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OPTIMAL CONTROL TO A

FACULTATIVE MUTUALISTIC MODEL WITH HARVESTING

LIANCHENG WANG AND MIN WANG ∗

(Communicated by P. L. Simon)

Abstract. In this article, we propose a general facultative mutualistic model with harvesting and
investigate an associated optimal control problem. The sufficient and the necessary conditions
for the existence of the optimal control are studied. Numerical simulations are carried out to
show the efficiency of the proposed control.

1. Introduction

Mutualism (or interspecific cooperation) is the way two organisms of different
species exist in a relationship in which each individual fitness benefits from the activity
of the other [19]. Well-known mutualistic examples include the relationship between
ungulates and bacteria within their intestines, the relationship between land plants and
fungi, the relationship between pollinators and plants, etc.. Based on the closeness of
the association, the mutualism may be classified as facultative or obligate: a species is
classified as facultative when it benefits from the interaction yet can survive on its own,
or obligate when it requires an interaction as it is not able to survive without the other
species. The reader is referred to [13,19] and the references therein for more details on
the mutualism.

The mutualistic interactions strongly influence the structure and dynamics of eco-
logical systems and have become an important focus of research of ecological theory.
Various mathematical models have been proposed to describe the mutualistic systems.
The reader is referred to [9, 10, 17] for a review of differential equation (DE) models
of mutualistic systems. The dynamical behaviors of DE mutualistic models have been
widely investigated. Vargas-De-León [16] proposed and studied the global stabilities
of two facultative mutualistic systems. Georgescu and Zhang [7] considered a more
general system and studied its global asymptotic stabilities under various assumptions
by using several Lyapunov functionals. Later, Georgescu et. al [8] further applied those
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Lyapunov functionals to study the global stabilities of three types of mutualistic mod-
els where conclusions in [7] fail to apply. Recently, Maxin et. al [13] proposed a more
general class of models of facultative mutualism defined by⎧⎪⎨

⎪⎩
dx1

dt
= r1x1(a1(x1)− f1(x1,x2)),

dx2

dt
= r2x2(a2(x2)− f2(x1,x2)),

(1.1)

where x1 and x2 represent the populations of two species, and r1 and r2 are the cor-
responding species’ intrinsic growth rates, respectively. Functions a1,a2 and f1, f2 are
positive functions representing growth and self-limiting of the two species. System
(1.1) covers a broad set of existing facultative mutualistic models. A detailed analysis
for System (1.1) was performed in [13]. In particular, conditions were established that
guarantee the boundedness of the solutions as well as the existence of a unique coexis-
tence equilibrium. It was also proved therein that the unique coexistence equilibrium is
globally asymptotically stable whenever it exists.

The harvesting models of mutualistic systems have been extensively studied as
well. For instance, Legović and Geček [12] considered the maximum sustainable yield
for a mutualistic system with harvesting. Chattopadhyay [3] studied a problem of har-
vesting two facultative species in the presence of a predator species which feeds on
both the facultative prey species. The local stability and optimal harvesting policy were
investigated both theoretically and numerically. The reader is referred to [12,3] and the
references therein for more results on the harvesting problems.

All the works cited above considered the long-term behaviors of the models, i.e.
the state when t → ∞ . It is well known that, in practice, it is often required to reach
certain goals within a finite time interval. One example is to maintain the population
of the mutualists at desired levels over a fixed time interval [0,T ] . This type of prob-
lems should be viewed as short-term problems comparing to the well studied long-term
problems cited above. It is obvious that artificial interference is often needed to achieve
the short-term goals. The harvesting models seem a feasible solution to describe the
mutualistic systems under such artificial interference.

In addition, it is natural to consider what is the “best” way to interfere the system
to achieve the desired goal. Clearly, this question may be answered by optimal control
theory with appropriate objective functionals. As an important application of varia-
tional calculus, optimal control theory has been successfully applied in various areas
such as engineering, ecosystems, economics, life sciences, epidemiology, etc.; see for
example [1, 2, 5, 6, 11, 20]. For the mutualistic problems, the optimal control theory
has been used to develop the optimal harvesting policy that maximizes the profits of
harvesting agencies without any harmful effects on the system, see for example [3,15],
and to identify the trees’ optimal investment strategy in a system consisting of host trees
and ectomycorrhizal fungi [14].

