (p,v(p),v′(p))
∣∣∣dpds

−
∫ T

a
(T − s)

∣∣∣ f (s,u(s),u′(s))− f (s,v(s),v′(s))
∣∣∣ds

]}

� �
(‖u− v‖+‖u′− v′‖) sup

t∈[a,T ]

{ 1
2|A1|

[ m

∑
j=1

|ρ j[(η j −a)2− (ξ j −a)2]|+(T −a)2
]}

� �Q1

(
‖u− v‖+‖u′− v′‖

)
� �Q1‖u− v‖Π,

where

Q1 = Q1− (T −a)− |λ2|
|A1| . (13)

Thus we get

‖S2u−S2v‖Π � �
(
Q+Q1

)
‖u− v‖Π,
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which implies that S2 is a contraction as �
(
Q+Q1

)
< �

(
Q+Q1

)
< 1 by the condition

(H2) . Next, we show that S1 is compact and continuous. Notice that continuity of f
implies that the operator S1 is continuous. Also, S1 is uniformly bounded on Br as

‖S1u‖Π � ‖θ‖
[(T −a)2

2
+(T −a)

]
,

where we have used (H3) . Let us fix maxt∈[a,T ]×Br×Br
| f (t,u,u′)|= f , and take t1, t2 ∈

[a,T ]. Then

|(S1u)(t2)− (S1u)(t1)|
=

∣∣∣∣
∫ t1

a
[(t2 − s)− (t1− s)] f (s,u(s),u′(s)ds+

∫ t2

t1
(t2 − s) f (s,u(s),u′(s))ds

∣∣∣∣
� f

∣∣∣(t2− t1)(t1 −a)+
(t2 − t1)2

2

∣∣∣ → 0 as (t2− t1) → 0, independently of u ∈ Br ,

and

|(S1u)′(t2)− (S1u)′(t1)| � f (t2− t1) → 0 as (t2− t1) → 0, independently of u ∈ Br .

This implies that S1 is relatively compact on Br . Hence we deduce by the Arzelá-
Ascoli theorem that the operator S1 is compact on Br . Thus, all the assumptions of
Lemma 2 are satisfied. In consequence, by the conclusion of Lemma 2, the boundary
value problem (1) has at least one solution on [a,T ]. �

REMARK 1. If we interchange the role of the operators S1 and S2 in the previ-

ous theorem, then the condition (H2) is replaced with �
(T −a)

2
[T −a+2] < 1.

In the next result, we establish the uniqueness result for the problem (1) by means
of the following Banach’s contraction mapping principle.

LEMMA 3. (Banach fixed point theorem) [13] Let X be a Banach space, D ⊂ X
closed and F : D→D a strict contraction, i.e. |Fx−Fy|� k|x−y| for some k ∈ (0,1)
and all x,y ∈ D. Then F has a fixed point in D.

THEOREM 2. Assume that (H1) and (H2) are satisfied. Then there exists a unique
solution for the problem (1) on [a,T ] .

Proof. Define a set Bw = {u ∈ Π : ‖u‖Π � w} with w � (Q+Q1)K
1− �(Q+Q1)

and

supt∈[a,T ] | f (t,0,0)| = K . In the first step, we show that S Bw ⊂ Bw, where the op-
erator S is defined by (8). For any u ∈ Bw,t ∈ [a,T ] , we find that

| f (s,u(s),u′(s))| = | f (s,u(s),u′(s))− f (s,0,0)+ f (s,0,0)|
� | f (s,u,u′)− f (s,0,0)|+ | f (s,0,0))|
� �(‖u‖+‖u′‖)+K � �‖u‖Π +K � �w+K.
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Therefore, for u ∈ Bw, we obtain

‖(S u)‖ = sup
t∈[a,T ]

{∣∣∣
∫ t

a
(t− s) f (s,u(s),u′(s))ds

− 1
2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s) f (s,u(s),u′(s))ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
f (p,u(p),u′(p))dpds

+
1

A1A2

[
A1λ1 + χ(t)λ2

]∣∣∣
}

� [�w+K] sup
t∈[a,T ]

{(t −a)2

2

+
∣∣∣A2(t −a)−A3

2A1A2

∣∣∣
[
(T −a)2 +

m

∑
j=1

|ρ j[(η j −a)2− (ξ j −a)2]|+2|λ2|
]

