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Abstract. In this paper we address questions on the existence and multiplicity of solutions to the
nonlinear elliptic system in divergence form⎧⎨

⎩
div (H∇u) = Hs|∇u|2u+[cof∇u]∇P in Ω,
det∇u = 1 in Ω,
u = ϕ on ∂Ω.

Here H = H(r,s) > 0 is a weight function of class C 2 with Hs = ∂H/∂ s and (r,s) = (|x|, |u|2) ,
Ω ⊂ Rn is a bounded domain, P = P(x) is an unknown hydrostatic pressure field and ϕ is
a prescribed boundary map. The system is the Euler-Lagrange equation for a weighted Dirich-
let energy subject to a pointwise incompressibility constraint on the admissible maps and arises
in diverse fields such as geometric function theory and nonlinear elasticity. Whilst the usual
methods of critical point theory drastically fail in this vectorial gradient constrained setting we
establish the existence of multiple solutions in certain geometries by way of analysing an associ-
ated reduced energy for SO(n) -valued fields, a resulting decoupled PDE system and a structure
theorem for irrotational vector fields generated by skew-symmetric matrices. Most notably a
crucial ”H -condition” linking to the system and precisely capturing an extreme dimensional
dichotomy in the structure of the solution set is discovered and analysed.

1. Introduction

Let Ω ⊂ Rn (n � 2) be a bounded domain with a C 1 boundary ∂Ω and consider
the variational energy integral

I[u;Ω] :=
∫

Ω
|∇u|2 dμ(x,u), (1.1)

where the Lagrangian is of a weighted Dirichlet type. Here dμ(x,u) = H(|x|, |u|2)dL n

for some given fixed H = H(r,s) > 0 of class C 2 (called the weight function or weight
for short) and the competing maps u are restricted to lie in the space of incompressible
Sobolev maps Aϕ(Ω) := {u ∈ W 1,2(Ω,Rn) : det∇u = 1 a.e. in Ω , u ≡ ϕ on ∂Ω} .
Referring to (1.1), ∇u denotes the gradient of u , an n×n matrix field in Ω , that here is
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additionally required to satisfy the pointwise incompressibility constraint det∇u = 1 in
Ω , whilst |∇u| denotes the Hilbert-Schmidt norm of ∇u and ϕ ∈C 1(∂Ω;Rn) is a fixed
boundary condition. 1 The Euler-Lagrange equation associated with this constrained
variational problem is formally seen to be the nonlinear system (see [1, 3, 4, 5, 6] for
background and related discussion)

EL[u;I,Ω] :=

⎧⎨
⎩

LH [u] = ∇P in Ω,
det∇u = 1 in Ω,
u = ϕ on ∂Ω,

(1.2)

where P = P(x) is an a priori unknown hydrostatic pressure corresponding to the
incompressibility constraint – the so-called Lagrange multiplier – and the differential
operator LH takes the explicit and highly nonlinear form

LH [u] =[cof∇u]−1{div
[
H(r, |u|2)∇u

]−Hs(r, |u|2)|∇u|2u}
=[∇u]t{Hr(r, |u|2)∇uθ +Hs(r, |u|2)∇u∇|u|2}

+H(r, |u|2)[∇u]tΔu−Hs(r, |u|2)|∇u|2[∇u]tu. (1.3)

Without going into technical details we point out that this system is formally the Euler-
Lagrange equation associated with the unconstrained variational energy integral

IP [u;Ω] =
∫

Ω
{H(|x|, |u|2)|∇u|2−2P(x)(det∇u−1)}dx. (1.4)

(Notice that IP [u;Ω] = I[u;Ω] whenever u ∈ Aϕ(Ω) .) Furthermore in (1.3), r = |x| ,
θ = x|x|−1 whilst Hr = ∂H/∂ r , Hs = ∂H/∂ s are the derivatives of the weight function
H with respect to the first and second arguments respectively. By a solution to the
system (1.2) we mean a pair (u,P) where u is of class C 2(Ω,Rn)∩C (Ω,Rn) , P
is of class C 1(Ω)∩C (Ω) and the pair satisfy the system (1.2)-(1.3) in the pointwise
(classical) sense. If the choice of P is clear from the context we often abbreviate
by saying that u is a solution or synonymously (and by analogy with the weight free
unconstrained Dirichlet energy case) that u is an incompressible H -harmonic map.

Whilst the methods of critical point theory provide a standard and efficient way
of establishing the existence of (multiple) solutions to variational problems, due to the
complex nature of the incompressibility constraint on the gradient of the competing
maps, here, these methods drastically fail and are not applicable. In more technical
terms the space Aϕ(Ω) is far from being a Hilbert or Banach manifold whilst due to
the a priori unknown regularity of the pressure field P , and integrability of the Jaco-
bian determinant det∇u , the unconstrained energy integral IP need not be everywhere
well-defined, let alone, continuously Frechet differentiable.

Throughout the paper we specialise to the set up where Ω ⊂Rn is a bounded open
annulus, for definiteness, Ω = Xn = Xn[a,b] := {x ∈ Rn : a < |x|< b} with b > a > 0,
ϕ ≡ IΩ , i.e., the identity map and H ∈ C 2([a,b]×R) satisfies H > 0. The choice
of ϕ is prompted by applications to elasticity and to avoid unnecessary technicalities,

1Note that throughout the paper we allow the weight H to depend not only of r = |x| but also on s = |u|2
which allows for more generality and leads to some remarkable consequences.



Differ. Equ. Appl. 12, No. 1 (2020), 47–67. 49

whilst the choice of domain geometry, is prompted by the well-known uniqueness result
for star-shapped domains in [14, 23]. Here we prove existence and multiplicity results
for incompressible H -harmonic maps by using a different set of ideas and techniques.
As it turns out the structure and multiplicity of such solutions depend heavily on the
dimensional parity (n being even or odd) as well as a crucial H -condition relating to
the weight function H . Indeed it is the significance of this H -condition and the role of
(x,u)-dependence in the Lagrangian leading to it that is the most notable phenomenon
and the main highlight of the paper.

To this end let us begin by introducing some notation and terminology. Any self-
map u ∈ C (Xn,Xn) can be decomposed into a radial part Ru and a spherical part Su :

Ru := |u| ∈ C (Xn, [a,b]), Su := u|u|−1 ∈ C (Xn,S
n−1). (1.5)

If u ≡ x on ∂Xn then Ru ≡ a and Ru ≡ b on the inner and outer components of ∂Xn

respectively whilst Su ≡ θ on ∂Xn . Now due to the topological product structure
of Xn , the spherical part Su can be seen, with a slight abuse of notation, to verify
Su ∈ C ([a,b];C (Sn−1,Sn−1;deg = 1) with Su|r=a = ISn−1 and Su|r=b = ISn−1 where
ISn−1 denotes the identity map of the unit sphere. 2 As a result Su represents an
element of the fundamental group (see [25, 26])

π1[C (Sn−1,Sn−1;deg = 1)] ∼= π1[SO(n)] ∼=
{

Z, n = 2,

Z2, n � 3.
(1.6)

Conversely any map S = S (r) in C ([a,b];C (Sn−1,Sn−1;deg= 1) satisfying S (a)=
S (b) = ISn−1 gives rise to a self-map u ∈ C (Xn,Xn) with u ≡ x on ∂Xn through the
recipe Ru(x) = f (|x|) and Su ≡ S , specifically,

u : (r,θ ) �→ ( f (r),S (r)[θ ]). (1.7)

Here f ∈C ([a,b], [a,b]) is any function satisfying f (a) = a and f (b) = b (e.g., f (r)≡
r ). Moving next to the incompressibility constraint it is seen that subject to the differ-
entiability of the radial and spherical parts of u , 3

∇u = Ru∇Su +Su⊗∇Ru, (1.8)

and so u is incompressible iff det[Ru∇Su + Su ⊗∇Ru] = 1 (see below for more).
With this notation in place a topologically twisting incompressible H -harmonic map
by definition is a twice continuously differentiable self-map u with spherical part Su

resulting from a suitable SO(n)-valued field Q as described in (a)-(b) below such
that the pair (u,P) for a suitable choice of P forms a solution to the system (1.2).