In this paper, we study the general facultative mutualistic system (1.1) with har-
vesting. The desired population levels for both species are proposed. We assume that
the harvesting will start once the species population is over a pre-defined desired level.
In particular, we will use the optimal control theory to study how to maintain (control)
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the population of a facultative mutualistic system at the desired level over a finite pe-
riod of time with the minimum cost. Because of the broad coverage of System (1.1),
our model here obviously can be applied to many existing models as special cases.

This paper is organized as follows: after this introduction, the harvesting model,
the optimal control problem, and the main results are present in Section 2. Examples
are given in Section 3 to show the use of the proposed control. All the proofs are given
in Section 4. The last section, Section 5, contains a summary and conclusions.

2. Optimal control problem and main results

We consider a control problem on a fixed interval [0,T ] based on the facultative
mutualistic model (1.1) with harvesting defined by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= F1(x1,x2)−u1η(x1−N1)x1,

dx2

dt
= F2(x1,x2)−u2η(x2−N2)x2,

x1(0) = x1 > 0,

x2(0) = x2 > 0,

(2.1)

where F1,F2 : R
2 → R are given by

{
F1(x1,x2) = r1x1(a1(x1)− f1(x1,x2)),
F2(x1,x2) = r2x2(a2(x2)− f2(x1,x2)).

(2.2)

Ni > 0 is the pre-defined desired population, ui ∈ L2([0,T ]; [0,1]) represents the con-
trol strategy, i = 1,2, and η ∈ C1(R; [0,1]) satisfies that η is increasing on R with
η(x) ≡ 0 for x ∈ (−∞,0] and η(x) � 0 on R+ = [0,∞) . In addition, we make the
same assumptions for ri,ai, and fi, i = 1,2 as in [13], and refer the readers to [13] for
interpretations of these assumptions.

(H1) ri > 0 is the intrinsic growth rate, ai ∈C1(R;(0,∞)) is the growth function, and
fi ∈C1(R2;(0,∞)) is the self-limiting function, i = 1,2.

(H2) f1(x1,x2) is increasing in x1 and decreasing in x2 ; f2(x1,x2) is decreasing in x1

and increasing in x2 .

(H3) There exists K1 > 0 such that a1(x)− f1(x,0) > 0 for x < K1 , a1(x)− f1(x,0) <
0 for x > K1 and a1(K1)− f1(K1,0) = 0; there exists K2 > 0 such that a2(x)−
f2(0,x) > 0 for x < K2 , a2(x)− f2(0,x) < 0 for x > K2 and a2(K2)− f2(0,K2) =
0.

(H4) a1(x1)/f1(x1,αx1) and a2(x2)/f2(αx2,x2) are eventually decreasing for all α>0.
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That is,

d
dx1

(
a1(x1)

f1(x1,αx1)

)
< 0 for x1 > M1,

d
dx2

(
a2(x2)

f2(αx2,x2)

)
< 0 for x2 > M2,

where M1 and M2 are positive real numbers that may depend on α .

Let x = x(t) = (x1(t),x2(t))T , x = (x1, x2)T , u = u(t) = (u1(t),u2(t))T . Then
the vector form of System (2.1) is⎧⎨

⎩
dx
dt

= F(x,u),

x(0) = x,
(2.3)

with F : R
2 ×R

2 → R
2 defined by

F(x,u) =
[

F1(x1,x2)−u1η(x1 −N1)x1

F2(x1,x2)−u2η(x2 −N2)x2

]
. (2.4)

REMARK 1. (a) It is easy to verify that F defined by (2.4) satisfies the local
Lipschitz condition with respect to x and u . Therefore, System (2.3) has a unique
Carathéodory-solution on [0,T ] for any x and u , see [4,18]. Hence x ∈ AC([0,T ];R2)
with AC([0,T ];R2) denoting the class of absolutely continuous vector valued functions
on [0,T ] .

(b) The term uiη(xi −Ni) ∈ [0,1] in System (2.1) represents the harvesting rate,
i = 1,2. The harvesting rates are designed in such a way to include into consideration
the current system status. Obviously, one can see that if xi � Ni, then uiη(xi−Ni)≡ 0,
meaning that there is no harvesting if the population xi is below the desired level Ni .
When xi > Ni , the desired harvesting rate can be reached by adjusting ui . It is notable
that ui may be different for the same xi > 0 when different η is employed.

