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Abstract. In this study, we consider a reaction-diffusion competition model describing popula-
tion dynamics of two competing species and the interactions between them in a heterogeneous
environment. The main goal of this paper is to study the impact of different diffusion strategies
on the outcome of competition between two populations while the first species is distributed ac-
cording to the resource function and the second population is following the regular dispersion.
We focus on how directed diffusion in the habitat influences selection. The two populations differ
in the diffusion strategies they employ as well as in their environmental intensities. We establish
the main results which determine that the competing species may either coexist, or one of them
may bring the other to extinction. If higher carrying capacity is incorporated for the directed
dispersal population then competitive exclusion of a regularly diffusing population is inevitable.
We consider the case when both populations manage to coexist and there is an ideal free pair
with identical carrying capacity, and the relevant coexistence equilibrium is a global attractor.
The coexistence solution is also presented by showing the influence of diffusion coefficients. In
a series of examples, the results have been justified and illustrated numerically.

1. Introduction

The modeling of populations is always an important issue in ecology and economy,
for instance, to describe the well-known feature such as competitive and cooperative
interactions. Reaction-diffusion problems are broadly used as models for spatial effects
in ecology. In the past two decades, the Lotka-Volterra model with standard diffusion
was considered in the literature [1, 2, 3, 4, 5, 6, 7, 8, 9] and references therein.

In [3], Dockery et al. presented an interesting illustrative example of the fact that
combined effects of diffusion and spatial heterogeneity is that the slower diffuser always
prevails. They considered n phenotypes of species in a heterogeneous environment
competing for the resources. If there are only two phenotypes, they proved that the
slower diffuser will evolve for the reaction-diffusion model:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ut = d1Δu(t,x)+u(t,x)(K(x)−u(t,x)− v(t,x)), t > 0, x ∈ Ω,

vt = d2Δv(t,x)+ v(t,x)(K(x)−u(t,x)− v(t,x)), t > 0, x ∈ Ω,

∇u ·n = ∇v ·n = 0, x ∈ ∂Ω,

u(0,x) = u0(x), v(0,x) = v0(x), x ∈ Ω.

(1.1)
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Here u(t,x), v(t,x) represent the population densities of two competing species which
are therefore assumed to be no-negative, with corresponding migration rates being
d1, d2 , respectively. The function K(x) represents their common local resource dis-
tribution function. The phenotype with the least dispersal coefficient has an evolutional
advantage in the perception that the only stable steady state is the one where only this
phenotype survives [3].

Hutson et al. [10] considered a reaction-diffusion system for two competing
species, much like Dockery et al. in [3], and the model is defined as follows:

⎧⎨
⎩

ut = d1Δu(t,x)+u(t,x)(K(t,x)−u(t,x)− v(t,x)), t > 0, x ∈ Ω,

vt = d2Δv(t,x)+ v(t,x)(K(t,x)−u(t,x)− v(t,x)), t > 0, x ∈ Ω,

∇u ·n = ∇v ·n = 0, x ∈ ∂Ω,

u(0,x) = u0(x), v(0,x) = v0(x), x ∈ Ω.

(1.2)

Compared to other studies, they found that in a spatially heterogeneous and tem-
porally constant environment, the faster diffuser will suffer defeat [10]. It is also shown
that if the environment varies in both space and time, the faster diffuser can be selected
[10].

The regular diffusion combined with the directed movement along the environ-
mental gradient corresponds to the reaction-diffusion-advection model introduced in
[2, 11, 12, 13]. If the ratio of the advection to the diffusion coefficients tends to infinity
then the solutions tend to be ideally distributed for such models. Dispersal design in
[12, 14] introduced by R. S. Cantrell et al. was based on the notion of the ideal free dis-
tribution, i.e. such distribution that any movement in an ideally distributed system will
decrease the fitness of moving individuals. An ideal free distribution can be obtained
for a particular finite rate of advection in the model considered by R. S. Cantrell et al.
in [13, 15] and this result was recently investigated and improved by I. Averill et al. in
[11].

In this paper, we consider Lotka-Volterra models of two interacting species com-
peting in a heterogeneous environment for the same basic resources (water, food, shel-
ter, territory, light or any means to maintain life and reproduce), and the diffusion sce-
nario is different for each individuals. In this model, the movement of one species is
affected by diffusion towards a smooth distribution function introduced in [16] by E.
Braverman and L. Braverman (for the case P(x) ≡ K(x)) and for P ≡ K has an evolu-
tionary advantage [17, 18, 19], while the other species is dispersing regularly.

In reality, species rarely move completely randomly. It is plausible that diffusion
combined with directed movement along environmental gradients will help the species
maximize its chances of survival [11, 13, 15]. The problem in this paper is addressed in
the following way: considering two different diffusion strategies, the first species is dis-
persing according to a distribution function P(x) whereas the second one is dispersing
regularly. Also the carrying capacity of the two species can be different with no-flux
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boundary conditions:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = d1Δ
(

u(t,x)
P(x)

)
+u(t,x)(K(x)−u(t,x)− v(t,x)) , t > 0, x ∈ Ω,

vt = d2∇ · 1
P(x)∇v(t,x)+ v(t,x)(γ(x)−u(t,x)− v(t,x)) , t > 0, x ∈ Ω,

∇(u/P) ·n = ∇v ·n = 0, x ∈ ∂Ω,

u(0,x) = u0(x) > 0, v(0,x) = v0(x) > 0, x ∈ Ω.

(1.3)

For positive functions K(x) and γ(x) , we assume that either K(x) �≡ γ(x) on a nonempty
open domain or K(x) ≡ γ(x) for any x ∈ Ω . The density K(x) ≡ γ(x) is the maximum
number of populations that the habitat can backing and is known as the environmen-
tal carrying capacity. The functions u(t,x) and v(t,x) represent the two competing
species with corresponding diffusion rates d1 > 0 and d2 > 0, respectively. Here Ω is
a bounded region in R

n while the smooth boundary is ∂Ω , n denotes the unit normal
vector on ∂Ω . The meaning of the no-flux boundary condition is that no individuals
cross the boundary. We have the following important assumption throughout the paper:

• smooth distribution function P(x) �≡ const .

If P(x) ≡ K(x) then this type of dispersal (1.3) has the ideal free distribution as a
solution for single species [17]. In [18], a system of equations was investigated by L.
Korobenko and E. Braverman for a variety of growth functions when P(x) ≡ K(x) ≡
γ(x) in (1.3). They established that the population distributed by the carrying capacity
only survives in a heterogeneous environment. The effects of higher or lower carrying
capacity are shown by E. Braverman et al. in [19] for multiple growth functions when
P(x) ≡ K(x) �≡ γ(x) . It is proven that the species incorporated with higher carrying
capacity is in advantageous situation. In mathematical biology, the asymptotic behavior
of solutions of (1.3) has been extensively investigated to understand coexistence and
spatial segregation of two species (see [1, 20] and references therein).