+
1

6|A2|
[
(T −a)3 +

m

∑
j=1

|γ j[(η j −a)3− (ξ j −a)3]|+6|λ1|
]}

� [�w+K]Q,

where Q is given by (10) and

‖(S u)′‖ = sup
t∈[a,T ]

{∣∣∣
∫ t

a
f (s,u(s),u′(s))ds+

1
A1

[ m

∑
j=1

ρ j

∫ η j

ξ j

∫ s

a
f (p,u(p),u′(p))dpds

−
∫ T

a
(T − s) f (s,u(s),u′(s))ds+ λ2

]∣∣∣
}

� [�w+K] sup
t∈[a,T ]

{
(t−a)

+
1

2|A1|
[ m

∑
j=1

|ρ j[(η j −a)2− (ξ j −a)2]|+(T −a)2 +2|λ2|
]}

� [�w+K]Q1,

where Q1 is given by (11). Consequently we have

‖(S u)‖Π � [�w+K](Q+Q1) � w.

This shows that S Bw ⊂ Bw. Next we show that the operator S is a contraction. Let
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u,v ∈ Π. Then

‖S u−S v‖ = sup
t∈[0,T ]

∣∣∣S u(t)−S v(t)
∣∣∣

� sup
t∈[a,T ]

{∫ t

a
(t− s)

∣∣∣ f (s,u(s),u′(s))− f (s,v(s),v′(s))
∣∣∣ds

+
1

2|A1A2|
∫ T

a

[
2|χ(t)|+ |A1|(T − s)

]
(T − s)

×
∣∣∣ f (s,u(s),u′(s))− f (s,v(s),v′(s))

∣∣∣ds

+
1

|A1A2|
m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ j|χ(t)|+ γ j|A1|(s− p)

]

×
∣∣∣ f (p,u(p),u′(p))− f (p,v(p),v′(p))

∣∣∣dpds
}

� �
(
‖u− v‖+‖u′− v′‖

){(T −a)2

2
+

∣∣∣A2(T −a)−A3

2A1A2

∣∣∣
[
(T −a)2

+
m

∑
j=1

|ρ j[(η j −a)2− (ξ j −a)2]|
]

+
1

|6A2|
[
(T −a)3 +

m

∑
j=1

|γ j[(η j −a)3− (ξ j −a)3]|
]}

� �Q(‖u− v‖+‖u′− v′‖) � �Q‖u− v‖Π,

and

‖(S u)′ − (S v)′‖ = sup
t∈[0,T ]

∣∣∣(S u)′(t)− (S v)′(t)
∣∣∣

� sup
t∈[a,T ]

{∫ t

a

∣∣∣ f (s,u(s),u′(s))− f (s,v(s),v′(s))
∣∣∣ds

+
1

|A1|
[ m

∑
j=1

ρ j

∫ η j

ξ j

∫ s

a

∣∣∣ f (p,u(p),u′(p))− f (p,v(p),v′(p))
∣∣∣dpds

−
∫ T

a
(T − s)

∣∣∣ f (s,u(s),u′(s))− f (s,v(s),v′(s))
∣∣∣ds

]}

� �
(
‖u− v‖+‖u′− v′‖

)
sup

t∈[a,T ]

{
(t−a)

+
1

2|A1|
[ m

∑
j=1

ρ j[(η j −a)2− (ξ j −a)2]|+(T −a)2
]}

� �Q1(‖u− v‖+‖u′− v′‖) � �Q1‖u− v‖Π,

where Q and Q1 are defined by (10) and (11) respectively. In view of the foregoing
inequalities, it follows that

‖S u−S v‖Π � �(Q+Q1)‖u− v‖Π,
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which, by assumption (H2) , implies that the operator S is a contraction. Thus, by Ba-
nach’s contraction mapping principle, we deduce that the operator S has a fixed point,
which corresponds to a unique solution of the problem (1) on [a,T ]. This completes
the proof. �

EXAMPLE 1. Consider the following boundary value problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′′(t) = f (t,u(t),u′(t)), t ∈ [1,3],∫ 3

1
u(s)ds =

1
6

∫ (7/4)

(3/2)
u(s)ds+

1
3

∫ (9/4)

(2)
u(s)ds+

1
2

∫ (11/4)

(5/2)
u(s)ds+2,

∫ 3

1
u′(s)ds =

2
3

∫ (7/4)

(3/2)
u(s)ds+

19
24

∫ (9/4)

(2)
u(s)ds+

11
12

∫ (11/4)

(5/2)
u(s)ds+1.