Let Ω = L2([0,T ]; [0,1]× [0,1]) be the control set of System (2.1). For any u ∈ Ω , let
xu(t) = (xu

1(t),x
u
2(t))

T be the solution of (2.1) subject to u with initial value x . Our
goal is to find a control u ∈ Ω that makes xu stay as close to the desired population
level (N1,N2) as possible with least control effort u over the interval [0,T ] , i.e., to
minimize the following objective functional

J[u] =
1
2

∫ T

0
γ1(xu

1(t)−N1)2 +(1− γ1)u2
1(t)dt

+
1
2

∫ T

0
γ2(xu

2(t)−N2)2 +(1− γ2)u2
2(t)dt, (2.5)

where γ1 , γ2 ∈ (0,1) are the “weight” constants.
Our first result is on the existence of optimal control of System (2.1), (2.5) which

is proved in Section 4.
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THEOREM 1. Consider System (2.1), (2.5) on a fixed interval [0,T ] . Assume that
(H1)–(H4) hold. If there is α > 0 such that

R1(α) = lim
x1→∞

a1(x1)
f1(x1,αx1)

< 1 (2.6)

and

R2(1/α) = lim
x2→∞

a2(x2)
f2(

x2
α ,x2)

< 1, (2.7)

then there exists an optimal control u∗ ∈ Ω .

Next, we consider the necessary conditions for the optimal control u∗ .

THEOREM 2. Let u∗ ∈ Ω be an optimal control of (2.1), (2.5). Then there exist
an adjoint function λ ∗ = (λ ∗

1 ,λ ∗
2 )T such that x∗ , u∗ , λ ∗ satisfy (2.1), and

dλ ∗
1

dt
=γ1(N1 − x∗1)−λ ∗

2
∂

∂x1
F2(x∗1,x

∗
2)

−λ ∗
1

(
∂

∂x1
F1(x∗1,x

∗
2)−u∗1x

∗
1η ′(x∗1 −N1)−u∗1η(x∗1 −N1)

)
, (2.8)

dλ ∗
2

dt
=γ2(N2 − x∗2)−λ ∗

1
∂

∂x2
F1(x∗1,x

∗
2)

−λ ∗
2

(
∂

∂x2
F2(x∗1,x

∗
2)−u∗2x

∗
2η ′(x∗2 −N2)−u∗2η(x∗2 −N2)

)
, (2.9)

λ ∗
1 (T ) =0, (2.10)

λ ∗
2 (T ) =0, (2.11)

where the optimal control u∗ = (u∗1(t),u
∗
2(t)) is given by

u∗i (t) = min

{
1,max

{
0,

λ ∗
i (t)η(x∗i (t)−Ni)x∗i (t)

1− γi

}}
, i = 1,2. (2.12)

In addition, if η ∈ C2(R) and Fi ∈ C2(R2) , i = 1,2 , then the optimal control u∗ is
unique when T is small enough.

3. Numerical simulations

In this section, we use numerical simulations to exemplify the methodology pro-
posed in Section 2. Consider System (2.1) with η defined by

η(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x � 0,
1
2

sin(x− π
2 )+

1
2
, 0 � x � π ,

1, x � π ,



18 L. WANG AND M. WANG

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ai(xi) = xpi−1
i , i = 1,2,

f1(x1,x2) =
xp1+q1−1
1

Kq1
1 +b12x

n1
2

,

f2(x1,x2) =
xp2+q2−1
2

Kq2
2 +b21x

n2
1

,

(3.1)

where p1 = p2 = 1+10−4 , q1 = n1 = 3, q2 = n2 = 1, K1 = 15, K2 = 35, b12 = 0.75,
b21 = 0.7, r1 = 3×10−5 , r2 = 1.05×10−4 .

We leverage System (2.1), (2.5) to maintain the system at the desired population
level over a fixed interval. Note that by [13, Section 3.2], all the conditions for Theorem
1 are satisfied for (2.2) with (3.1). Hence there exists an optimal control of System (2.1),
(2.5) on [0,T ] . Then Theorem 2 and the gradient method are used to find the optimal
control pair (x∗,u∗) , see [1, Chapter 3] for the details. In the following examples, the
time interval is chosen as [0,10] and the objective functional is defined by (2.5) with
γ1 = γ2 = 1/2.