2Throughout the paper C (Sn−1,Sn−1;deg = d) (d ∈Z ) denotes the connected component of the mapping
space C (Sn−1,Sn−1) consisting of maps with Hopf degree d . It is a well known fact that these components
are of different homotopy types. For instance in contrast to (1.6) for d = 0 we have π1[C (Sn−1,Sn−1;deg =
0)] ∼= π1(Sn−1)⊕πn(Sn−1) with the latter being ∼= Z (for n = 2 or n = 3), and Z2 (for n � 4). For more
on this see [8, 9, 30, 31].

3Note that since the spherical part Su maps into the sphere we have det∇Su = 0 .
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(a) Twists u ∈ C (Xn,Xn) . By a generalised twist or simply a twist we understand a
self-map u whose radial and spherical parts are given by

Ru(x) = |x|, Su(x) = Q(|x|)x|x|−1, x ∈ Xn. (1.9)

Here the curve Q ∈ C ([a,b],SO(n)) is referred to as the twist path associated with
u . In order to ensure u ≡ x on ∂Ω = ∂Xn we set Q(a) = Q(b) = In where In is the
n× n identity matrix. In this event the twist path is a closed curve in SO(n) based at
In thus representing an element of π1[SO(n)]∼= Z2 (n � 3) and ∼= Z (n = 2). Here we
refer to Q = Q(r) as the twist loop associated to u . It can be seen that subject to the
differentiability of the twist path Q , we have

∇Ru = θ , ∇Su =
1
r
[Q+(rQ̇−Q)θ ⊗θ ], (1.10)

(with Q̇ = dQ/dr ) and so using (1.8), ∇u = Q+ rQ̇θ ⊗θ and thus det∇u = 1.
(b) Whirls u ∈ C (Xn,Xn) . By a whirl map or whirl for simplicity we understand a
self-map u whose radial and spherical parts have the forms

Ru(x) = |x|, Su(x) = Q(ρ1, . . . ,ρN)x|x|−1, x ∈ Xn. (1.11)

Here we denote by ρ = ρ(x) the vector of 2-plane radial variables (ρ1, . . . ,ρN) , de-
fined, depending on the dimension n � 2 being even or odd, as follows: If n = 2N we
set ρ j = (x2

2 j−1 + x2
2 j)

1/2 , with 1 � j � N . If n = 2N−1 we set ρ j = (x2
2 j−1 + x2

2 j)
1/2

with 1 � j � N−1 and ρN = xn . In the first case set d = N and in the second case set
d = N−1. It is now seen that for x ∈ Xn the vector ρ = ρ(x) lies in the semi-annular
domain An ⊂ RN where An = {ρ ∈ Rd

+ : a < ‖ρ‖ < b} when n = 2N and An = {ρ ∈
Rd

+×R : a < ‖ρ‖ < b} when n = 2N−1 where we have set ‖ρ‖ = (ρ2
1 + ...+ρ2

N)1/2

for the 2-norm of the N -vector ρ . With this notation in place we require in (1.11) that
Q∈ C (An,SO(n)) . As for boundary values and further structure of Q , let us first write
∂An = (∂An)a ∪ (∂An)b ∪Γn where the three boundary segments of ∂An are defined
as Γn = ∂An \ [(∂An)a ∪ (∂An)b] (the flat parts) and (∂An)a = {ρ ∈ ∂An : ‖ρ‖ = a} ,
(∂An)b = {ρ ∈ ∂An : ‖ρ‖ = b} . By consideration of 2-plane symmetries the matrix
map Q is now confined to take values on the maximal torus T of SO(n) consisting of
2×2 block-diagonal rotation matrices, thus, in more explicit form

Q(ρ1, . . . ,ρN) =
{

diag(R[ f1], . . . ,R[ fd ]), n = 2d,
diag(R[ f1], . . . ,R[ fd ],1), n = 2d +1.

(1.12)

Here R is a 2×2 rotation matrix defined via (2.3) and the functions f j ∈ C (An) for all
1 � j � d satisfy f j ≡ 0 on (∂An)a and f j ≡ 2mjπ on (∂An)b . Note that x∈ (∂Xn)a =
{|x|= a} ⇐⇒ ρ(x) ∈ (∂An)a and x ∈ (∂Xn)b = {|x| = b} ⇐⇒ ρ(x) ∈ (∂An)b . The
functions f j = f j(ρ) and hence the map Q = Q(ρ) are left free on the flat part of the
boundary Γn . Again it can be seen that subject to the differentiability of the matrix field
Q , we have

∇Ru = θ , ∇Su =
1
r
Q(In −θ ⊗θ )+

N

∑
�=1

Q,�θ ⊗∇ρ�, (1.13)
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(with Q,� = ∂Q/∂ρ� ) and so referring to (1.8)-(1.12) and after a little more involved
calculation it follows that det∇u = 1.

Note that despite apparent similarities these two classes of maps are different in
that in the first case (twists) the dependence of the twist path is on the radial variable
r = |x| only with no restriction on its range whereas in the second case (whirls) the
dependence is on the 2-plane radial variables ρ = (ρ1, . . . ,ρN) with the range restricted
to a maximal torus. As such whirls are seen to have less symmetries than twists (see
[25, 26] and [16, 17, 18, 19, 22]).

Our aim is to establish the existence of an infinitude of topologically twisting
incompressible H -harmonicmaps. Over the course of the paper it will become apparent
that certain closed [scaled] geodesics of the compact Lie group SO(n) in the form
Q(r) = exp{H (r)H} (a � r � b ) with Q(a) = Q(b) = In will play a prominent role
in relation to such solutions. The profile curve H ∈ C 2[a,b] here is a solution to a two
point boundary value problem [cf. (4.12)] and H is a fixed element of the Lie algebra
so(n) . 4 In fact the profile curve H relates directly to the weight function H via the
integral

H (r) =
H(r)
H(b)

, H(r) =
∫ r

a

ds
sn+1H(s,s2)

, a � r � b. (1.14)

In Section 2 we arrive at a linear system for the whirl functions f1, . . . , fd intro-
duced in (1.12). It is proved in Theorem 3 that the unique solution to this system is
such that each of the whirl functions depends on the modulus of the vector variable
ρ = (ρ1, . . . ,ρN) alone, i.e., f�(ρ) = f�(‖ρ‖) for all 1 � � � d . By a further analysis
of the PDE LH [u] = ∇P we are then able to prove the following result that classifies
all whirl solutions to the system (1.2) that in turn leads to the existence of an infinite
family of incompressible H -harmonic maps of whirl type. (Except for (ii) in Part 1
where the only such solution is u ≡ x !)

THEOREM 1. A whirl u associated with the matrix field Q ∈ C 2(An,SO(n))
satisfying Q(ρ) = In for ρ ∈ (∂An)a ∪ (∂An)b is a solution to the system (1.2) iff
Q = Q(ρ) is as described below.