(14)

Here a = 1, T = 3, m = 3, λ1 = 2, λ2 = 1, γ1 = 1/6, γ2 = 1/3, γ3 = 1/2, ρ1 = 2/3,
ρ2 = 19/24, ρ3 = 11/12, ξ1 = 3/2, η1 = 7/4, ξ2 = 2, η2 = 9/4, ξ3 = 5/2, η3 = 11/4,
and

f (t,u(t),u′(t)) =
1

25+2t3

[ |u|
1+ |u| +

|u′|
1+ |u′| + e−t

]
.

Observe that | f (t,u,u′)| � 1
27 [2 + e−t ] and | f (t,u,u′)− f (t,v,v′)| � �‖u− v‖Π with

� = 2
27 . Using the given values, we find that A1 = 1.40625 �= 0,A2 = 1.75 �= 0, and

A3 = 1.677083 (A1 , A2, and A3, are respectively given by (5) , Q = 6.774391,Q1 =
4.630556 (Q and Q1 are defined by (10) and (11) respectively). Further, it is easy to
find that �(Q+Q1)≈ 0.844811< 1. Hence the conclusion of Theorem 1 applies to the
boundary value problem (14) .

We also see that all the conditions of Theorem 2 are satisfied with �(Q+Q1) ≈
0.844811 < 1. Hence it follows by the conclusion of Theorem 2 that there exists a
unique solution for boundary value problem (14) on [1,3].

4. The multi-valued case

In this section we prove the existence of solutions for the multi-valued boundary
value problem (2). We consider two cases (a) Carathéodory case (convex multi-valued
maps) and (b) Lipschitz case (nonconvex multi-valued maps).

For the convenience of the reader, let us briefly describe some basic concepts of
multivalued analysis [14, 21].

A multi-valued map G : X → P(X) (i) is convex (closed) valued if G(x) is con-
vex (closed) for all x ∈ X ; (ii) is bounded on bounded sets if G(Y ) = ∪x∈Y G(x) is
bounded in X for all Y ∈Pb(X) (i.e. supx∈Y{sup{|y| : y∈G(x)}}< ∞) ; (iii) is called
upper semi-continuous (u.s.c.) on X if for each x0 ∈ X , the set G(x0) is a nonempty
closed subset of X , and if for each open set N of X containing G(x0), there exists an
open neighborhood N0 of x0 such that G(N0) ⊆ N ; (iv) is completely continuous if
G(B) is relatively compact for every B∈Pb(X); (v) is measurable if for every y∈ X ,
the function t �−→ d(y,G(t)) = inf{|y− z| : z ∈ G(t)} is measurable.
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If the multi-valued map G is completely continuous with nonempty compact val-
ues, then G is u.s.c. if and only if G has a closed graph, i.e., xn → x∗, yn → y∗,
yn ∈ G(xn) imply y∗ ∈ G(x∗).

A multi-valued map G : X → P(X) has a fixed point if there is x ∈ X such that
x ∈ G(x). The fixed point set of the multivalued operator G will be denoted by FixG.

For a normed space (X ,‖ · ‖) , we define Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded}, Pcl,b(X) = {Y ∈ P(X) : Y is closed and
bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact} and Pcp,c(X) = {Y ∈ P(X) : Y is
compact and convex}.

4.1. The Carathéodory case

In this subsection we consider the case when F has convex values and prove an
existence result based on nonlinear alternative of Leray-Schauder type for multi-valued
maps, assuming that F is Carathéodory.

DEFINITION 1. A multi-valued map F : [a,T ]×R×R → P(R) is said to be
Carathéodory if

(i) t �−→ F(t,x,y) is measurable for each x,y ∈ R ;

(ii) (x,y) �−→ F(t,x,y) is upper semicontinuous for almost all t ∈ [a,T ] ;

Further a Carathéodory function F is called L1−Carathéodory if

(iii) for each ρ > 0, there exists ϕρ ∈ L1([a,T ],R) such that

‖F(t,x,y)‖ = sup{|v| : v ∈ F(t,x,y)} � ϕρ(t)

for all x,y ∈ R with ‖x‖,‖y‖ � ρ and for a.e. t ∈ [a,T ].