EXAMPLE 1. Let (x1, x2)= (150,130) be the initial point and (N1,N2)= (60,60)
be the desired population level. The numerical solution without control, x = (x1,x2) ,
and the numerical solution under the optimal control u∗ = (u∗1,u

∗
2) , x∗ = (x∗1,x

∗
2) , are

computed respectively. The comparison of the solutions is given in Fig. 1 and Fig. 2.
The graphs of u∗ and the associated harvesting rates, u∗i η(x∗i −Ni) , i = 1,2, are plotted
in Fig. 3 and Fig. 4.

Figure 1: Comparison of the solution with control, x∗1 and the solution without control,
x1 .

It is obvious that the control u∗ drives the solution x∗ to the desired population
level. The graphs of x∗ and harvesting rate on [0,3] are given in Fig. 5 and Fig. 6
to show the detailed changes. Based on the graphs, when the population x∗ is much
higher than the desired population level, the harvesting rate should be 1, i.e. harvest as
much as possible. When x∗ is close the desired population level, the harvesting rates
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Figure 2: Comparison of the solution with control, x∗2 and the solution without control,
x2 .

Figure 3: The graphs of u∗1 and u∗2 .

Figure 4: The graphs of the harvesting rates.
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will quickly reduce due to the decrease in u∗ . This simulation result is reasonable and
consistent with our expectation.

∗
Figure 5: The graphs of x∗1 and the associated harvesting rate on [0,3] .

Figure 6: The graphs of x∗2 and the associated harvesting rate on [0,3] .

EXAMPLE 2. Let (x1, x2) = (10,100) be the initial point and (N1,N2) = (70,50)
be the desired population level. The numerical solutions with and without controls are
given in Fig. 7 and Fig. 8. The graphs of u∗ and the corresponding harvesting rates,
u∗i η(x∗i −Ni) , i = 1,2, are plotted in Fig. 9 and Fig. 10. Fig. 11 shows the graphs of
x∗2 , u∗2 , and the associated harvesting rate on [0,3] .

Note that x1(t) < N1 on [0,10] , see Fig. 7. Furthermore, by the proof of Lemma
2 in Section 4, xu

1(t) � x1(t) on [0,10] for any u ∈ Ω . Therefore no control is needed
for x1 , i.e. u∗1(t) ≡ 0 and x∗1(t) ≡ x1(t) on [0,10] . As a result, the harvesting rate
u∗1(t)η(x∗1(t)−N1) ≡ 0 on [0,10] . On the other hand, since x2 > N2 , a control u∗2 is
needed to drive x∗2 to N2 . These conclusions are consistent with the simulation results
shown in Fig. 9 – 11.
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Figure 7: Comparison of the solution with control, x∗1 and the solution without control,
x1 .

Figure 8: Comparison of the solution with control, x∗2 and the solution without control,
x2 .

Figure 9: The graphs of u∗1 and u∗2 .
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Figure 10: The graphs of the harvesting rates.

Figure 11: The graphs of x∗2 and the associated harvesting rate on [0,3] .

4. Proofs

In this section, we will prove our main results given in Section 2. The following
result is proved in [13] and we will use it in our proof.

LEMMA 1. [13, Theorem 2.2] Suppose that Assumptions (H1)–(H4) hold. If there
is α > 0 such that

R1(α) = lim
x1→∞

a1(x1)
f1(x1,αx1)

< 1

and

R2(1/α) = lim
x2→∞

a2(x2)
f2(

x2
α ,x2)

< 1,

then solutions of System (1.1) are uniformly bounded in a compact region of the positive
quadrant and there is a coexistence equilibrium E∗ = (E∗

1 ,E∗
2 ) .

We first consider the boundedness of solutions of System (2.1).
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LEMMA 2. Assume all the conditions of Theorem 1 hold. For a given positive
initial condition x , the solution of System (2.3) (or (2.1)), xu , is uniformly bounded in
the first quadrant for any control u ∈ Ω .

Proof. We will first show that for any u∈ Ω and x ∈R
2 with x1 > 0 and x2 > 0,

the solution xu is positive, i.e. xu
i (t) > 0, i = 1,2.

By (2.1), (H2), and (H3), when 0 < xu
1(t) < min{K1,N1} and xu

2(t) > 0,

dxu
1

dt
= r1x

u
1(a1(xu

1)− f1(xu
1 ,x

u
2)) > r1x

u
1(a1(xu

1)− f1(xu
1 ,0)) > 0.