The paper is organized as follows. In section 2, we establish some auxiliary results
for species u and v , and these will be used in the rest of the paper. Equilibrium analysis
of semi-trivial steady states and coexistence solutions are investigated in section 3.

The characterization K(x) �≡ γ(x) in the reaction parts of (1.3) is referred to as the
crowdiness effect, and the two populations have similar physical characteristics. Section
3.1 deals with the effects of crowding tolerance. This section illustrates the dynamics
for different distributions of P(x), K(x) and γ . In this case:

1. Let P(x) �≡ const , P(x) �≡K(x) �≡ const and γ ≡ const . If K(x)< γ in a nonempty
open domain, the semi-trivial equilibrium (0,v∗) of (1.3) is globally asymptoti-
cally stable, independently of diffusion coefficients.

2. If P(x) ≡ K(x) �≡ const , γ ≡ const and K(x) < γ for any x ∈ Ω , the semi-trivial
equilibrium (0,γ) of (1.3) is globally asymptotically stable.

3. If P(x) ≡ K(x) �≡ const , γ ≡ const and K(x) > γ for any x ∈ Ω , the semi-trivial
equilibrium (K(x),0) of (1.3) is globally asymptotically stable.
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The key ingredients of Section 3.2 are to consider the heterogeneous environment
with different carrying capacities. In this case, we show that the regularly dispersing
population goes to extinction if higher crowdiness tolerance is incorporated with the
directed diffusion species.

1. If P(x) and K(x) are proportional, and K(x) > γ(x) in a nonempty open domain
then the semi-trivial equilibrium (u∗(x),0) is globally asymptotically stable.

2. For non-constant K(x) > γ(x) , where γ(x)≡ βP(x), β > 0, the semi-trivial equi-
librium (u∗(x),0) of (1.3) is globally asymptotically stable if G < H , where G
and H are defined in (3.9) and (3.10), respectively.

3. If either K(x) > γ(x) > P(x) or K(x) > P(x) > γ(x) in a nonempty open do-
main then the semi-trivial equilibrium (0,v∗(x)) is unstable. Coexistence is also
possible (see numerical results in section 4).

Section 3.3 explores the case when the resource function K(x) and the directed
distribution function P(x) are linearly independent. In this case, if K(x) ≡ αP(x)+ c
then there exists a unique ideal free pair (αP(x),c) which is globally asymptotically
stable for arbitrary constant diffusion coefficients. In addition, if P(x) ≡ K(x)+ c , i.e.
P(x) > K(x)≡ γ(x) in a nonempty open domain, the semi-trivial steady state (u∗(x),0)
is globally asymptotically stable.

In Section 3.4, we study the effects of diffusion coefficients by considering spa-
tially distributed arbitrary functions. Here, we construct that if d1, d2 < d∗ then there
exists a stable coexistence solution which is globally asymptotically stable. Section
4 involves numerical simulations supporting the theoretical results. Finally, Section 5
presents summary of the results.

2. Preliminary results

First, we describe the following results established in [18, 19] when the first
species is distributing ideally while the other is diffusing randomly. In that case, it
is observed that only the first population survives since the corresponding species is
dispersing along the carrying capacity.

LEMMA 1. [18][Theorem 7] If γ(x) ≡ P(x) ≡ K(x) �≡ const then the steady state
(K(x),0) of (1.3) is globally asymptotically stable.

LEMMA 2. [19][Theorem 6] Suppose that P(x) ≡ K(x) �≡ const . If K(x) � γ(x)
in a nonempty open domain then the steady state (K(x),0) of (1.3) is globally asymp-
totically stable.

Next few results correspond to the stationary solution of the monotone dynamical
system (1.3) considering the case of single-species. The function u∗(x) is the solution
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of the following single-species boundary value problem when the species v is identi-
cally equal to zero in (1.3)

d1Δ
(

u∗(x)
P(x)

)
+u∗(x)(K(x)−u∗(x)) = 0, x ∈ Ω, ∇(u∗/P) ·n = 0, x ∈ ∂Ω. (2.1)

Similarly, in absence of species u , let v∗(x) is the unique positive solution of the
equation

d2∇ · 1
P(x)

∇v∗(x)+ v∗(x)(γ(x)− v∗(x)) = 0, x ∈ Ω, ∇v∗ ·n = 0, x ∈ ∂Ω. (2.2)

In future, we will need the following four auxiliary results for further analysis of
(1.3).

PROPOSITION 1. [21, 22] Let u∗(x) be a positive solution of (2.1), P(x) �≡ const
and P(x) and K(x) are linearly independent then∫

Ω

P(x)(u∗(x)−K(x)) dx > 0. (2.3)

PROPOSITION 2. [17] Suppose that P(x) �≡ const , P(x)/K(x) �≡ const and let
u∗(x) is the unique positive solution of (2.1). Then∫

Ω

K(x)(K(x)−u∗(x))dx > 0. (2.4)

In addition, if K(x) � γ(x) in a nonempty open domain then∫
Ω

γ(x)(γ(x)−u∗(x))dx > 0, unless u∗(x) ≡ γ(x). (2.5)

Proof. The positivity of (2.4) was shown in [17]. To prove (2.5), integrating (2.1)
over Ω using the boundary conditions in (2.1) and we obtain

0 =
∫
Ω

u∗(x)(K(x)−u∗(x))dx �
∫
Ω

u∗(x)(γ(x)−u∗(x))dx, when K � γ.

Now, integrating the equality

u∗(x)(γ(x)−u∗(x)) = (u∗(x)− γ(x)+ γ(x))(γ(x)−u∗(x)),

over Ω , we have∫
Ω

γ(x)(γ(x)−u∗(x))dx �
∫
Ω

(γ(x)−u∗(x))2 dx > 0, unless u∗(x) ≡ γ(x) ≡ K(x).

If u∗(x) ≡ γ(x) ≡ K(x) then d1Δ
(

K(x)
P(x)

)
≡ 0, x ∈ Ω in (2.1), which is true only when

cP(x) ≡ K(x) , a contradiction with the assumption P(x)/K(x) �≡ const . �
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PROPOSITION 3. Suppose that P(x) �≡ const , γ(x) �≡ const and v∗(x) is a positive
solution of (2.2) then ∫

Ω

v∗(x)dx >

∫
Ω

γ(x)dx. (2.6)

We also have the following integral inequality from (2.2) for non-constant γ(x)∫
Ω

γ(x)(γ(x)− v∗(x))dx > 0. (2.7)

Moreover, if K(x) � γ(x) in a nonempty open domain then∫
Ω

K(x)(K(x)− v∗(x)) dx > 0. (2.8)

Proof. Since v∗(x) > 0 for all x ∈ Ω , dividing the first equation of (2.2) by v∗(x) ,
we obtain

d2∇ · 1
P(x)

∇v∗(x)
v∗(x)

+ (γ(x)− v∗(x)) = 0, x ∈ Ω, ∇v∗ ·n = 0, x ∈ ∂Ω. (2.9)

Integrating (2.9) over the domain Ω using the boundary conditions in (2.9), we have

d2

∫
Ω

1
P(x)

|∇v∗|2
v∗2 dx+

∫
Ω

(γ(x)− v∗(x)) dx = 0.

