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Abstract. The aim of this paper is to study a stage-structured pest management model with mixed
type of functional response i.e., Holling type-I and Beddington-DeAngelis functional response
with impulsive biological control. Stage structuring is proposed due to the fact that almost all
the pests in their life pass through two stages namely, immature larva and mature adult. It is
assumed that immature susceptible pests and exposed pests are attacked by a natural enemy
and susceptible pests (immature and mature) are contacted by infected pests which make them
exposed. Infected pests and natural enemies are infused impulsively after fixed intervals. All
positive solutions are proved to be uniformly ultimately bounded. The stability analysis of pest
extinction periodic solution, as well as the permanence of system, are obtained by making use of
floquet’s theory, small amplitude perturbation technique, and comparison theorem. The results
obtained provide certain dependable theoretical findings for effective pest management. At last,
theoretical findings are confirmed by means of numerical simulation.

1. Introduction

Farmers have a vast scope of pest control methods including physical control (by
killing the small insects and rodents or by setting up barriers), chemical control (by
spraying pesticides) and biological control (by releasing predators or infected pests).
Although chemical control method controls the pest population effectively in a very
short interval, however excessive use of pesticides is very harmful to a human being
as well as other natural enemies of pests. Moreover, some authors indicated that pro-
longed use of same chemical pesticides led to the development of resistance in a number
of pests with respect to that pesticide which leads to farmer’s loss and forces them to
use strong pesticides [1, 10]. On the contrary in biological control, pest population is
suppressed by releasing the natural enemies of pests or by spreading infection among
the pest population. For example, Bollworm is a pest which attacks cotton and Bacillus
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Thruingirnsis is a natural enemy of Bollworm which saves the cotton. The use of cac-
toblastosis beetle to control its pest cactus is the world’s most monumental successful
example via biological technique. As another example, Aphid pests are controlled by
their natural enemy named Lady beetle. The use of one or more biological control is an
alternative to chemical pesticides and a combination of two or more biological control
methods with or without the use of chemical pesticides come under the category of In-
tegrated Pest Management.
Further, the pest control models can be well constructed using impulsive differential
equations, as the pest controlling agents are released periodically. A number of authors
have successfully developed pest controlling models by means of impulsive differential
equations [2, 13, 16, 18]. Kumar et al. [7] studied a food chain model with gesta-
tion delay in natural enemies and pests. After studying stability at equilibrium points,
the authors used sensitivity analysis to study the sensitive indices of the variables in
the proposed system. Kumar et al. [8] extended their paper [7] to a stage-structured
plant-pest-natural enemy food chain model with gestation delays in mature pests as
well as mature natural enemies. The authors studied the stability of various feasible
equilibrium points and showed that larger gestation period in pests brings oscillations
in the system. Recently the authors of, [15, 17] worked on susceptible-exposed-infected
(SEI) pest management models. Gupta et al. [24] studied the dynamics of the plant-
pest-natural enemy food chain model. However susceptible-exposed-infected-natural
enemy (SEIN) models are more important as they give more significant results from
the biological viewpoint. Following is the SEIN pest management model studied by
Mathur and Dhar [11]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = rS(t)(1− S(t)

K )− β1S(t)I(t)
1+mS(t) −β2S(t)N(t),

dE(t)
dt = β1S(t)I(t)

1+mS(t) − (α + μ1)E(t),
dI(t)
dt = αE(t)− μ1I(t),

dN(t)
dt = γβ2S(t)N(t)

1+hβ2S(t) − μ2N(t),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

t �= nT,

ΔS(t) = 0,

ΔE(t) = 0,

ΔI(t) = p1,

ΔN(t) = p2,

⎫⎪⎪⎬
⎪⎪⎭yt = nT,

(1)

where S(t),E(t), I(t) and N(t) are densities of susceptible pests, exposed pests, in-
fected pests and natural enemies respectively, at any time t . Susceptible pests S(t) in
absence of I(t) and N(t) grows logistically with carrying capacity K and the intrinsic

birth rate r, β1S(t)I(t)
1+mS(t) is the Holling type II functional response at which the susceptible