1 . ( rHr(r,r2)+ 2(n + 1)H(r,r2)+ 4r2Hs(r,r2) �≡ 0 on ]a,b[ ) Here depending on
the dimension n being even or odd we have

(i) n even: Q(ρ) = diag(R[ f1(ρ)], . . . ,R[ fd(ρ)]) ( ρ ∈ An ) where

f�(ρ) = 2m�πH (||ρ ||), 1 � � � d, (1.15)

with m1, . . . ,md ∈ Z satisfying |m1| = . . . = |md | .
(ii) n odd: m1 = . . . = md = 0 and therefore Q ≡ In .

4We remark here that a solution to this system is u ≡ x . Indeed, upon substitution, (1.3) reduces to
LH [u ≡ x] = [Hr(r,r2)+2rHs(r,r2)− rnHs(r,r2)]θ = ∇P . The left-hand side here can be written as s(r)θ
and as such is the gradient of some appropriate primitive function s(r)θ = ∇S(|x|) that depends on the radial
variable alone. The other equations in (1.2) are evidently satisfied by u .
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2 . ( rHr(r,r2)+2(n+1)H(r,r2)+4r2Hs(r,r2)≡ 0 on ]a,b[ ) Here we have Q(ρ)=
diag(R[ f1(ρ)], . . . ,R[ fd(ρ)]) ( ρ ∈ An ) when n is even ( n = 2d ) and likewise
Q(ρ) = diag(R[ f1(ρ)], . . . ,R[ fd(ρ)],1) ( ρ ∈An ) when n is odd ( n = 2d+1 ) .
In either case f� is as in (1.15) for each 1 � � � d and with no restriction on the
integers m1, . . . ,md .

It is clear from the above theorem that the object FH(r) := 2(n + 1)H(r,r2) +
rHr(r,r2)+4r2Hs(r,r2) holds great influence on the structure of such solutions. This is
a similar scenario when considering solutions of twist type. Indeed as will be justified
in detail later in Section 3 in scrutinising the irrotational structure of the vector field
LH [u] , we eventually arrive at the identity,

curlLH [u] = [∇LH [u]]− [∇LH[u]]t =
FH(r)

r2

[
Q̇tQ̇x⊗ x− x⊗ Q̇tQ̇x

]
. (1.16)

If FH �≡ 0 then the irrotationality of LH [u] and the solvability of LH [u] = ∇P lead
to an extreme dimensional dichotomy on solutions as reflected in Part 1 of the theorem.
More interestingly when FH(r)≡ 0, then LH [u] being trivially irrotational, we obtain
– notably in odd dimensions n � 3 – infinitely many non-trivial topologically twisting
incompressible H -harmonic maps (compare Part 2 with (ii) in Part 1). Naturally the
(r,s)-dependence in the weight function H here is crucial (see below). The counterpart
of the above result for twists is now given in the following statement.

THEOREM 2. A twist u with associated Q ∈ C ([a,b],SO(n))∩C 2(]a,b[,SO(n))
satisfying Q(a) = In and Q(b) = In is a solution to the system (1.2) iff Q is as de-
scribed below.

1 . ( rHr(r,r2)+ 2(n + 1)H(r,r2)+ 4r2Hs(r,r2) �≡ 0 on ]a,b[ ) Here depending on
the dimension n being even or odd we have

(i) n even: Q(r) = exp{H (r)H} ( a � r � b ) with H = 2mπPJnPt where
P ∈ O(n) , m ∈ Z and Jn = diag(J, . . . ,J) with J as in (2.3).

(ii) n odd: H ≡ 0 leading to Q ≡ In . Hence the identity map u ≡ x is the only
twisting solution of (1.2)-(1.3).

2 . ( rHr(r,r2)+2(n+1)H(r,r2)+4r2Hs(r,r2)≡ 0 on ]a,b[ ) Here we have Q(r) =
exp{H (r)H} ( a � r � b ) with H = Pdiag(2m1πJ, ...,2mdπJ)Pt when n = 2d
and H = Pdiag(2m1πJ, ...,2mdπJ,0)Pt when n = 2d +1 . Moreover P ∈ O(n)
and m1, . . . ,md ∈ Z .

We close this introduction by giving, for the sake of illustration, a class of weights
H that satisfy the condition rHr(r,r2) + 2(n + 1)H(r,r2) + 4r2Hs(r,r2) ≡ 0 and for
which (1.2)-(1.3) admits an infinitude of non-trivial incompressible twisting H-harmonic
maps regardless of n being even or odd. Towards this end let us take H(r,s)=a(r)b(s)=
rαsβ for real α , β , a � r � b and s > 0. Then rHr(r,r2) + 2(n + 1)H(r,r2) +
4r2Hs(r,r2) ≡ 0 ⇐⇒ rȧb + 2(n + 1)ab + 4r2aḃ ≡ 0 that is α + 2(n + 1) + 4β = 0
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which then by substituting this into (1.1) yields

Iβ [u;Xn] =
∫

Xn

|∇u|2 dμ(x,u) =
∫

Xn

|u|2β |∇u|2
|x|2(n+1)+4β dx. (1.17)

Note that by linearity any finite sum H(r,s) = ∑ j c jrα j sβ j with c j > 0 and α j +
2(n + 1)+ 4β j = 0 still verifies rHr(r,r2) + 2(n + 1)H(r,r2) + 4r2Hs(r,r2) ≡ 0. Of
course these are by no means the only functions H satisfying the condition.

2. The restricted Euler-Lagrange system and its unique solvability

Recall that by definition a whirl is a self-map u with radial and spherical parts
Ru = |x| and Su = Q(ρ1, . . . ,ρN)x|x|−1 respectively. The vector of 2-plane radial
variables ρ = (ρ1, ...,ρN) and the semi-annular region An ⊂ RN and other related
notions were defined earlier in Section 1 (see also Figure 1 below). Now assuming
Q ∈ C 1(An,SO(n))∩C (An,SO(n)) a basic calculation gives

∇u = Ru∇Su +Su⊗∇Ru = Q+
N

∑
�=1

Q,�x⊗∇ρ�. (2.1)

Here Q,� denotes the first derivatives of Q with respect to ρ� whilst ∇ρ� denotes the
gradient of ρ� with respect to x = (x1, . . . ,xn) . As a result we have

ρ1

ρ2�
An : n = 3, N = 2

d = 1

ρ1

�

ρ2�
An : n = 4, N = 2

d = 2

Figure 1: The contrasting symmetries in the semi-annular region An associated with
Xn for n odd versus n even.

|∇u|2 = tr

{(
Q+

N

∑
�=1

Q,�x⊗∇ρ�

)(
Qt +

N

∑
�=1

∇ρ�⊗Q,�x

)}

= tr

{
In +

N

∑
�=1

Q∇ρ�⊗Q,�x+
N

∑
�=1

Q,�x⊗Q∇ρ� +
N

∑
�=1

Q,�x⊗Q,�x

}
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= n+
N

∑
�=1

|Q,�x|2. (2.2)

Here we have used 〈∇ρ j,∇ρk〉= δ jk and 〈QtQ,�x,∇ρk〉= 0. Let us recall that through-
out the paper we denote the SO(2) matrices J and R[t] by

J =
(

0 −1
1 0

)
, R[t] = exp{tJ}=

(
cost −sin t
sin t cost

)
. (2.3)

Indeed to justify (2.2) note firstly that,

QtQ,� =

{
diag(∂� f1J, . . . ,∂� fdJ), if n = 2d,

diag(∂� f1J, . . . ,∂� fdJ,0), if n = 2d +1,
(2.4)

where ∂� fk = ∂ fk/∂ρ� . Let yk = (x2k−1,x2k) for 1 � k � d regardless of n = 2d or
n = 2d +1 and yd+1 = xn when n = 2d +1. Then

QtQ,�x =

{
(∂� f1Jy1, . . . ,∂� fdJyd), if n = 2d,

(∂� f1Jy1, . . . ,∂� fdJyd ,0), if n = 2d +1.
(2.5)

Furthermore from the definition of ρk it is clear that ∇ρk = (0, . . . ,yk/ρk, . . . ,0) and
therefore 〈QtQ,�x,∇ρk〉 = 〈∂� fkJyk,yk/ρk〉 = 0 in view of J being skew-symmetric.
(Note that here there is no summation over 1 � �,k � N and the first equality excludes
the relatively simpler case k = N for n odd in which case the identity is trivially true.)