This implies xu
1(t) > 0. Similarly, when 0 < xu

2(t) < min{K2,N2} and xu
1(t) > 0,

dxu
2

dt
= r2x

u
2(a2(xu

2)− f2(xu
1 ,x

u
2)) > r2x

u
2(a2(xu

2)− f2(0,xu
2)) > 0.

Hence xu
2(t) > 0.

Next, we claim that for any u ∈ Ω and x1 > 0, x2 > 0, xu
i (t) � xi(t) , i = 1,2,

where xi(t) is the solution to system (1.1). In fact, by (2.1) and the assumption for η
and u , we have

dxu
i

dt
−Fi(xu

1 ,x
u
2)−uiη(xu

i −Ni)xu
i � dxi

dt
−Fi(x1,x2), i = 1,2.

Then by the Comparison Theorem [18, P112, Comparison Theorem (b)], xu
i (t) � xi(t) ,

i = 1,2. Therefore, Lemma 1 implies that xu is uniformly bounded for all u ∈ Ω .
The existence of the optimal control of System (2.1), (2.5) is proved by a scheme

given in [1, Section 2.1] and the following lemma is needed. The reader is referred
to [1] for details.

LEMMA 3. [1, Theorem A.5] Let {un} be a bounded sequence in a real Hilbert
space H . Then there exists a subsequence {unr} ⊂ {un} that is weakly convergent to
an element of H .

Now we are ready to prove our first main result, Theorem 1.

Proof of Theorem 1. By Remark 1 (a), for any T > 0, System (2.1) has a unique
solution xu for each u∈Ω on [0,T ] . Hence there exists a mapping Γ:Ω→AC([0,T ];R2)
such that

xu = Γu.

Let X be the Banach space C([0,T ];R2) with the maximum norm. Lemma 2
implies that ΓΩ is uniformly bounded in X and there exists M > 0 such that

‖Γu‖ � M for any u ∈ Ω. (4.1)

By (2.1), for any t ∈ [0,T ] and u ∈ Ω ,{
xu
1(t) = x1 +

∫ t
0(F1(xu

1(s),x
u
2(s))−u1(s)η(xu

1(s)−N1)xu
1(s))ds,

xu
2(t) = x2 +

∫ t
0(F2(xu

1(s),x
u
2(s))−u2(s)η(xu

2(s)−N2)xu
2(s))ds.

(4.2)
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By the assumptions for ri,ai, fi,ui, and η , we know that all functions ai, fi and η
are C1 functions. One can easily show that there exist constants Ai > 0 such that, for
t ∈ [0,T ]

|riai(xi(t))− ri fi(x1(t),x2(t))−ui(t)η(xi(t)−Ni)| < Ai, i = 1,2.

Then it follows that, for any t1,t2 ∈ [0,T ] , by (4.2), (2.2) and (4.1),

|xu
i (t1)−xu

i (t2)| =
∣∣∣∣
∫ max{t1,t2}

min{t1,t2}
(Fi(xu

1(s),x
u
2(s))−ui(s)η(xu

i (s)−Ni)xu
i (s))ds

∣∣∣∣
�
∫ max{t1,t2}

min{t1,t2}
|xu

i (s)||riai(xu
i (t))−ri fi(xu

1(s),x
u
2(s))−ui(s)η(xu

i (s)−Ni)|ds

�MAi|t1− t2|.

Therefore, ΓΩ is equicontinuous in X . Then by Arzelà-Ascoli Theorem, Γ : Ω → X is
completely continuous on Ω .

Let d = infu∈Ω J[u] , with J defined by (2.5). It is easy to see that d ∈ R+ . Let
{un} ⊂ Ω be a sequence with

d � J[un] < d +
1
n
, n = 1,2, . . . . (4.3)

Since Ω is bounded in L2([0,T ];R2) , then by Lemma 3, there exists a subsequence
{unr} ⊂ {un} with

unr
∗
⇀ u∗ ∈ L2([0,T ];R2).

In addition, since Ω is closed convex in L2([0,T ];R2) , Ω is weakly closed in
L2([0,T ];R2) . Therefore, u∗ ∈ Ω .

Let
xunr = Γunr , r = 1,2, ....

Then there exists a subsequence of {xunτ } , we use the same notation for convenience,
such that

xunτ → x∗ ∈ X .