Thus, ∫
Ω

(v∗(x)− γ(x)) dx =
∫
Ω

d2

P(x)
|∇v∗|2
v∗2 dx > 0, unless v∗ ≡ γ ≡ const.

But, v∗(x) ≡ γ(x) is not a solution of (2.2) since γ(x) �≡ const . Hence
∫
Ω

v∗(x)dx >∫
Ω

γ(x)dx . Rest of the statements (2.7) and (2.8) are justified similarly to proposition

2. �
We now turn our attention to models that describe the dynamics of a system of two

variables.

PROPOSITION 4. Assume that (us(x),vs(x)) is a strictly positive stationary solu-
tion of (1.3) and K(x) � γ(x) in a nonempty open domain, then∫

Ω

K(x)(K(x)−us− vs) dx �
∫
Ω

(us + vs−K(x))2 dx. (2.10)

The integral (2.10) is strictly positive unless us + vs ≡ K . Changing K(x) by γ(x) , we
obtain∫

Ω

γ(x)(γ(x)−us− vs) dx �
∫
Ω

(us + vs− γ(x))2 dx > 0, unless us + vs ≡ γ(x).
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Proof. Assume that there exists a stationary positive solution (us(x),vs(x)) and
the equilibrium (us(x),vs(x)) of (1.3) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d1Δ
(

us(x)
P(x)

)
+us(x)(K(x)−us(x)− vs(x)) = 0, x ∈ Ω,

d2∇ ·
(

1
P(x)∇vs(x)

)
+ vs(x)(γ(x)−us(x)− vs(x)) = 0, x ∈ Ω,

∇(us/P) ·n = ∇vs ·n = 0, x ∈ ∂Ω.

(2.11)

Adding the first two equations of (2.11) and integrating over Ω using boundary condi-
tions in (2.11), we obtain∫

Ω

us (K−us− vs) dx+
∫
Ω

vs (γ −us− vs) dx = 0.

If K(x) � γ(x) in a nonempty open domain Ω then (K−us − vs) � (γ −us − vs) and
we have ∫

Ω

(us + vs)(K−us− vs) dx � 0. (2.12)

From (2.12), we obtain the following
∫
Ω

K(x)(K(x)−us− vs) dx �
∫
Ω

(us + vs−K(x))2 dx > 0,

unless us + vs ≡ K and the proof follows.
The result of the second part is justified similarly and it is noticed that the result is also
valid for constant γ . �

3. Analysis of steady state solutions

In the following, we will state the results on stability of two semi-trivial steady
states of the system (1.3), which are (u∗(x),0) , (0,v∗(x)) , when only one species sur-
vives. If there exists a stationary equilibrium (us(x),vs(x) that is neither a trivial nor a
semi-trivial equilibrium and satisfy us > 0, vs > 0, then we have a coexistence equilib-
rium.

We let

Ip := α
∫
Ω

P(x)dx > 0, α > 0, (3.1)

Ik :=
∫
Ω

K(x)dx > 0, (3.2)

and we will use these notations in further analysis.
In the process of stability analysis of the steady states, first we consider the trivial

equilibrium of (1.3).
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LEMMA 3. [17, 19] The trivial equilibrium (0,0) of (1.3) is unstable.

If (us(x),vs(x)) is any stationary coexistence solution of (1.3) then the eigenvalue
problem of the second equation of (1.3) around (u∗(x),0) is

d2∇ · 1
P

∇φ(x)+ φ(x)(γ(x)−u∗(x)) = σφ(x), x ∈ Ω, ∇φ ·n = 0, x ∈ ∂Ω. (3.3)

3.1. Heterogeneous vs homogeneous environment

We now study the case when the species u is living in a heterogeneous environ-
ment whereas the surroundings of species v are homogeneous. In this case, we will
prove that if somehow the regularly diffusing population carries higher carrying ca-
pacity than that of directed dispersing population, only the random diffuser survives.

LEMMA 4. Suppose that P(x) , K(x) are non-constant, P(x) �≡ K(x) and γ(x) ≡
const . If 0 < K(x) < γ in a nonempty open domain then the semi-trivial steady state
(u∗(x),0) of (1.3) is unstable.

Proof. The principal eigenvalue [2] of (3.3) around (u∗(x),0) is defined as

σ1 = sup
φ �=0,φ∈W1,2

⎡
⎣−d2

∫
Ω

1
P(x)

|∇φ |2 dx+
∫
Ω

φ2 (γ −u∗(x)) dx

⎤
⎦/∫

Ω

φ2 dx.

For constant eigenfunction φ(x) =
√γ = const , the principal eigenvalue σ1 be-

comes

σ1 �

∫
Ω

γ (γ −u∗(x)) dx∫
Ω

γ dx
.

Next, integrating the first equation of (2.1) over Ω and applying K(x) < γ , we obtain

0 =
∫
Ω

u∗(x)(K(x)−u∗(x)) dx <

∫
Ω

u∗(x)(γ −u∗(x)) dx

such that
∫
Ω

γ (γ −u∗(x)) dx >
∫
Ω

(γ −u∗(x))2 dx > 0 and this integral inequality ex-

cludes γ = u∗ . Hence, σ1 is positive, and the semi-trivial steady state (u∗(x),0) of
(1.3) is unstable. �

LEMMA 5. Let P(x) �≡ const , P(x) �≡ K(x) and γ(x) ≡ const . If 0 < K(x) < γ in
a nonempty open domain then the system (1.3) has no coexistence solution (us(x),vs(x)) .
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Proof. Assume that there exists a positive solution (us(x),vs(x)) in (1.3) and we
will prove that there is a contradiction. For positive (us(x),vs(x)) and for K(x) < γ in
a nonempty open domain, the proposition 4 is generating the following integral

∫
Ω

γ (γ −us− vs) dx >

∫
Ω

(us + vs− γ)2 dx > 0, (3.4)

which excludes the possibility of us + vs ≡ γ .
For us + vs �≡ γ , let us define the eigenvalue problem of the second equation of (1.3)

d2∇ · 1
P(x)

∇φ(x)+ φ(x)(γ −us− vs) = σφ(x), x ∈ Ω, ∇φ ·n = 0, x ∈ ∂Ω, (3.5)

and the corresponding principal eigenvalue is

σ1 = sup
φ �=0,φ∈W1,2

⎡
⎣−∫

Ω

d2

P(x)
|∇φ |2 dx+

∫
Ω

φ2 (γ −us− vs) dx

⎤
⎦
/∫

Ω

φ2 dx.

Choosing φ(x) =
√γ = const , and designating Ig =

∫
Ω

γ dx , the principal eigenvalue is

given by

σ1 � 1
Ig

∫
Ω

γ (γ −us− vs) dx.