For each x ∈ Π , define the set of selections of F by

SF,u := {v ∈ L1([a,T ],R) : v(t) ∈ F(t,u(t),u′(t)) a.e t ∈ [a,T ]}.
We define the graph of G to be the set Gr(G) = {(x,y) ∈ X ×Y,y ∈ G(x)} .

We need the following results to establish the main result in this subsection.

LEMMA 4. ([14, Proposition 1.2]) If G : X → Pcl(Y ) is u.s.c., then Gr(G) is a
closed subset of X ×Y ; i.e., for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if
when n → ∞ , xn → x∗ , yn → y∗ and yn ∈ G(xn) , then y∗ ∈ G(x∗) . Conversely, if G is
completely continuous and has a closed graph, then it is upper semi-continuous.

LEMMA 5. ([28]) Let X be a separable Banach space. Let F : J×X2 →Pcp,c(X)
be an L1− Carathéodory multivalued map and let Θ be a linear continuous mapping
from L1(J,X) to C(J,X) . Then the operator

Θ ◦ SF : C(J,X) → Pcp,c(C(J,X)), x �→ (Θ ◦ SF)(x) = Θ(SF,x)

is a closed graph operator in C(J,X)×C(J,X).
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LEMMA 6. (Nonlinear alternative for Kakutani maps [15]). Let E be a Banach
space, C a closed convex subset of E, U an open subset of C and 0∈U. Suppose that
F : U → Pcp,c(C) is an upper semicontinuous compact map. Then either

(i) F has a fixed point in U , or

(ii) there is a u ∈ ∂U and λ ∈ (0,1) with u ∈ λF(u).

DEFINITION 2. A function u ∈ C1([a,T ],R) is a solution of the problem (1) if∫ T

a
u(s)ds =

m

∑
j=1

γ j

∫ η j

ξ j

u(s)ds+ λ1,

∫ T

a
u′(s)ds =

m

∑
j=1

ρ j

∫ η j

ξ j

u′(s)ds+ λ2, and there

exists function v ∈ L1([a,T ],R) such that v(t) ∈ F(t,u(t),u′(t)) a.e. on [a,T ] and

u(t) =
∫ t

a
(t− s)v(s)ds− 1

2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s)v(s)ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
v(p)dpds

+
1

A1A2

[
A1λ1 + χ(t)λ2

]
.

(15)

THEOREM 3. Assume that F : [a,T ]×R×R → Pcp,c(R) is L1 -Carathéodory
satisfying assumptions:

(H4) there exist functions p ∈ C([a,T ],R+), and nondecreasing function Ψ : R
+ →

R
+ such that

‖F(t,u,u′)‖= sup{|v| : v∈F(t,u,u′)}� ‖p‖Ψ(‖u‖Π), (t,u,u′)∈ [a,T ]×R×R;

(H5) there exists a constant N > 0 such that

N
‖p‖Ψ(N)(Q+Q1)

> 1, (16)

where Q and Q1 are defined by (10) and (11) respectively.

Then the boundary value problem (1) has at least one solution on [a,T ].

Proof. To transform the problem (2) into a fixed point problem, we define an op-
erator F : Π −→ P(Π) by

F (u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ Π :

h(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ t

a
(t − s)v(s)ds− 1

2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s)v(s)ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
v(p)dpds

+
1

A1A2

[
A1λ1 + χ(t)λ2

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
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for v ∈ SF,u. It is obvious that the fixed points of F are solutions of the boundary
value problem (2).

We will show that F satisfies the assumptions of Leray-Schauder nonlinear alter-
native (Lemma 6). The proof consists of several steps.

Step 1. F (u) is convex for each u ∈ Π.

This step is obvious since SF,u is convex (F has convex values), and therefore we omit
the proof.

Step 2. F maps bounded sets (balls) into bounded sets in Π.

For the positive number r , let Br = {u : u ∈ Πand ‖u‖Π � r} be a bounded set in Π.
Then, for each h ∈ F (u),u ∈ Br , there exists v ∈ SF,u such that

h(t) =
∫ t

a
(t − s)v(s)ds− 1

2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s)v(s)ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
v(p)dpds+

1
A1A2

[
A1λ1 + χ(t)λ2

]
.