Let us also note that when Q ∈ C 2(An,SO(n))∩C (An,SO(n)) then upon taking
the divergence of ∇u and using the identity ∇ρ j ·∇ρk = δ jk , we obtain

Δu =
N

∑
�=1

(
Q,��x+ Δρ�Q,�x+2Q,�∇ρ�

)
. (2.6)

To verify that u = rQ(ρ1, . . . ,ρN)θ satisfies the incompressibility constraint det∇u
= 1, using (2.1), we can write

det∇u = det

[
Q+

N

∑
�=1

Q,�x⊗∇ρ�

]
= det

[
In +

N

∑
�=1

QtQ,�x⊗∇ρ�

]
. (2.7)

As seen earlier for any 1 � i, j � N we have 〈QtQ,iθ ,∇ρ j〉 = 0. Now by Lemma 3.1
in [18] if a string of vectors (ak),(bk) (k = 1, . . . ,N ) in Rn satisfy 〈ai,b j〉 = 0 for all
i, j then det[In + ∑N

j=1 a j ⊗ b j] = 1. An application of this identity with the choice of
vectors ai = QtQ,ix and b j = ∇ρ j immediately gives det∇u = 1 as claimed.

The restricted system. Consider restricting the energy integral (1.1) to the class of
admissible whirls u with Q = Q(ρ) as in (1.12). Then dμ(x,u) = H(|x|, |u|2)dL n =
H(|x|, |x|2)dL n and so by invoking (2.1)-(2.2) we can write

I[u;Xn] =
∫

Xn

|∇u|2 dμ(x,u) =
∫

Xn

H(|x|, |x|2)
(

n+
N

∑
�=1

|Q,�x|2
)

dx. (2.8)
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Recalling the block diagonal formulation of Q as given by (1.12) it is seen that

|∇u|2−|∇x|2 =
N

∑
�=1

|Q,�x|2 =
N

∑
�=1

d

∑
k=1

ρ2
k ( fk ,�)

2 =
d

∑
�=1

ρ2
� |∇ f�|2. (2.9)

Hence by substitution and a change of the variables of integration in (2.8) we can for-
mulate I[u;Xn]− I[x;Xn] as

∫
Xn

(|∇u|2−|∇x|2)dμ(x,u) =
∫ b

a

∫
Sn−1

rn+1H(r,r2)
N

∑
�=1

|Q,�θ |2 drdH n−1(θ )

= (2π)d
∫

An

H(‖ρ‖,‖ρ‖2)
d

∑
�=1

ρ2
� |∇ f�|2

d

∏
j=1

ρ j dρ

=: (2π)d
d

∑
�=1

J�[ f�;An]. (2.10)

As for the Jacobian of this coordinate transformation note that we hereafter set

J (ρ) = J (ρ1, . . . ,ρN) =
d

∏
j=1

ρ j, (2.11)

and so when n = 2d (with N = d ) this product contains all ρ1, . . . ,ρN , whereas when
n = 2d +1 (with N = d +1) the product contains ρ1, . . . ,ρN−1 . Referring to (2.10) we
have denoted the restricted energy J� (with 1 � � � d ) by

J�[ f ;An] :=
∫

An

|∇ f |2ω�(ρ)dρ , ω�(ρ) = ρ2
� H(‖ρ‖,‖ρ‖2)J (ρ). (2.12)

Evidently J� (1 � � � d ) is a weighted Dirichlet energy (here unconstrained
though) and as such will be considered over the space of admissible functions f =
f (ρ) = f (ρ1, ...,ρN) in the space

B(An) =
⋃

m∈Z

Bm(An), (2.13)

where Bm(An) = { f ∈ W 1,2(An) : f = 0 on (∂An)a, f = 2mπ on (∂An)b} . With the
aim of finding solutions to the system (1.2) in the form of whirl maps we proceed first
on to extremising the restricted energy J� over the space Bm(An) . Now the Euler-
Lagrange equation for J� over Bm(An) is seen to be (with 1 � � � d , m ∈ Z):

EL[ f ;J�,An] =

⎧⎪⎪⎨
⎪⎪⎩

div [ω�(ρ)∇ f ] = 0 in An,
f = 0 on (∂An)a,
f = 2mπ on (∂An)b,
ω�(ρ)∂ν f = 0 on Γn.

(2.14)

Here ω�(ρ) = H(‖ρ‖,‖ρ‖2)ρ2
� J (ρ) is a strictly positive weight (for ρ ∈ An )

and ∂ν f = ∇ f · ν where ν is the unit outward normal field on Γn . We next aim to
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show that this system has the unique solution f = f (ρ ;m) = 2mπH (‖ρ‖) with the
choice of H = H (r) ∈ C 2[a,b] , precisely as given by (1.14).

Towards this end it is firstly seen that the boundary conditions on f are satisfied
by virtue of H (a) = 0 and H (b) = 1 along with ω� = 0 on Γn . Next proceeding on
to the PDE on the first line, by direct differentiation and reference to (1.14) we have,

∂ f
∂ρi

= 2mπ
Ḣ(r)
H(b)

ρi

r
=

2mπ
H(b)

ρi

rn+2H(r,r2)
, 1 � i � N. (2.15)

Now specialising first to even dimensions n = 2d, N = d , a straightforward calculation
gives,

div [ω�(ρ)∇ f ]

=div
[
H(r,r2)ρ2

� J (ρ)∇ f
]
=

N

∑
i=1

∂
∂ρi

2mπ
H(b)

(
H(r,r2)

ρiρ2
� J (ρ)

rn+2H(r,r2)

)

=
2mπ
H(b)

d

∑
i=1

(
ρ2

� J (ρ)
rn+2 − (n+2)

ρ2
i ρ2

�

rn+4 J (ρ)+2
ρiρ�δi�

rn+2 J (ρ)+
ρiρ2

�

rn+2

J (ρ)
ρi

)

=
2mπ
H(b)

ρ�J (ρ)
rn+2

(
dρ�− (2d +2)ρ� +2ρ� +dρ�

)
= 0. (2.16)

Next for n = 2d +1, N = d +1 we proceed similarly but recall that ρN = xn . For the
first ρ1, . . . ,ρd terms we have,

2mπ
H(b)

d

∑
i=1

∂
∂ρi

(
ρiρ2

�

rn+2 J (ρ)
)

=
2mπ
H(b)

ρ�J (ρ)
rn+2

(
dρ�− (2d +3)

r2 ρ�

d

∑
i=1

ρ2
i +2ρ� +dρ�

)
.

(2.17)

To this we add the Nth term in the divergence sum, which is then seen to be

2mπ
H(b)

∂
∂ρN

(
ρNρ2

�

rn+2 J (ρ)
)

=
2mπ
H(b)

ρ�J (ρ)
rn+2

(
ρ�− (2d +3)

r2 ρ�ρ2
N

)
. (2.18)

Coupling this latter expression with the earlier sum (2.17) therefore gives

div [ω�(ρ)∇ f ] = div
[
H(r,r2)ρ2

� J (ρ)∇ f
]
=

2mπ
H(b)

N

∑
i=1

∂
∂ρi

(
ρiρ2

�

rn+2 J (ρ)
)

=
2mπ
H(b)

ρ�J (ρ)
rn+2

(
dρ�− (2d +3)ρ� +2ρ� +(d +1)ρ�

)
= 0. (2.19)

An energy argument combined with the above now implies the uniqueness of the
proposed solution f (ρ ;m) to the boundary value problem (2.14).