Thus, σ1 > 0 using (3.4), a contradiction with the zero principal eigenvalue of (3.5)
with a positive principal eigenfunction. �

For monotone dynamical system (1.3) if all equilibrium is unstable except one
then we can conclude that the remaining steady state is globally asymptotically stable
[23, 24]. Next theorem shows that the left semi-trivial equilibrium of (1.3) is glob-
ally asymptotically stable regardless of the initial functions. The result is drawing by
Lemma 3, Lemma 4, and using Lemma 5.

THEOREM 1. Suppose that P(x) �≡ const , P(x) �≡ K(x) and γ(x) ≡ const . If 0 <
K(x) < γ in a nonempty open domain then the semi-trivial equilibrium (0,v∗) of (1.3)
is globally asymptotically stable. Notationally, v∗ → γ as t → ∞ .

The following two remarks are verified similarly to Theorem 1.

REMARK 1. Suppose that P(x) �≡ const and K(x)≡ const, γ(x)≡ const . If K � γ
in a nonempty open domain then the semi-trivial equilibrium (0,γ) of (1.3) is globally
asymptotically stable.

REMARK 2. Suppose that P(x) ≡ K(x) �≡ const , and γ(x) ≡ const . If K(x) < γ
in a nonempty open domain then the semi-trivial equilibrium (0,γ) of (1.3) is globally
asymptotically stable.
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Next, let us discuss the case K(x) > γ for any x ∈ Ω , where P(x) ≡ K(x) �≡ const
and γ ≡ const . In that case, the Lemma 2, established in [19] is still valid and the steady
state (K(x),0) is globally asymptotically stable while K(x) > γ ; the environment of the
second species is homogeneous. In a light observation, we can conclude the following
result as a remark.

REMARK 3. Let P(x) ≡ K(x) �≡ const , and γ(x) ≡ const . If P(x) > γ in a
nonempty open domain then the semi-trivial equilibrium (P(x),0) of (1.3) is the global
attractor.

LEMMA 6. Let P(x) �≡ const , K(x) ≡ const and γ(x) ≡ const . If K > γ in a
nonempty open domain then the semi-trivial steady state (0,γ) of (1.3) is unstable.

Proof. Let us study the eigenvalue problem of (1.3) around (0,γ) and we obtain

d1Δ
(

φ(x)
P(x)

)
+ φ(x)(K− γ) = σφ(x), x ∈ Ω, ∇(φ/P) ·n = 0, x ∈ ∂Ω. (3.6)

According to the variational characterization of the eigenvalues [2], the principal eigen-
value of (3.6) is given by

σ1 = sup
φ �=0,φ∈W1,2

⎡
⎣−d1

∫
Ω

|∇(φ/P)|2 dx+
∫
Ω

φ2

P
(K− γ) dx

⎤
⎦/∫

Ω

φ2

P
dx.

By considering the eigenfunction φ(x) = P(x) , the principal eigenvalue σ1 becomes

σ1 � α
Ip

∫
Ω

P(x)(K− γ) dx,

where Ip is defined in (3.1). Since (K − γ) > 0 in a nonempty open domain then the
integral

∫
Ω

P(x)(K− γ) dx > 0. Thus, σ1 is positive, and the proof is achieved. �

However, other results can not be extended to this case. In particular, the advantage
of directed diffusion is not sufficient to provide competitive exclusion in the case when
the other species has a higher carrying capacity.

3.2. Reflection of the non-homogeneous environmental influence

At this stage, let us explore the case when both populations are stayed in a hetero-
geneous environment as well as their carrying capacities are different.

LEMMA 7. Assume that P(x), K(x) and γ(x) are non-constant and K(x)≡αP(x)+
b, α > 0, b > 0 . If K(x) � γ(x) for any x ∈ Ω and K(x) < γ(x) in a nonempty open
domain, the semi-trivial equilibrium (u∗(x),0) of (1.3) is unstable.
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Proof. The principal eigenvalue [2] of (3.3) around (u∗(x),0) is defined as

σ1 = sup
φ �=0,φ∈W1,2

⎡
⎣−d2

∫
Ω

1
P(x)

|∇φ |2 dx+
∫
Ω

φ2 (γ(x)−u∗(x)) dx

⎤
⎦/∫

Ω

φ2 dx

� sup
φ �=0,φ∈W1,2

⎡
⎣−d2

∫
Ω

1
P(x)

|∇φ |2 dx+
∫
Ω

φ2 (K(x)−u∗(x)) dx

⎤
⎦/∫

Ω

φ2 dx

where K(x) � γ(x) for any x ∈ Ω .
For eigenfunction φ(x)=

√
K(x)−αP(x)=

√
b= b∗ , and designating Ib=

∫
Ω
b∗2dx ,

the principal eigenvalue σ1 becomes

σ1 � 1
Ib

∫
Ω

(K(x)−αP(x))(K(x)−u∗(x)) dx

=
α
Ib

∫
Ω

P(x)(u∗(x)−K(x)) dx+
1
Ib

∫
Ω

K(x)(K(x)−u∗(x)) dx.

The first integral is non-negativeby proposition 1, while the second is positive by propo-
sition 2. Hence, σ1 is positive, and the semi-trivial steady state (u∗(x),0) of (1.3) is
unstable. �

LEMMA 8. Let P(x), K(x) and γ(x) be non-constant. If K(x) � γ(x) for any
x ∈ Ω and K(x) > γ(x) in a nonempty open domain then the equilibrium (0,v∗(x)) of
(1.3) is unstable for any of the following cases:
(a) γ(x) ≡ αP(x)+ c, c > 0, α > 0 ,
(b) K(x) ≡ αP(x), α > 0 , and
(c) γ(x) ≡ βP(x), β > 0 .

Proof. Let us study the eigenvalue problem of (1.3) around (0,v∗(x)) and we
obtain

d1Δ
(

φ(x)
P(x)

)
+ φ(x)(K(x)− v∗(x)) = σφ(x), x ∈ Ω, ∇(φ/P) ·n = 0, x ∈ ∂Ω. (3.7)

The principal eigenvalue of (3.7) is given by

σ1 = sup
φ �=0,φ∈W1,2

⎡
⎣−d1

∫
Ω

|∇(φ/P)|2 dx+
∫
Ω

φ2

P
(K(x)− v∗(x)) dx

⎤
⎦

/∫
Ω

φ2

P
dx.

Considering φ(x) =
√

αP(x) and inviting Ip drafted in (3.1), it is observe that the
principal eigenvalue is not less than

σ1 � 1
Ip

∫
Ω

αP(x)(K(x)− v∗(x)) dx. (3.8)
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Case (a): If K(x) � γ(x) , the principal eigenvalue in (3.8) becomes

σ1 � 1
Ip

∫
Ω

αP(x)(γ(x)− v∗(x)) dx

=
1
Ip

∫
Ω

(αP(x)− γ(x)+ γ(x))(γ(x)− v∗(x)) dx

=
1
Ip

∫
Ω

γ(x)(γ(x)− v∗(x)) dx+
c
Ip

∫
Ω

(v∗(x)− γ(x)) dx, γ(x) ≡ αP(x)+ c.