Then, for t ∈ [a,T ], we have

|h(t)| � sup
t∈[a,T ]

{∣∣∣
∫ t

a
(t − s)v(s)ds− 1

2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s)v(s)ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
v(p)dpds

+
1

A1A2

[
A1λ1 + χ(t)λ2

]∣∣∣
}

� ‖p‖Ψ(‖u‖Π)Q � ‖p‖Ψ(r)Q,

and

|h′(t)| � sup
t∈[a,T ]

{∣∣∣
∫ t

a
v(s)ds+

1
A1

[ m

∑
j=1

ρ j

∫ η j

ξ j

∫ s

a
v(p)dpds

−
∫ T

a
(T − s)v(s)ds+ λ2

]∣∣∣
}

� ‖p‖Ψ(‖u‖Π)Q1 � ‖p‖Ψ(r)Q1,

which yield

‖h‖Π � ‖p‖Ψ(r)(Q+Q1).

Step 3. F maps bounded sets into equicontinuous sets of Π.
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Let t1, t2 ∈ [a,T ] with t1 < t2 and u ∈ Br. Then, for each h ∈ F (u), we obtain

|h(t2)−h(t1)| �
∣∣∣
∫ t1

a

[
(t2− s)− (t1− s)

]
v(s)ds+

∫ t2

t1
(t2 − s)v(s)ds

∣∣∣
+

∣∣∣(t2 − t1)
A1

∣∣∣
[∫ T

a
(T − s)v(s)ds+

m

∑
j=1

ρ j

∫ η j

ξ j

∫ s

a
v(p)dpds+ λ2

]

� ‖p‖Ψ(r)
{[

(t2 − t1)(t1 −a)+
(t2− t1)2

2

]

+
1

|A1| (t2 − t1)
[ (T −a)2

2
+

m

∑
j=1

ρ j

((η j −a)2

2
− (ξ j −a)2

2

)
+ |λ2|

]}

→ 0 as (t2− t1) → 0, independently of u ∈ Br,

and

|h′(t2)−h′(t1)| �
∣∣∣
∫ t2

t1
f (s,u(s),u′(s))ds

∣∣∣
� ‖p‖Ψ(r)(t2− t1) → 0 as (t2− t1) → 0, independently of u ∈ Br.

Therefore it follows by the Ascoli-Arzelá theorem that F : Π → P(Π) is com-
pletely continuous.

Since F is completely continuous, in order to prove that it is u.s.c., it is enough
to prove that F has a closed graph. We establish it in the following step.

Step 4. F has a closed graph.

Let un → u∗,hn ∈ F (un) and hn → h∗. Then we need to show that h∗ ∈F (u∗). Asso-
ciated with hn ∈ F (un), there exists vn ∈ SF,un such that for each t ∈ [a,T ],

hn(t) =
∫ t

a
(t− s)vn(s)ds− 1

2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s)vn(s)ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
vn(p)dpds+

1
A1A2

[
A1λ1 + χ(t)λ2

]
.

Thus it suffices to show that there exists v∗ ∈ SF,u∗ such that for each t ∈ [a,T ],

h∗(t) =
∫ t

a
(t− s)v∗(s)ds− 1

2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s)v∗(s)ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
v∗(p)dpds+

1
A1A2

[
A1λ1 + χ(t)λ2

]
.

Let us consider the linear operator Θ : L1([a,T ],R) → Π given by

v �→ Θ(v)(t) =
∫ t

a
(t− s)v(s)ds− 1

2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s)v(s)ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
v(p)dpds

+
1

A1A2

[
A1λ1 + χ(t)λ2

]
.
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Oberve that ‖hn(t)−h∗(t)‖→ 0 as n → ∞, and thus, it follows by Lemma 5 that
Θ ◦ SF is a closed graph operator. Further, we have hn(t) ∈ Θ(SF,un). Since un → u∗,
we have

h∗(t) =
∫ t

a
(t− s)v∗(s)ds− 1

2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s)v∗(s)ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
v∗(p)dpds+

1
A1A2

[
A1λ1 + χ(t)λ2

]
,

for some v∗ ∈ SF,u∗ .