THEOREM 3. Let f (ρ ,m) = 2mπH (||ρ ||) with H = H (r) as in (1.14), m∈ Z

and let 1 � � � d . Then f = f� in C 2(An) is the unique solution to the system (2.14)
and the unique minimiser of the restricted energy J�[ f ;An] over Bm(An) .
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Proof. That f = f (ρ ;m) solves (2.14) has already been established so it remains
to prove the uniqueness statement in the theorem. Towards this end fix �,m and suppose
for the sake of a contradiction that f 1, f 2 are solutions and put f = f 2 − f 1 . Then f
is a solution to (2.14) with zero right-hand side, i.e., f ≡ 0 on (∂An)a ∪ (∂An)b and
H(‖ρ‖,‖ρ‖2)ρ2

� J (ρ)∂ν f ≡ 0 on Γn . The divergence theorem along with the PDE
satisfied by f then gives∫

An

|∇ f |2ω�(ρ)dρ =
∫

Γn

∂ν fω�(ρ)dH n−1 = 0.

Now since we have H,ρ j > 0 in An for all 1 � j � d , it follows that f ≡ 0
by noting the connectedness of An and the zero boundary conditions on f . Therefore
f 1 = f 2 and so the uniqueness follows. Next for any g∈Bm(An) by writing φ = g− f
and invoking (2.14) we have

J�[g;An]−J�[ f ;An] =
∫

An

(|∇g|2 −|∇ f |2)ω�(ρ)dρ �
∫

An

|∇φ |2ω�(ρ)dρ ,

justifying the unique minimality of f = f�(ρ ;m) as required. �

3. Whirls as solutions to the system (1.2) and the proof of Theorem 1

Our attention now shifts to the system (1.2) and the PDE LH [u] = ∇P . Here the
action of LH on a whirl u with Q ∈ C 2(An,SO(n))∩C (An,SO(n)) can be written

LH [u] =

(
Qt +

N

∑
�=1

∇ρ�⊗Q,�x

){
[Hr +2rHs]

(
Q+

N

∑
�=1

Q,�x⊗∇ρ�

)
θ+

+H
N

∑
�=1

[
Q,��x+ Δρ�Q,�x+2Q,�∇ρ�

]
− rHs

(
n+

N

∑
�=1

|Q,�x|2
)

Qθ
}

(3.1)

where H = H(r,r2), Hr = Hr(r,r2) and Hs = Hs(r,r2) . The above formulation follows
from (1.3) by substituting for ∇u from (2.1), for |∇u|2 from (2.2) and for Δu from
(2.6).

Motivated by the results in the previous section we now specialise to the case
f�(ρ ;m�) = 2m�πH (||ρ ||) for 1 � � � d with H ∈ C 2[a,b] as in (1.14). First let us
pause briefly to re-examine the identities obtained earlier for whirls, now for the case
where, with a slight abuse of notation, Q = Q(||ρ ||) . Beginning with the gradient and
noting that r = ‖ρ‖ = (ρ2

1 + ...+ ρ2
N)1/2 we have Q,� = ρ�/rQ̇(r) (with Q̇ = dQ/dr )

by a straightforward differentiation. Therefore by recalling (2.1) we have

∇u = Q+ Q̇θ ⊗
N

∑
�=1

ρ�∇ρ� = Q+ Q̇θ ⊗ x = Q+ rQ̇θ ⊗θ (3.2)

by virtue of ∑N
�=1 ρ�∇ρ� = ∇||ρ ||2/2 = x . In particular |∇u|2 = n+ r2|Q̇θ |2 . Now for

the Laplacian Δu we first note that Δρ� = 1/ρ� except for n odd and � = N where
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ΔρN = 0 whilst Q,�� = ρ2
� /r2Q̈+(r2 −ρ2

� )/r3Q̇ . Recalling (2.6) it is therefore plain
that

Δu =
N

∑
�=1

(
Q,��x+ Δρ�Q,�x+2Q,�∇ρ�

)

=
N

∑
�=1

{(
ρ2

�

r2 Q̈+
r2−ρ2

�

r3 Q̇
)

x+
ρ�

r
Δρ�Q̇x+2

ρ�

r
Q̇∇ρ�

}
. (3.3)

This is therefore seen to give Δu = rQ̈θ +(N − 1)Q̇θ +NQ̇θ + 2Q̇θ for n even and
Δu = rQ̈θ + (N − 1)Q̇θ + (N − 1)Q̇θ + 2Q̇θ for n odd. Thus in conclusion Δu =
rQ̈θ +(n+1)Q̇θ as N = n/2 when n is even and N = (n+1)/2 when n is odd. With
these basic identities at hand the action LH [u] can be written as

LH [u] =(Qt + rθ ⊗ Q̇θ )
{

[Hr(r,r2)+2rHs(r,r2)](Qθ + rQ̇θ )

+H(r,r2)
[
rQ̈+(n+1)Q̇

]
θ − rHs(r,r2)(n+ r2|Q̇θ |2)Qθ

}
. (3.4)

Before proceeding with the proof of the main theorem we present the following
technical lemma on the irrotationality of certain C 1 vector fields generated by skew-
symmetric matrices and the implication of this on the vector field being a gradient field.

LEMMA 1. Let A = A (r,z), B = B(r,z) ∈ C 1(]a,b[×R,R) and let H be an
n× n skew-symmetric matrix written H = Pdiag(h1J, . . . ,hkJ)Pt when n = 2k and
H = Pdiag(h1J, . . . ,hk−1J,hk)Pt when n = 2k− 1 . Here P ∈ O(n) is fixed, (h j : 1 �
j � k) ⊂ R , and J is given by (2.3). Consider the vector field U defined by

U(x) = A (|x|, |Hx|2)x+B(|x|, |Hx|2)H2x, x ∈ Xn, (3.5)

and let Δ(r,z) := 2Az +Br/r where Az denotes the derivative of A = A (r,z) in the
second variable and Br denotes the derivative of B = B(r,z) in the first variable and
set r = |x| , z = |Hx|2 . Then the following hold:

• If Δ �≡ 0 in Xn , then

curlU ≡ 0 in Xn ⇐⇒ |h1| = . . . = |hk| := h ⇐⇒ H2 = −h2In. (3.6)

• If Δ ≡ 0 in Xn then curlU ≡ 0 in Xn with no further restriction on H .

In either case the vector field U is a gradient field in Xn .

Before presenting the proof we note that firstly every skew-symmetric matrix can
be orthogonally diagonalised and so the description of H above is precisely referring
to this representation. Next the numbers (±√−1h j : 1 � j � k) when n = 2k and
(±√−1h j,hk = 0 : 1 � j � k−1) when n = 2k−1 are the eigenvalues of H .
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Proof. Let us begin by calculating curlU = [∇U ]− [∇U ]t . To this end, noting
the skew-symmetry of H , the symmetry of H2 and H2 = −HtH , we can write upon
suppressing the arguments in A ,B and their derivatives in the interest of brevity that

∇U =
Ar

r
x⊗ x−2Azx⊗H2x+A In +

Br

r
H2x⊗ x−2BzH2x⊗H2x+BH2.

As a result it is then clear that

[∇U ]t =
Ar

r
x⊗ x−2AzH2x⊗ x+A In +

Br

r
x⊗H2x

−2BzH2x⊗H2x+BH2.