Since the first term is non-negative using (2.7) and the second is positive by proposition
3. Thus, σ1 is positive, and this completes the proof.
Case (b): If K ≡ αP, α > 0 then σ1 in (3.8) implies

σ1 � 1
Ip

∫
Ω

K(x)(K(x)− v∗(x)) dx.

Next, if K(x) � γ(x) for any x ∈ Ω then the integral
∫
Ω

K(x)(K(x)− v∗(x)) dx � 0 by

using (2.8) in proposition 3 and the inequality is strict when K �≡ const �≡ v∗ . Hence
σ1 > 0 and the proof follows.
Case (c): By considering the fact γ(x) ≡ βP, β > 0, the structure of σ1 becomes

σ1 � α
β Ip

∫
Ω

γ(x)(K(x)− v∗(x)) dx � α
β Ip

∫
Ω

γ(x)(γ(x)− v∗(x)) dx, K � γ.

The positivity of σ1 is proved as a consequence of the inequality (2.7). �

LEMMA 9. Let P(x) , K(x) and γ(x) be non-constant. If K(x) ≡ αP(x), α > 0
and K(x) � γ(x) in some nonempty open domain then (1.3) has no coexistence solution.

Extending the proof of Lemma 5, we can easily prove the result of Lemma 9 and so,
the proof is omitted.

The equilibrium (0,v∗) is unstable by Lemma 8(b) and there is no coexistence
solution according to Lemma 9 if K(x) ≡ αP(x), α > 0 and K(x) � γ(x) . Then for
monotone dynamical system (1.3), we have the following result.

THEOREM 2. Let P(x) , K(x) and γ(x) be non-constant. If K(x)≡ αP(x), α > 0
and K(x) � γ(x) in a nonempty open domain, the semi-trivial equilibrium (u∗,0) of
(1.3) is globally asymptotically stable.

Define the integral G for non-proportional functions K(x) and γ(x)

G := βd1

∫
Ω

∣∣∣∣∣
√

K
γ

∣∣∣∣∣
2

dx > 0, β > 0. (3.9)
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and
H :=

∫
Ω

K(x)(K(x)−us− vs)dx. (3.10)

In the next result, it is also shown that H is positive if K(x) > γ(x) .

LEMMA 10. Assume that K(x) and γ(x) are non-constant, γ(x) ≡ βP(x), β > 0
and K(x) > γ(x) in a nonempty open domain. If there exist K and γ such that H > G
then the problem (1.3) has no coexistence solution (us(x),vs(x)) .

Proof. Assume that (us,vs) is a coexistence equilibrium of (1.3) and for a station-
ary solution (us,vs) with γ(x) ≡ βP(x) , the system (1.3) can be written as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
βd1Δ

(
us(x)
γ(x)

)
+us(x)(K(x)−us(x)− vs(x)) = 0, x ∈ Ω,

βd2∇ ·
(

1
γ(x) ∇vs(x)

)
+ vs(x)(γ(x)−us(x)− vs(x)) = 0, x ∈ Ω,

∇(us/γ) ·n = ∇vs ·n = 0, x ∈ ∂Ω.

(3.11)

Introducing the inequality K(x) > γ(x) in (3.11) and according to the proposition 4, we
obtain

H :=
∫
Ω

K(x)(K(x)−us− vs) dx > 0, (3.12)

such that us(x)+ vs(x) �≡ K(x) .
Next, we define the eigenvalue problem of the first equation of (3.11)

βd1Δ
(

φ(x)
γ(x)

)
+ φ(x)(K(x)−us− vs) = σφ(x), x ∈ Ω,∇(φ/γ) ·n = 0, x ∈ ∂Ω.

(3.13)
The principal eigenvalue σ1 of (3.13) is defined by

σ1 = sup
φ �=0,φ∈W1,2

⎡
⎣−βd1

∫
Ω

|∇(φ/γ)|2 dx+
∫
Ω

φ2

γ
(K(x)−us− vs) dx

⎤
⎦
/∫

Ω

φ2

γ
dx.

Substituting φ(x) =
√

K(x)γ(x) , and using the notation Ik defined in (3.2), σ1 becomes

σ1 � 1
Ik

⎡
⎣−βd1

∫
Ω

|
√

K/γ|2 dx+
∫
Ω

K(x)(K(x)−us− vs) dx

⎤
⎦ =

−G+H
Ik

.

But, the integral H is positive by (3.12) and the numerator of σ1 is strictly positive as
long as H > G and the proof follows. �

Lemmata 8(c) and 10 due to the following result when K(x) > γ(x) , γ(x)/P(x) ≡
const and H > G .
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THEOREM 3. Assume that K(x) and γ(x) are non-constant, γ(x)≡ βP(x), β > 0
and K(x) > γ(x) in a nonempty open domain. If there exist K and γ such that H > G
then the semi-trivial equilibrium (u∗,0) of (1.3) is globally asymptotically stable.

Proof. The instability of (0,v∗) is proven in Lemma 8(c) and we need not to im-
pose the additional condition H > G . Next, it is possible to find some functions K and
γ such that K > γ and we have H > G , which shows that there are no stable positive
equilibrium solutions. The trivial equilibrium is unstable and still valid. Therefore, for
a monotone dynamical system (1.3), the remaining equilibrium (u∗,0) is the global
attractor regardless of initial densities. �

PROPOSITION 5. Suppose that P(x) �≡ const , γ(x) �≡ const , P(x) � γ(x) for any
x ∈ Ω and v∗(x) is a positive solution of (2.2) then∫

Ω

P(x)(P(x)− v∗(x)) dx �
∫
Ω

(v∗(x)−P(x))2 dx > 0. (3.14)

Proof. Since v∗(x) is the solution of (2.2), integrating the first equation in (2.2)
over Ω and for P(x) � γ(x) , we obtain

0 =
∫
Ω

v∗(x)(γ(x)− v∗(x)) dx �
∫
Ω

v∗(x)(P(x)− v∗(x)) dx. (3.15)

Integrating v∗(x)(P(x)− v∗(x)) = (v∗(x)−P(x))(P(x)− v∗(x)) + P(x)(P(x)− v∗(x))
over Ω using the integral inequality (3.15), we obtain

0 �
∫
Ω

(v∗(x)−P(x))(P(x)− v∗(x))+
∫
Ω

P(x)(P(x)− v∗(x)) .

Consequently, ∫
Ω

P(x)(P(x)− v∗(x)) dx �
∫
Ω

(v∗(x)−P(x))2 dx > 0, (3.16)

as long as v∗ �≡ P . In (3.16), equality is attained only for γ(x) ≡ P(x) and v∗(x) ≡
γ(x) ≡ P(x) is not a solution of (2.2) while P(x) ≡ γ(x) �≡ const . �

LEMMA 11. Assume that P(x), K(x) and γ(x) are non-constant and γ(x)� P(x)�
K(x) for any x ∈ Ω . Then the semi-trivial steady state (0,v∗(x)) of (1.3) is unstable.