Step 5. We show there exists an open set U ⊆ Π with u /∈ λF (u) for any
λ ∈ (0,1) and all u ∈ ∂U.

Let λ ∈ (0,1) and u ∈ λF (u) . Then there exists v ∈ L1([0,1],R) with v ∈ SF,u

such that, for t ∈ [a,T ] , we have

u(t) = λ
∫ t

a
(t − s)v(s)ds− λ

2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s)v(s)ds

+
λ

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
v(p)dpds+

λ
A1A2

[
A1λ1 + χ(t)λ2

]
.

Then, for t ∈ [a,T ], using the computations in the first step leads to

‖u‖Π � ‖p‖Ψ(‖u‖Π)(Q+Q1),

which can alternatively be expressed as

‖u‖Π
‖p‖Ψ(‖u‖Π)(Q+Q1)

� 1.

By the condition (H5) , we can find a positive number N such that ‖u‖Π �= N . Let
us set

U = {u ∈ Π : ‖u‖Π < N}.
Note that the operator F : U → P(Π) is a compact multi-valued map, u.s.c. with
convex closed values. From the choice of U , there is no u ∈ ∂U such that u ∈ λF (u)
for some λ ∈ (0,1) . Consequently, by the nonlinear alternative of Leray-Schauder
type (Lemma 6), we deduce that F has a fixed point u ∈U which is a solution of the
problem (2). This completes the proof. �

4.2. The Lipschitz case

In this subsection we prove the existence of solutions for the problem (2) for non-
convex valued right hand side by applying a fixed point theorem for multivalued maps
due to Covitz and Nadler [12].
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Let (X ,d) be a metric space induced from the normed space (X ;‖ · ‖) . Consider
Hd : P(X)×P(X)→ R∪{∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B),sup
b∈B

d(A,b)},

where d(A,b) = infa∈A d(a;b) and d(a,B) = infb∈B d(a;b) . Then (Pcl,b(X),Hd) is a
metric space (see [27]).

DEFINITION 3. A multivalued operator N : X → Pcl(X) is called

(a) γ−Lipschitz if and only if there exists γ > 0 such that

Hd(N(x),N(y)) � γd(x,y) for each x,y ∈ X ;

(b) a contraction if and only if it is γ−Lipschitz with γ < 1.

LEMMA 7. ([12]) Let (X ,d) be a complete metric space. If N : X →Pcl(X) is a
contraction, then FixN �= /0 .

THEOREM 4. Assume that:

(A1) F : [a,T ]×R
2 →Pcp(R) is such that F(·,u,v) : [a,T ]→Pcp(R) is measurable

for each u,v ∈ R;

(A2) For almost all t ∈ [a,T ] and u1,u2,w1,w2 ∈ R we have

Hd(F(t,u1,u2),F(t,w1,w2)) � m(t)(|u1−w1|+ |u2−w2|)
with m ∈C(J,R+) and d(0,F(t,0,0)) � m(t), for almost all t ∈ [a,T ] .

Then the boundary value problem (1) has at least one solution on [a,T ] if

‖m‖(Q+Q1) < 1,

where Q and Q1 are defined by (10) and (11) respectively.

Proof. Consider the operator F defined at the begin of the proof of Theorem 3.
Observe that the set SF,u is nonempty for each u ∈ Π by the assumption (A1), so F
has a measurable selection (see Theorem III.6 [10]). Now we show that the operator F
satisfies the assumptions of Lemma 7. We show that F (u) ∈ Pcl(Π) for each u ∈ Π.
Let {un}n�0 ∈ F (u) be such that un → u (n → ∞) in Π. Then u ∈ Π and there exists
vn ∈ SF,un such that, for each t ∈ [a,T ] ,

un(t) =
∫ t

a
(t− s)vn(s)ds− 1

2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s)vn(s)ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
vn(p)dpds+

1
A1A2

[
A1λ1 + χ(t)λ2

]
.
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As F has compact values, we pass onto a subsequence (if necessary) to obtain that
vn converges to v in L1([a,T ],R). Thus, v ∈ SF,u and for each t ∈ [a,T ] , we have

un(t) → u(t) =
∫ t

a
(t− s)v(s)ds− 1

2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s)v(s)ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
v(p)dpds

+
1

A1A2

[
A1λ1 + χ(t)λ2

]
.