Therefore after taking into account the necessary cancellations we obtain

curlU =
(

2Az(|x|, |Hx|2)+
Br(|x|, |Hx|2)

r

)
[H2x⊗ x− x⊗H2x]

= Δ(|x|, |Hx|2)[H2x⊗ x− x⊗H2x]. (3.7)

Let D = diag(h1J, . . . ,hkJ) when n = 2k and D = diag(h1J, . . . ,hk−1J,hk) when
n = 2k− 1. Then H = PDPt . As Xn is rotationally invariant the change of variables
y = Ptx in (3.5) leaves Xn fixed and relates the C 1 vector field U with V via U(x) =
P[A (|y|, |Dy|2)y+B(|y|, |Dy|2)D2y] =: PV(y) . In a similar way the same change of
variables in (3.7) gives the relation

curlU = PΔ(|y|, |Dy|2)[D2y⊗ y− y⊗D2y]Pt = P[curlV ]Pt . (3.8)

Thus by virtue of Δ(|x|, |Hx|2) = Δ(|y|, |Dy|2) it is easily seen that it suffices to justify
the assertion of the lemma for when P = In as then D2 = −h2In iff H2 = −h2In and
V (y) = ∇φ(y) iff U(x) = P∇φ(y) = P∇φ(Pt x) = ∇φ(Pt x) . In the rest of the proof we
thus confine to P = In . Indeed here we can write H2 = −diag(h2

1I2, . . . ,h2
kI2) when

n = 2k and H2 = −diag(h2
1I2, . . . ,h2

k−1I2,h2
k) when n = 2k−1. Let s(l) = [(l +1)/2]

for 1 � l � n . Then (3.7) can be written component-wise with 1 � i, j � n as

[curlU ]i j = −Δ(|x|, |Hx|2)
(
h2

s(i)−h2
s( j)

)
xix j. (3.9)

From this it follows that if Δ �≡ 0 in Xn then curlU ≡ 0 in Xn if and only if
h2

1 = . . . = h2
k . (Note that firstly Δ is a continuous function of x and so if it does not

vanish at a point then it does not vanishes in a neighbourhood of the point and secondly
that the factors xix j vanish only on the coordinate hyperplanes.) Likewise if Δ ≡ 0 in
Xn then curlU ≡ 0 in Xn with no impositions to be made on h1, . . . ,hk . This proves
the first part of the lemma.

We now prove that in either case U is a gradient field. First suppose that Δ �≡ 0
and h2

1 = . . . = h2
k . In this case U(x) = [A (r,h2r2)− h2B(r,h2r2)]x = s(r)x and so

there clearly exists a (radial) φ ∈ C 2(Xn) such that U = ∇φ . Next suppose that Δ ≡ 0.
We claim that U(x) = ∇ f (|x|, |Hx|2) for a suitable choice of f = f (r,z) of class C 2 .
Indeed assuming this were the case, by direct differentiation, we would have,

∇ f (|x|, |Hx|2) = fr(r, |Hx|2)θ −2r fz(r, |Hx|2)H2θ
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= A (r, |Hx|2)x+B(r, |Hx|2)H2x = U(x) (3.10)

provided that we set fr(r,z) = rA (r,z) and fz(r,z) = −B(r,z)/2. Now let R =
{(r,z) : r = |x| , z = |Hx|2 with x ∈ Xn} . Denoting by λ ,λ � 0 the minimum and
maximum eigenvalues h2

1, . . . ,h
2
k of the diagonal matrix HtH respectively it is eas-

ily seen that R = {(r,z) : a < r < b,0 � λ r2 � z � λ r2} . Since Δ ≡ 0 we have
∂z fr(r,z)− ∂r fz(r,z) = rAz(r,z)+ Br(r,z)/2 ≡ 0 in R . As a result the 1-form ω =
rA (r,z)dr−B(r,z)/2dz is closed in R and hence exact in view of R being simply-
connected. Thus ω = d f for a function (a 0-form) f = f (r,z) of class C 2 . To describe
f more specifically pick a base point (r0,z0) in R and let γ be any piecewise contin-
uously differentiable Jordan curve in R connecting (r0,z0) to (r,z) and set

f (r,z) =
∫

γ
ω =

∫
γ
rA (r,z)dr−B(r,z)/2dz, (r,z) ∈ R. (3.11)

The integral is seen to be independent of the choice of γ and hence well-defined. The
function f is of class C 2 in the interior of R with continuously differentiable tan-
gential gradients on the upper and lower boundary curves of R . One can thus verify
that (3.10) holds (both for (r,z) = (|x|, |Hx|2) in the interior of R and the upper and
lower boundary curves). Thus by setting φ(x) = f (|x|, |Hx|2) we have U = ∇φ . This
completes the proof. �

Proof of Theorem 1. : From the extremality analysis and explicit description of
f1, ..., fd in Theorem 3 it suffices to confine to whirls u with Q(ρ) = exp{H (||ρ ||)H}
where H is as given by (1.14), H = diag(2m1πJ, ...,2mdπJ) for n = 2d even and
H = diag(2m1πJ, ...,2mdπJ,0) for n = 2d + 1 odd. (Recall that J ∈ SO(2) is as in
(2.3).) Starting from the formulation of LH [u] in (3.4) it then follows that (after a
rearrangement)

LH [u] =∇H(|x|, |x|2)−nrHs(r,r2)θ

+
[
r2Hr(r,r2)+ r3Hs(r,r2)+ r(n+1)H(r,r2)

]
Ḣ 2|Hθ |2θ

+ r2H(r,r2)Ḣ Ḧ |Hθ |2θ + rH(r,r2)Ḣ 2H2θ . (3.12)

Given that the first two terms on the right in (3.12) are gradient fields (and in
particular irrotational) we henceforth set U(x) := LH [u]−∇H + nrHsθ . From here
we can use Lemma 1 above, specifically, with B(r,z) = H(r,r2)Ḣ 2 and A (r,z) =
[Hr(r,r2)/r+Hs(r,r2)+(n+1)H(r,r2)/r2]Ḣ 2z+H(r,r2)/rḢ Ḧ z . An initial inspec-
tion shows that with Δ = 2Az(r,z)+Br(r,z)/r we have

r2Δ = [3rHr(r,r2)+4r2Hs(r,r2)+2(n+1)H(r,r2)]Ḣ 2 +4rH(r,r2)Ḣ Ḧ

= −Ḣ 2 [2(n+1)H(r,r2)+ rHr(r,r2)+4r2Hs(r,r2)
]

(3.13)

where at this stage in proceedings we have used the fact that H given by (1.14) solves
the ODE d/dr[rn+1H(r,r2)Ḣ (r)] = 0 to deduce the second line. Hence it follows that
Δ = 2Az(r,z)+Br(r,z)/r = −Ḣ 2FH(r)/r2 .
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An appeal to Lemma 1 leads to the conclusion that if FH(r) �≡ 0 then curlLH [u] =
0 ⇐⇒ H2 = −c2In ⇐⇒ | f1|2 = . . . = | fd |2 when n = 2d is even and | f1|2 = . . . =
| fd |2 = 0 when n = 2d +1 is odd. As such this gives m� = 0 for all 1 � � � d when
n = 2d +1 and |m1| = . . . = |md | =: |m| when n = 2d and so f� ∈ {±2mπH (||ρ ||)}
for all 1 � � � d . If FH(r) ≡ 0 we have, again by Lemma 1, that LH [u] is irrotational
and in fact a gradient field with no restriction on the integers m1, . . . ,md . �

4. Extremality of twists and closed geodesics on SO(n)

In this section we take a closer look at twist maps and present some consequences
of extremality. Recall that by definition a twist is a self-map u whose radial and
spherical parts have the forms Ru = |x| and Su = Q(|x|)x|x|−1 respectively. Assum-
ing Q ∈ C 1(]a,b[,SO(n))∩C ([a,b],SO(n)) we have ∇u = Q + rQ̇θ ⊗ θ and thus
det∇u = det(In + rQtQ̇θ ⊗ θ ) = 1. Moreover |∇u|2 = n + r2|Q̇θ |2 . If additionally
Q ∈ C 2(]a,b[,SO(n))∩C ([a,b],SO(n)) then Δu = [(n+1)Q̇+ rQ̈]θ . As a result for
the action LH [u] as given by (1.3) we can write

LH [u] =(Qt + rθ ⊗ Q̇θ ){[Hr(r,r2)+2rHs(r,r2)](Q+ rQ̇)

+H(r,r2)[(n+1)Q̇+ rQ̈]− rHs(r,r2)(n+ r2|Q̇θ |2)Q}θ . (4.1)

Expanding this further and introducing the skew-symmetric matrix field A = QtQ̇
we can write for a < r < b

LH [u] =[Hr(r,r2)+2rHs(r,r2)](θ + rAθ + r2|Aθ |2θ )

+H(r,r2)[(n+1)Aθ + r(Ȧ+A2)θ

+ r(n+1)|Aθ |2θ + r2〈Aθ ,Ȧθ 〉θ ]− rHs(r,r2)(n+ r2|Aθ |2)θ . (4.2)

The above description follows upon noting |Q̇θ |2 = |Aθ |2 , QtQ̈ = Ȧ+ A2 and
〈Q̇θ ,Q̈θ 〉= 〈QtQ̇θ ,QtQ̈θ 〉= 〈Aθ ,(Ȧ+A2)θ 〉= 〈Aθ ,Ȧθ 〉+〈Aθ ,A2θ 〉= 〈Aθ ,Ȧθ 〉
in view of A being skew-symmetric. Now a straightforward inspection shows that we
can write LH [u] in the alternative and more suggestive form

v = LH [u] = A (r,θ ;A)θ + rH(r,r2)A2θ +
1
rn

d
dr

[
rn+1H(r,r2)A

]
θ , (4.3)

where A denotes the scalar-valued function

A (r,θ ;A) =[Hr(r,r2)+2rHs(r,r2)](1+ r2|Aθ |2)+ rH(r,r2)[(n+1)|Aθ |2
+ r〈Aθ ,Ȧθ 〉]− rHs(r,r2)(n+ r2|Aθ |2). (4.4)

As a useful but side remark note that upon introducing the skew-symmetric matrix
field B = Q̇Qt we can write LH [u] = Qtw(x)Q where w now refers to the term on
the right of (4.3) with B replacing A throughout. Now proceeding with (4.2)-(4.3) and
noting the PDE LH [u] = ∇P it follows that∫ 2π

0
〈LH [u](rγ(t)),γ ′(t)〉dt =

∫ 2π

0
〈v(rγ(t)),γ ′(t)〉dt =

∫ 2π

0

d
dt

P(γ(t))dt = 0 (4.5)
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(with prime denoting d/dt ) where γ = γ(t) ∈C 1([0,2π ],Sn−1) is closed and x = rγ(t)
with a < r < b fixed. Henceforth we assume this to be true and look to recover infor-
mation on the matrix field A . Indeed specialising to θ = γ(t) as above and using (4.3)
we can expand the integrand in the left-hand side of (4.5) as

〈LH [u](rγ(t)),γ ′(t)〉 =〈v(rγ(t)),γ ′(t)〉 = A (r,θ ;A)〈γ(t),γ ′(t)〉 (4.6)

+ rH(r,r2)〈A2γ(t),γ ′(t)〉+ 1
rn 〈d/dr

[
rn+1H(r,r2)A

]
γ(t),γ ′(t)〉.

Since γ is a curve on the unit sphere we have 〈γ,γ ′〉 = 0 and subsequently (4.5)-
(4.6) under the assumption v = LH [u] = ∇P simplifies to

∫ 2π

0
〈LH [u](rγ(t)),γ ′(t)〉dt

=
∫ 2π

0
〈E(r)γ(t),γ ′(t)〉dt +

1
rn

∫ 2π

0
〈F(r)γ(t),γ ′(t)〉dt =

∫ 2π

0

d
dt

P(γ(t))dt = 0,

(4.7)

where E=rH(r,r2)A2 and F=d/dr[rn+1H(r,r2)A] are symmetric and skew-symmetric
matrix fields on ]a,b[ respectively.

LEMMA 2. Let E be a symmetric n×n matrix and γ = γ(t) ∈ C 1([0,2π ],Sn−1)
be a closed curve. Then 〈Eγ(t),γ ′(t)〉 integrates to zero on [0,2π ] .

Proof. As γ is closed and E is symmetric this follows by integrating the identity
d/dt〈Eγ,γ〉 = 〈Eγ ′,γ〉+ 〈Eγ,γ ′〉 = 2〈Eγ,γ ′〉 noting 〈Eγ,γ〉|t=2π = 〈Eγ,γ〉|t=0 . �

Moving on now, upon utilising this lemma, the integral involving the symmetric
matrix field E = rH(r,r2)A2 in (4.7) is seen to vanish and so, summarising, if v =
LH [u] = ∇P , then

∫ 2π

0
〈LH [u](rγ(t)),γ ′(t)〉dt =

1
rn

∫ 2π

0
〈d/dr

[
rn+1H(r,r2)A

]
γ(t),γ ′(t)〉dt = 0 (4.8)

for every closed curve γ ∈ C 1([0,2π ],Sn−1) . Now we turn into dealing with the skew-
symmetric matrix field F .

LEMMA 3. Let F be an n× n skew-symmetric matrix and let γ = PRρ with
P,R ∈ O(n) and ρ ∈ C ∞([0,2π ],Sn−1) the closed curved given by

ρ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ1 = sin t sinφ2 sinφ3 . . .sinφn−1,
ρ2 = cost sinφ2 sinφ3 . . .sinφn−1,
ρ3 = cosφ2 sinφ3 . . . sinφn−1,
...
ρn−1 = cosφn−2 sinφn−1,
ρn = cosφn−1.

(4.9)
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Here φ� ∈ [0,π ] for all 2� � � n−1 and denoting by (ek : 1 � k � n) the standard basis
of Rn , R = R(i, j) is the orthogonal transformation swapping the pair of basis vectors
(e1,e2) with (ei,e j) ( 1 � i < j � n ) and leaving the rest fixed. Then 〈Fγ(t),γ ′(t)〉
integrates to zero on [a,b] ⇐⇒ F = 0 .