By (4.2), ⎧⎪⎨
⎪⎩

x∗1(t) = x1 +
∫ t

0
F1(x∗1(s),x

∗
2(s))−u∗1(s)η(x∗1(s)−N1)x∗1(s)ds,

x∗2(t) = x2 +
∫ t

0
F2(x∗1(s),x

∗
2(s))−u∗2(s)η(x∗2(s)−N2)x∗2(s)ds.

(4.4)

So x∗ ∈ AC([0,T ];R2) and satisfies System (2.1) with u∗ . In addition (4.3) implies

J[u∗] = d.

Therefore (x∗,u∗) is an optimal control pair of System (2.1), (2.5).
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We will use the minimum principle to derive the necessary conditions of the opti-
mal control pair (x∗,u∗) . Consider a control system⎧⎪⎨

⎪⎩
x′(t) = f(x,u), 0 < t � T,

x(0) = x0,

u ∈ Ω,

(4.5)

with the objective functional

J[u] =
∫ T

0
L(x(t),u(t))dt, (4.6)

where f : R
n×R

m →R
n and L : R

n×R
m → R . Let H : R

n×R
m×R

n →R be defined
by

H(x,u,λ ) = L(x,u)+ λ · f(x,u). (4.7)

The following minimum principle for the fixed-terminal-timeproblem is taken from [2].

LEMMA 4. [2, Theorem 5-10] Let u∗ be an admissible control and x∗ be the
trajectory corresponding to u∗ . In order that u∗ to be optimal, it is necessary that
there exists λ ∗ such that

dx∗

dt
=

∂H
∂λ

[x∗,u∗,λ ∗],

dλ ∗

dt
= −∂H

∂x
[x∗,u∗,λ ∗],

x∗(0) = x0,

λ ∗(T ) = 0,

min
u∈Ω

H(x∗,u,λ ∗) = H(x∗,u∗,λ ∗). (4.8)

To prove the uniqueness of the optimal control, we also need the following lemma.

LEMMA 5. [11, Theorem 2.3] Consider the following two-point boundary value
problem ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx
dt

= p(t,x,y),
dy
dt

= q(t,x,y),

x(0) = x,

y(T ) = y,

(4.9)

where x ∈ R
m , y ∈ R

n , and p : R×R
m ×R

n → R
m and q : R×R

m ×R
n → R

n are
continuous. Assume that p and q are bounded and satisfy a Lipschitz condition relative
to x and y with constant C > 0 . Then solutions of System (4.9) are unique if T is
sufficiently small.
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Proof of Theorem 2. Let H be defined by

H(x,u,λ ) =
γ1(x1 −N1)2 +(1− γ1)u2

1 + γ2(x2 −N2)2 +(1− γ2)u2
2

2
+ λ1(r1x1(a1(x1)− f1(x1,x2))−u1η(x1−N1)x1)
+ λ2(r2x2(a2(x2)− f2(x1,x2))−u2η(x2−N1)x2). (4.10)

Then System (2.1), (2.8) – (2.11) can be obtained by direct computation using Lemma
4. By (4.10),

∂H
∂u

= 0

implies that (
λ1(t)η(x1 −N1)x1(t)

1− γ1
,

λ2(t)η(x2 −N2)x2(t)
1− γ2

)
is the unique critical point of H . Then (2.12) follows from (4.8).

It is clear that (2.1), (2.8) – (2.11) is a system with both initial and terminal con-
ditions defined at t = 0 and t = T respectively. Furthermore, by Lemma 5, System
(2.1), (2.8) – (2.11) has a unique solution when T is sufficiently small. Therefore, u∗
is unique when T is small enough.

5. Conclusion and discussion

In this paper, a general facultative mutualistic model with harvesting is proposed.
Instead of the long-term dynamical behavior, a type of short-term optimal feedback con-
trol problem is investigated. The existence and the necessary conditions of the optimal
control are proved. Numerical simulations are carried out to demonstrate the applica-
tions as well. Our results show that it is feasible to interfere a facultative mutualistic
system with minimal harvesting efforts. The proposed model covers many existing
facultative mutualistic models as special cases. The results on the associated optimal
control problem provide a generic solution to develop optimal harvesting strategies for
the models in the literature.
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[16] C. VARGAS-DE-LEÓN,Lyapunov functions for two-species cooperative systems, Applied Mathemat-
ics and Computation 219 (2012), 2493–2497.
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