Proof. The analysis is straightforward for γ(x) = P(x) = K(x) and so we are inter-
ested to consider the case γ(x) � P(x) < K(x) only. By considering the eigenfunction
φ(x) =

√
αP(x) , recall the principal eigenvalue of Lemma 8 and we obtain

σ1 � 1
Ip

∫
Ω

αP(x)(K(x)− v∗(x)) dx

>
α
Ip

∫
Ω

P(x)(P(x)− v∗(x)) dx, where P(x) < K(x). (3.17)
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But if P(x) � γ(x) for any x ∈ Ω then we have∫
Ω

P(x)(P(x)− v∗(x)) dx > 0, (3.18)

since the integral (3.18) is extracted from (3.14) in proposition 5 when γ(x) � P(x) for
all x ∈ Ω and hence σ1 > 0. �

3.3. An ideal free pair and significance of directed movements

The following portion presents the main steps in analyzing the stability of the
unique coexistence steady state for non-proportional positive functions P(x) and K(x)
when the two resource distribution functions are identical, i.e. K(x) ≡ γ(x) . We will
also show that the species distributed along a directed function is the sole winner inde-
pendently of the diffusion coefficients.

Lemmata 7 and 8(a) due to the following result as long as K(x) ≡ γ(x) .

LEMMA 12. Let P(x) and K(x) are non-constant. If K(x) ≡ γ(x) ≡ αP(x) +
c, α > 0 , c > 0 , both semi-trivial steady states (u∗(x),0) and (0,v∗(x)) of (1.3) are
unstable.

LEMMA 13. If P(x) �≡ const and K(x) ≡ γ(x) ≡ αP(x)+ c, α > 0 , c > 0 then
the system (1.3) has a unique positive coexistence equilibrium (us,vs) ≡ (αP(x),c) .

Proof. For a stationary solution (us,vs) , the system (1.3) can be written as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d1Δ
(

us(x)
P(x)

)
+us(x)(K(x)−us− vs) = 0, x ∈ Ω,

d2∇ ·
(

1
P(x)∇vs(x)

)
+ vs(x)(K(x)−us− vs) = 0, x ∈ Ω,

∇(us/P) ·n = ∇vs ·n = 0, x ∈ ∂Ω.

(3.19)

By direct substitution it is easy to check that (αP(x),c) is a coexistence stationary solu-
tion of (3.19). To show the uniqueness, assume that (us,vs) is a coexistence equilibrium
of (3.19) except (αP(x),c) .

Since vs > 0, dividing the second equation of (3.19) by vs and integrating over
Ω , we obtain ∫

Ω

(us + vs−K(x)) dx =
∫
Ω

d2

P
|∇vs|2

v2
s

dx � 0. (3.20)

The equality is attained in (3.20) only when vs ≡ const .
Let us prove that us(x)+ vs(x) ≡ K(x) .
Assume to the contrary that us(x)+ vs(x) �≡ K(x) and, we define the eigenvalue

problem

d1Δ
(

φ(x)
P(x)

)
+φ(x)(K(x)−us− vs) = σφ(x), x∈ Ω,∇(φ/P) ·n = 0, x∈ ∂Ω. (3.21)
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The principal eigenvalue σ1 of (3.21) is defined by

σ1 = sup
φ �=0,φ∈W1,2

⎡
⎣−d1

∫
Ω

|∇(φ/P)|2 dx+
∫
Ω

φ2

P
(K(x)−us− vs) dx

⎤
⎦

/∫
Ω

φ2

P
dx

and σ1 � 1
Ip

∫
Ω

αP(K(x)−us− vs) dx by substituting φ(x) =
√

αP(x) , where Ip is as

in (3.1). Thus

σ1 � 1
Ip

∫
Ω

(αP(x)−K(x)+K(x))(K(x)−us− vs) dx

=
c
Ip

∫
Ω

(us + vs−K(x)) dx+
1
Ip

∫
Ω

K(x)(K(x)−us− vs) dx > 0

using (3.20) and by proposition 4. The zero principal eigenvalue of (3.21) contradicts
σ1 > 0 and thus us(x)+ vs(x) ≡ K(x) .

Now, if us(x) + vs(x) ≡ K(x) then by the Maximum Principle [25], ws = const
and vs = const in (3.19), where us/P = ws . Therefore, P(x)ws +vs ≡K(x) ≡ αP(x)+
c implies that ws = α and vs = c . Hence the unique solution of (1.3) is (us,vs) =
(αP(x),c) . �

For non-constant arbitrary functions K(x) and P(x) , if K(x) ≡ γ(x) ≡ αP(x)+
c, c > 0, α > 0, both semi-trivial equilibria (u∗,0) and (0,v∗) of (1.3) are unstable
by Lemma 12. Uniqueness of coexistence solution is verified in Lemma 13. Hence
the following result shows that the coexistence equilibrium (us,vs) of (1.3) remains
globally asymptotically stable regardless of the initial functions.

THEOREM 4. Let P(x) �≡ const and K(x) ≡ γ(x) ≡ αP(x) + c, c > 0 , α > 0 .
Then there exists a unique coexistence solution (us,vs) ≡ (αP(x),c) of (1.3) which is
globally asymptotically stable.

If K(x) ≡ P(x) then (K(x),0) is globally asymptotically stable and it was proven
in [18], (see Lemma 1 for details). Now, we will observe that for small variation of
distribution function, P(x) and carrying capacity, K(x) , how the dynamic changes. If
0 < P(x) < K(x) and there is a small deviation between the carrying capacity and the
distribution function, mathematically, P(x) ≡ K(x)− ε, ε > 0, we have the following
remark.

REMARK 4. Let P(x) �≡ const , K(x) ≡ γ(x) and P(x) ≡ K(x)− ε , ε is positive
and small enough. Then the unique coexistence solution (P(x),ε) of (1.3) is globally
asymptotically stable.

If the distribution function P(x) > K(x) in a nonempty open domain, different
scenarios can be happened and the following analysis is of particular interest for that
type of case.
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Let us define

c∗ =

∫
Ω

K(x)(K(x)− v∗(x)) dx∫
Ω

(v∗(x)−K(x)) dx
, (3.22)

and

C∗ =

∫
Ω

K(x)(K(x)−us− vs) dx∫
Ω

(us + vs−K(x)) dx
. (3.23)

If K(x) ≡ γ(x) , it is noted that c∗ > 0 by proposition 3 and C∗ is positive by equation
(2.10) in proposition 4 and by equation (3.20) in Lemma 13.

LEMMA 14. Let P(x) be non-constant and K(x) ≡ γ(x) . If P(x) ≡ K(x)+ c for
any x ∈ Ω such that 0 < c < c∗ , where c∗ is defined in (3.22) then the equilibrium
(0,v∗(x)) of (1.3) is unstable.