Proof. As F is skew-symmetric we can write F = PDPt where P ∈ O(n) and
D = diag(d1J, . . . ,dkJ) if n = 2k and D = diag(d1J, . . . ,dk−1J,0) if n = 2k−1. Here
J is the 2×2 rotation matrix by angle π/2 [cf. (2.3)]. Now setting γ = PRρ we have∫ 2π

0
〈Fγ(t),γ ′(t)〉dt =

∫ 2π

0
〈Dω(t),ω ′(t)〉dt = 0 (4.10)

where ω := Rρ . Thus to prove the lemma it is sufficient to show that the last equality
in (4.10) implies D = 0. Arguing component-wise and substituting ω into (4.10) with
ω ′(t) = Rρ ′(t) = R(ρ2,−ρ1,0, . . . ,0) it is seen that∫ 2π

0
〈Dω ,ω ′〉dt = 2π(ρ2

1 + ρ2
2 )Di j. (4.11)

As such if the integral on the left is zero then D = 0. This finishes the proof. �

THEOREM 4. If a twist u with Q ∈ C ([a,b],SO(n))∩C 2(]a,b[,SO(n)) satisfies
LH [u] = ∇P for some P , then the twist path satisfies the ODE

d
dr

{
rn+1H(r,r2)Qt dQ

dr

}
= 0, a < r < b. (4.12)

Proof. This follows directly by combining the conclusions of the above two lem-
mas. �

Let us now look at this last ODE from a different angle. Indeed the energy of an
admissible twist u , upon noting dμ(x,u) = H(|x|, |x|2)dL n can be written,

I[u;Xn] =
∫

Xn

|∇u|2 dμ(x,u) =
∫

Sn−1

∫ b

a
H(r,r2)(n+ r2|Q̇θ |2)rn−1 drdH n−1

=
∫

Xn

|∇x|2 dμ(x,x)+ ωn

∫ b

a
H(r,r2)|Q̇|2rn+1 dr. (4.13)

Proceeding forward we now set for each admissible twist loop Q with associated twist
u the energy integral

E[Q;(a,b)] =
I[u;Xn]− I[x;Xn]

ωn
=
∫ b

a
H(r,r2)|Q̇|2rn+1 dr. (4.14)

The Euler-Lagrange equation for this energy integral over the space of admissible loops
J (a,b) = {Q ∈ W 1,2(a,b;SO(n)) : Q(a) = Q(b) = In} can then be seen to be the
second order ODE for Q = Q(r) and equivalent to (4.12):

d
dr

[
rn+1H(r,r2)

dQ
dr

Qt
]

= Q
d
dr

[
rn+1H(r,r2)Qt dQ

dr

]
Qt = 0. (4.15)
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The ODE (4.12) and geodesics on SO(n) . We now turn into resolving the boundary
value problem associated with the ODE (4.12) over the space of loops J (a,b) as
defined above. Indeed a first integration yields rn+1H(r,r2)QtQ̇ = H for a constant
skew-symmetric matrix H . When combined with the left boundary condition Q(a) =
In this first order ODE is seen to have the general solution Q(r) = exp{H (r)H} where
the profile H ∈ C 2[a,b] is given by (1.14).

Anticipating on the right boundary condition Q(b) = In , we can proceed by first
orthogonally diagonalising H hence writing H = Pdiag(c1J, . . . ,ckJ)Pt when n = 2k
and H = Pdiag(c1J, . . . ,ck−1J,0)Pt when n = 2k−1 where P ∈ O(n) , and the 2×2
matrices J and R are given by (2.3). Verifying the boundary condition Q(b) = In in
even and odd dimensions we then have:

• (n = 2k ) Here we write

Q(b) = exp{H (b)H} = exp{Pdiag(c1J, . . . ,ckJ)Pt}
= Pdiag(R[c1], . . . ,R[ck])Pt

= In ⇐⇒ c j = 2mjπ , mj ∈ Z, ∀1 � j � k.

• (n = 2k−1) Here we write

Q(b) = exp{H (b)H} = exp{Pdiag(c1J, . . . ,ck−1J,0)Pt}
= Pdiag(R[c1], . . . ,R[ck−1],1)Pt

= In ⇐⇒ c j = 2mjπ , mj ∈ Z, ∀1 � j � k−1.

In conclusion the solutions Q = Q(r;m) to (4.12) in J (a,b) are given by Q(r;m)
= exp{H (r)H} , where H (r) is given by (1.14), m = (m1, ...,mk) and for the skew-
symmetric matrix H we have

H =
{

Pdiag(2m1πJ, . . . ,2mkπJ)Pt, n = 2k,
Pdiag(2m1πJ, . . . ,2mk−1πJ,0)Pt, n = 2k−1.

(4.16)

Here we remark that the resulting twist loops Q = Q(r;m) = exp{H (r)H} are
closed rescaled geodesics on the compact Lie group SO(n) based at In with the skew-
symmetric matrix H in the Lie algebra so(n) presenting the tangent direction at the
end-points and the matrix exponential being the canonical exponential map from the
Lie algebra so(n) to the Lie group SO(n) .

5. Twists as solutions to the system (1.2) and the proof of Theorem 2

In this last section we turn again to the differential operator LH and seek solutions
to the nonlinear system (1.2) in the form of twists. As here necessarily the twist loop Q
solves the ODE d/dr[rn+1H(r,r2)QtQ̇] = 0 in J (a,b) , in view of what was discussed
in the previous section, we must have Q(r) = exp{H (r)H} for a � r � b with H =
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H (r) as in (1.14) and H as in (4.16). Now the action of LH on u given by (4.1) or
(4.3)-(4.4) simplifies to

LH [u =rexp{H (r)H}θ ] = ∇H(|x|, |x|2)−nrHs(r,r2)θ

+
[
r2Hr(r,r2)+ r3Hs(r,r2)+ r(n+1)H(r,r2)

]
Ḣ 2|Hθ |2θ

+ r2H(r,r2)Ḣ Ḧ |Hθ |2θ + rH(r,r2)Ḣ 2H2θ . (5.1)

With this introduction and formulation at hand we can now completely describe the
twist solutions to the system (1.2)-(1.3) and present the proof Theorem 2.

Proof of Theorem 2. : Referring to (5.1) it is seen by inspection that the first two
terms on the right are gradient fields and so we can focus on the remainder

U(x) =LH [u]−∇H(|x|, |x|2)+nHs(|x|, |x|2)x
=A (|x|, |Hx|2)x+B(|x|, |Hx|2)H2x, (5.2)

where A (r,z) = −Hs(r,r2)Ḣ 2z and B(r,z) = H(r,r2)Ḣ 2 . Here we have used the
fact that H satisfies the ODE d/dr[rn+1H(r,r2)Ḣ (r)] = 0 to simplify the expression
for A . Referring to Lemma 1 an initial inspection now shows that

2Az(r,z)+
Br(r,z)

r
=

1
r
Hr(r,r2)Ḣ 2 +

2
r
H(r,r2)Ḣ Ḧ (5.3)

= −Ḣ 2

r2

[
2(n+1)H(r,r2)+ rHr(r,r2)+4r2Hs(r,r2)

]
where in concluding the second line we have made further use of the above ODE to
substitute for Ḧ . As before let FH(r) = rHr(r,r2)+ 2(n+ 1)H(r,r2)+ 4r2Hs(r,r2) .
Then if FH �≡ 0 on ]a,b[ by invoking the first part of Lemma 1 with Az +Br/r �≡ 0
we have:

curlLH [u = rexp{H (r)H}θ ] = 0 ⇐⇒ H2 = −c2In ⇐⇒ LH [u] is a gradient.

This, given the orthogonal diagonalisation of the skew-symmetric matrix H from
above and (4.16) lead to Q ≡ In when n is odd and Q(r) = exp{2mπH (r)PJnPt}
when n is even, where m ∈ Z and Jn = diag(J, . . . ,J) with J as in (2.3).

Next when FH ≡ 0 on ]a,b[ the corresponding vector field LH [u] is still a gra-
dient by the second part of Lemma 1 but now with no further restrictions on the skew-
symmetric matrix H . Indeed more directly to show that U is a gradient and hence
u = rexp{H (r)H}θ solves LH [u] = ∇P we show that there exists f = f (r,z) ∈
C 2([a,b]×R,R) such that

∇ f (|x|, |Hx|2) = fr(|x|, |Hx|2)x/|x|−2 fz(|x|, |Hx|2)H2x = U(x), x ∈ Xn.

By direct verification it is seen that (up to an additive constant) the function f (r,z) =
−1/2H(r,r2)Ḣ 2z with a � r � b and z ∈ R satisfies these conditions. Thus U =
∇ f (|x|, |Hx|2) and so LH [u] is a gradient field. �
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