Hence, u ∈ F (u).
Next we show that there exists δ < 1

(
δ := ‖m‖(Q+Q1)

)
such that

Hd(F (u),F (u)) � δ‖u− u‖Π for each u, u ∈C2([a,T ],R).

Let u, u ∈C2([a,T ],R) and h1 ∈F (u) . Then there exists v1(t) ∈ F(t,u(t),u′(t)) such
that, for each t ∈ [a,T ] ,

h1(t) =
∫ t

a
(t− s)v1(s)ds− 1

2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s)v1(s)ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
v1(p)dpds+

1
A1A2

[
A1λ1 + χ(t)λ2

]
.

By (A2) , we have

Hd(F(t,u(t),u′(t)),F(t, u(t), u′(t)) � m(t)(|u(t)− u(t)|+ |u′(t)− u′(t)|)
so, there exists z ∈ F(t,u(t),u′(t)) such that

|v1(t)− z|� m(t)(|u(t)− u(t)|+ |u′(t)− u′(t)|)
for almost all t ∈ [a,T ] . Define the multifunction U : [a,T ] → P(R) by

U(t)= {z∈R : |v1(t)−z|� m(t)(|u(t)−u(t)|+ |u′(t)−u′(t)|) for almost all t ∈ [a,T ]}.
It is easy to check that the multifunction U(·)∩F(·,u(·),u′(·)) is measurable. Hence,
we can choose v2 ∈ SF,u such that

|v1(t)− v2(t)| � m(t)(|u(t)− u(t)|+ |u′(t)− u′(t)|)
for almost all t ∈ [a,T ] .

For each t ∈ [a,T ] , let us define

h2(t) =
∫ t

a
(t− s)v2(s)ds− 1

2A1A2

∫ T

a

[
2χ(t)+A1(T − s)

]
(T − s)v2(s)ds

+
1

A1A2

m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ jχ(t)+ γ jA1(s− p)

]
v2(p)dpds+

1
A1A2

[
A1λ1 + χ(t)λ2

]
.
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Thus,

|h1(t)−h2(t)| � sup
t∈[a,T ]

{∫ t

a
(t − s)|v1(s)− v2(s)|ds

+
1

2|A1A2|
∫ T

a

[
2|χ(t)|+ |A1|(T − s)

]
(T − s)|v1(s)− v2(s)|ds

+
1

|A1A2|
m

∑
j=1

∫ η j

ξ j

∫ s

a

[
ρ j|χ(t)|+ γ j|A1|(s− p)

]
|v1(p)− v2(p)|dpds

]}

� ‖m‖
(
‖u− u‖+‖u′− u′‖

){(T −a)2

2
+

∣∣∣A2(T −a)−A3

2A1A2

∣∣∣
[
(T −a)2

+
m

∑
j=1

|ρ j[(η j −a)2− (ξ j −a)2]|
]

+
1

|6A2|
[
(T −a)3 +

m

∑
j=1

|γ j[(η j −a)3− (ξ j −a)3]|
]}

� ‖m‖Q(‖u−u‖+‖u′ − u′‖) � ‖m‖Q‖u− u‖Π,

|h′1(t)−h′2(t)| � sup
t∈[a,T ]

{∫ t

a
|v1(s)− v2(s)|ds+

1
|A1|

[ m

∑
j=1

ρ j

∫ η j

ξ j

∫ s

a
|v1(p)− v2(p)|dpds

−
∫ T

a
(T − s)|v1(s)− v2(s)|ds

]}

� ‖m‖
(
‖u− u‖+‖u′− u′‖

)
sup

t∈[a,T ]

{
(t −a)

+
1

2|A1|
[ m

∑
j=1

ρ j[(η j −a)2− (ξ j −a)2]+ (T −a)2
]}

� ‖m‖Q1(‖u− u‖+‖u′ − u′‖) � ‖m‖Q1‖u− u‖Π.

Hence,
‖h1−h2‖Π � ‖m‖(Q+Q1)‖u− u‖Π.

Analogously, interchanging the roles of u and u , we obtain

Hd(F (u),F (u)) � ‖m‖(Q+Q1)‖u− u‖Π.

So F is a contraction. Therefore, it follows by Lemma 7 that F has a fixed point
x which is a solution of (2). This completes the proof. �
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