Proof. It is remarked that K(x) �≡ const is not a solution of single species equation
of v as long as P ≡ K + c, c > 0. Next, let us study the eigenvalue problem of (1.3)
around (0,v∗(x)) and we obtain

d1Δ
(

φ(x)
P(x)

)
+φ(x)(K(x)− v∗(x)) = σφ(x), x ∈ Ω, ∇(φ/P) ·n = 0, x ∈ ∂Ω. (3.24)

According to the variational characterization of the eigenvalues [2], the principal eigen-
value of (3.7) is given by

σ1 = sup
φ �=0,φ∈W1,2

⎡
⎣−d1

∫
Ω

|∇(φ/P)|2 dx+
∫
Ω

φ2

P
(K(x)− v∗(x)) dx

⎤
⎦

/∫
Ω

φ2

P
dx.

Considering φ(x) = P(x) and inviting Ip drafted in (3.1), it is observe that the principal
eigenvalue is at least

σ1 � α
Ip

∫
Ω

P(x)(K(x)− v∗(x)) dx

=
α
Ip

∫
Ω

(K(x)+ c)(K(x)− v∗(x)) dx, since P ≡ K + c

=
α
Ip

⎡
⎣∫

Ω

K(x)(K(x)− v∗(x)) dx+ c
∫
Ω

(K(x)− v∗(x)) dx

⎤
⎦ .

Finally, we have to show that σ1 > 0 and it is true only when c < c∗ =

∫
Ω

K(K−v∗)dx∫
Ω

(v∗−K)dx

and c∗ is strictly positive by proposition 3. Thus, σ1 is positive, and the semi-trivial
equilibrium (0,v∗(x)) of (1.3) is unstable. �
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LEMMA 15. Let P(x) be non-constant and K(x) ≡ γ(x) . If P(x) ≡ K(x)+ c for
any x ∈ Ω such that 0 < c < C∗ , where C∗ is defined in (3.23) then the system (1.3)
has no coexistence solution (us(x),vs(x)) .

Proof. According to proposition 4 if K(x) ≡ γ(x) then we have
∫
Ω

K(x)(K(x)−us− vs) dx =
∫
Ω

(K(x)−us− vs)
2 dx > 0, unless us + vs ≡ K(x)

and similarly from equation (3.20) in Lemma 13, we have the following integral

∫
Ω

(us + vs−K(x)) dx =
∫
Ω

d2

P
|∇vs|2

v2
s

dx > 0, unless vs = const.

Let us assume that there is a coexistence solution (us(x),vs(x)) of (1.3) and we
study the eigenvalue problem around (us(x),vs(x)) and obtain

d1Δ
(

φ(x)
P(x)

)
+φ(x)(K(x)−us− vs) = σφ(x), x∈Ω, ∇(φ/P) ·n = 0, x∈ ∂Ω. (3.25)

The principal eigenvalue of (3.25) is given by

σ1 = sup
φ �=0,φ∈W1,2

⎡
⎣−d1

∫
Ω

|∇(φ/P)|2 dx+
∫
Ω

φ2

P
(K(x)−us− vs) dx

⎤
⎦
/∫

Ω

φ2

P
dx.

First, it is assume that us + vs �≡ K(x) . Choosing φ(x) = P(x) , using the equality
P ≡ K + c and inviting Ip drafted in (3.1), it is observe that the principal eigenvalue is

σ1 � α
Ip

∫
Ω

P(x)(K(x)−us− vs) dx

=
α
Ip

∫
Ω

(K(x)+ c)(K(x)−us− vs) dx

=
α
Ip

⎡
⎣∫

Ω

K(x)(K(x)−us− vs) dx+ c
∫
Ω

(K(x)−us− vs) dx

⎤
⎦ .

It is seen that the principal eigenvalue σ1 > 0 as long as c < C∗ =

∫
Ω

K(K−us−vs)dx∫
Ω

(us+vs−K)dx

and C∗ > 0 by equation (2.10) in proposition 4 and by equation (3.20) in Lemma 13.
Therefore, there is no coexistence of (1.3) and the equilibrium (us(x),vs(x)) is unstable.

However, if us + vs = K(x) , by the Maximum Principle us = P(x) and vs = c =
const (see e.g. [26, Theorem 3.6]) such that us + vs = P(x)+ c = K(x) , a contradiction
of our assumption, P(x) = K(x)+ c . �
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Note that once the trivial equilibrium is a repeller, there is no coexistence equi-
librium and one of the two semi-trivial equilibrium solutions is unstable, the other one
is globally asymptotically stable. Using Lemmata 14 and 15, we have the following
result.

THEOREM 5. Let P(x) be non-constant and K(x) ≡ γ(x) . If P(x) ≡ K(x) + c
for any x ∈ Ω then there exists a positive constant c∗ = min{c∗, C∗} such that for
0 < c < c∗ , the semi-trivial equilibrium (u∗(x),0) of (1.3) is globally asymptotically
stable.

3.4. Influence of diffusion coefficients

The outline of main steps in this section is to analyze the stability of semi-trivial
equilibria and coexistence steady state due to the effects of diffusion coefficients in a
heterogeneous environment, γ(x) ≡ K(x) .

For simplicity, we let

Eu =
∫
Ω

K(x)(K(x)−u∗(x)) dx, (3.26)

and
Ev =

∫
Ω

K(x)(K(x)− v∗(x)) dx. (3.27)

We know that both Eu and Ev are positive according to (2.4) and (2.7), respectively.

LEMMA 16. Suppose that P(x) and K(x) are linearly independent, where K(x)≡
γ(x) . Then there exists positive d∗

2 such that for d2 < d∗
2 , the semi-trivial steady state

(u∗(x),0) of (1.3) is unstable.

Proof. The principal eigenvalue of (3.3) is defined as

σ1 = sup
φ �=0,φ∈W1,2

[−d2

∫
Ω

1
P(x)

|∇φ |2 dx+
∫
Ω

φ2(K(x)−u∗(x))dx]/
∫
Ω

φ2 dx.

Choosing the eigenfunction φ(x) =
√

K(x) , and using the notation Ik defined in (3.2),
we have

σ1 � 1
Ik

⎡
⎣−d2

∫
Ω

P−1|∇
√

K(x)|2 dx+
∫
Ω

K(x)(K(x)−u∗(x))dx

⎤
⎦ . (3.28)

Using the integral mathematics Eu from (3.26) and constant d2 < d∗
2 , we obtain

σ1 >
1
Ik

⎡
⎣−d∗

2

∫
Ω

P−1|∇
√

K(x)|2 dx+Eu

⎤
⎦ > 0

for d2 < d∗
2 = Eu/

∫
Ω

P−1|∇√
K(x)|2 dx . �
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LEMMA 17. Suppose that K(x) ≡ γ(x) and P(x) and K(x) are linearly indepen-
dent. Then there exists positive d∗

1 such that for d1 < d∗
1 , the semi-trivial steady state

(0,v∗(x)) of (1.3) is unstable.

Proof. The proof is similar to the proof of Lemma 16. It is verified that d1 < d∗
1 =

Ev/
∫
Ω
|∇√

(K/P)|2 dx , where the integral Ev is defined in (3.27). �

THEOREM 6. Let P(x) and K(x) are linearly independent, where K(x) ≡ γ(x) .
Then there exists positive d∗ = min{d∗

1 , d∗
2} such that for d1 < d∗ and d2 < d∗ , there

is at least one stable coexistence equilibrium of (1.3).

Proof. Recalling d∗
2 from Lemma 16 and d∗

1 from Lemma 17, it is justified that

d∗ = min{d∗
1 , d∗

2} = min

⎧⎨
⎩Ev/

∫
Ω

|∇
√

(K/P)|2 dx, Eu/

∫
Ω

P−1|∇
√

K(x)|2 dx

⎫⎬
⎭

and then both semi-trivial equilibria (u∗,0) and (0,v∗) are unstable for d1,d2 < d∗ . �

4. Numerical examples

The goal of this section is to present the numerical simulations results that com-
plement theoretical results of previous sections. The simulations reported competitive
exclusion, the elimination of one species by another and coexistence of both popula-
tions.

The following example illustrates that the coexistence equilibrium (P(x),c) known
as ideal free pair [11, 13] is attracting when t → ∞ .

EXAMPLE 1. In this example, we consider d1 = d2 = 0.25, P = 1.7+ cos(πx) ,
K = 2.5+ cos(πx) with K = P+ c, c = 0.8 > 0. It is seen in Fig. 1 that the solution
tends to the ideal pair (P(x),c) regardless of initial values, a confirmation of Theorem
4.

In the next example, we consider a non-constant positive function h(x) for any
x∈Ω due to K(x)−P(x) such that K(x)−P(x)= h(x)> 0. Rewrite K = P+h into the
form K = αP+β , where α > 0 and 0 �≡ β ∈ R . If β > 0 then the unique coexistence
solution is globally asymptotically stable, see corresponding Theorem 4 and Remark 4.
However, if β < 0 then the equilibrium (u∗,0) is globally asymptotically stable.

EXAMPLE 2. Consider (1.3) with d1 = d2 = 0.25 and K = γ = 2.5+ cos(πx) . If
P = 1.5+0.5cos(πx) then K−P = h = 1.0+0.5cos(πx) > 0 for any x ∈ Ω . Rewrite
K − P = h and we have K = 2P− 0.5, where α = 2, β = −0.5 and it is seen in
Fig. 2 (left) that (u∗,0) is globally asymptotically stable. The fact is αP = 2P =
3+ cos(πx) > K in some nonempty open domain.
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Figure 1: Average solutions of (1.3) (left) and stationary solution at t = 300 (right) for
P = 1.7+ cos(πx) , K = γ = 2.5+ cos(πx) , d1 = d2 = 0.25, Ω = (0,1) , (u0,v0) =
(0.1,2.5) with K−P = c , where c = 0.8.
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Figure 2: Average solutions of (1.3) for K = γ = 2.5 + cos(πx) , d1 = d2 = 0.25,
(u0,v0) = (0.1,0.7) , Ω = (0,1) with (left) P = 1.5 + 0.5cos(πx) and (right) P =
1.0+0.5cos(πx) .

Similarly, if we consider P = 1.0+0.5cos(πx) then K−P = h > 0 for all x ∈ Ω .
Rearranging K , we obtain K = 2P+0.5, where α = 2, β = 0.5 and the Fig. 2 (right)
displayed that the coexistence solution is globally asymptotically stable. Fig. 2 (right)
showed that both semi-trivial equilibriums (u∗,0) and (0,v∗) are unstable while at least
one coexistence solution is stable, (see Lemmata 7, 8(a) and Lemma 12 for details).

Next, let us illustrate the fact that the small difference of two carrying capacities
provide coexistence steady states with equal diffusion rates.

EXAMPLE 3. Consider (1.3) with d1 = d2 = 1 and K > P, γ > P for any x ∈ Ω .
If there is a small deviation between K and γ , i.e. |K(x)− γ(x)| < ε , here ε � 0.1,
then there is a attractive coexistence solution as t → ∞ .

In Fig. 3, K > γ for any x ∈ Ω and vice-versa in Fig. 4 with fixed P = 1.45+
cos(πx) . Both figures 3 and 4 displayed that all positive solutions converge to the
coexistence equilibrium (us,vs) independently of non-negative and non-trivial initial
values.
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Figure 3: Average solutions of (1.3) for P = 1.45 + cos(πx) , K = 2.5 + cos(πx) ,
γ = 2.4 + cos(πx) , d1 = d2 = 1, Ω = (0,1) with initial values (u0,v0) =
(0.02,0.7),(0.7,0.7),(0.7,0.02) .
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Figure 4: Average solutions of (1.3) for P = 1.45 + cos(πx) , K = 2.4 + cos(πx) ,
γ = 2.5 + cos(πx) , d1 = d2 = 1, Ω = (0,1) with initial values (u0,v0) =
(0.01,0.5),(0.5,0.5),(0.5,0.01) .

5. Summary and discussion

The dynamics of a reaction-diffusion-advection model for two competing species
in a spatially heterogeneous environment were studied in [11, 13]. It was assumed that
the two species have the same population dynamics but different diffusion parameters:
both species diffuse by regular dispersion and advection along the environmental gradi-
ent, with different diffusion coefficients and advection rates. It was exhibited that both
competitive exclusion and coexistence are possible. In this paper, we investigated a
reaction-diffusion system that models two competing species concerning the dynamics
of different diffusion strategies: one disperses along a smooth distribution function and
the other diffuses randomly.

We have characterized the global dynamics of the problem in a heterogeneous (or
homogeneous) environment and established several results. If the carrying capacity
coincides with the directed distribution function then there is no coexistence solution,
and the strategy leading to the ideal free distribution has the advantage of evolutionary
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stability. The population diffusing with directed function survives whereas the regular
diffusing population goes to extinction if the ratio of the resource function and the
distribution function is constant, supporting the results established in [17].

We have illustrated the outcome of the combined effort of competition and collab-
oration, independently of the constant diffusion coefficients. Cooperative event occurs
for arbitrary functions and a unique ideal free solution is globally asymptotically stable
independently of the diffusion coefficients. If the environment is homogeneous then
the random diffusion strategy is advantageous for universal (common) carrying capac-
ity and the corresponding population has an evolutionary advantage.

We have studied the system (1.3) involving the case of two different carrying ca-
pacities. With a heterogeneous environment, if P and K(> γ) are proportional then
the global stability is guaranteed for the species driven by the distribution function. For
various resource functions, the first population faces extinction if the second popula-
tion stays in a homogeneous environment and carries higher carrying capacity. When
either K(x) > P(x) > γ(x) or K(x) > γ(x) > P(x) holds in a nonempty open domain,
it is proved that the semi-trivial steady state (0,v∗(x)) is unstable. However, only these
conditions are not enough to analyze the coexistence of both populations and it remains
an open problem to be investigated. When it comes to the effect of crowdedness, il-
lustrated via numerical result, the outcome is that there are competitive exclusions and
that coexistence is possible if deviation between K and γ is small enough. If both K(x)
and γ(x) are greater than P(x) for any x ∈ Ω and |K− γ| < ε , where ε > 0 and small
enough, then the coexistence equilibrium (us(x),vs(x)) is globally asymptotically sta-
ble.
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