pests get exposed, β2 is predation rate by natural enemy, but natural enemy does not
predate on exposed and infected pests, γ is rate of conversion of pests to natural enemy,
μ1 is natural death rate of exposed and infected pests, μ2 is natural death rate of natural
enemy.
In this paper, the model (1) is extended to a stage-structured and Beddington-DeAngelis
functional response model, which is more significant from the biological viewpoint.
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Stage structuring of pests is proposed due to the fact that almost all pests in their life
pass through two stages: immature larva and mature adult. Beddington [3] and DeAn-
gelis et al. [5] introduced a functional response given by F = αP1

a+bP1+cP2
independently

but simultaneously for the reason that predator has to work hard to catch prey and is
named as Beddington-DeAngelis functional response, where P1 = P1(t) and P2 = P2(t)
represents the size of the prey population and predator population respectively. The
Beddington-DeAngelis functional response is constructed by improving Holling type-
II functional response by means of including an extra term that describes mutual in-
terference by the natural enemy. Negi and Gakkhar [13] studied the dynamics in a
Beddington-DeAngelis prey-predator system with impulsive harvesting. (Cantrell and
Cosner [4], Wang and Huang [16]) also discussed the prey-predator interactions using
Beddington-DeAngelis functional response.
In this paper, it is further assumed that immature susceptible pests and exposed pests
are attacked by the natural enemy and immature and mature susceptible pest are con-
tacted by infected pest which makes them exposed. Infected pests and natural enemies
are impulsively infused at the fixed moment of time.
The present paper is organized as follows. In Section 2, we develop a pest control
model with stage structuring and Beddington-DeAngelis functional response with im-
pulsive infusion of infected pests and natural enemies. Some important lemmas and
boundedness of the system are established in Section 3. Using Floquet’s theory, small
amplitude perturbation technique and comparison principles, sufficient conditions for
local stability and global attractivity of pest eradication periodic solutions are obtained
in Section 4. Permanence of the proposed system is established in Section 5. In order
to validate our theoretical findings, numerical simulations and discussions are done in
Section 6. The last section covers the conclusion of the paper.

2. Mathematical model

Before proposing the mathematical model describing the complex dynamics, we
make the following assumptions:

(A1) Susceptible pests have two life stages namely, immature larva and mature adult.

(A2) Natural enemy attacks immature pest and exposed pests.

(A3) Natural enemies consume immature pests with Beddington-DeAngelis functional
response and exposed pests with Holling type-I functional response.

(A4) Infected pest contact with immature and mature susceptible pest with Holling
type-I functional response.

(A5) Natural enemy and infected pest populations are infused impulsively.

With these assumptions, the model proposed by Mathur and Dhar[11] is modified and
following mathematical model is proposed:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1(t)
dt = r(S1(t)+S2(t))(1− S1(t)+S2(t)

K )− hS1(t)N(t)
1+γ1S1(t)+γ2N(t)

−β1S1(t)I(t)−α1S1(t)−d0S1(t),
dS2(t)

dt = α1S1(t)−β2S2(t)I(t)−d0S2(t),
dE(t)

dt = β1S1(t)I(t)+ β2S2(t)I(t)− (μ +d1)E(t)
−α2E(t)N(t),

dI(t)
dt = μE(t)−d2I(t),

dN(t)
dt = ηhS1(t)N(t)

1+γ1S1(t)+γ2N(t) + ηα2E(t)N(t)−d3N(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= nT,

S1(t+) = S1(t),
S2(t+) = S2(t),
E(t+) = E(t),
I(t+) = I(t)+ θ1,

N(t+) = N(t)+ θ2,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

t = nT,

(2)

where S1(t),S2(t),E(t), I(t) and N(t) are densities of immature susceptible pest, ma-
ture susceptible pest, exposed pest, infected pest and natural enemy respectively. Sus-
ceptible pest grows logistically with carrying capacity K , and growth rate r , α1 is
the maturity rate of immature pests, h is predation rate of immature susceptible pest
by natural enemy, β1 and β2 are conversion rates of immature and mature susceptible
pests to exposed pest respectively, μ is the amount of exposed pests shifted to infected
pests, α2 is the predation rate of exposed pest by natural enemy, η is the conversion
rate of predation of exposed pests by natural enemy, d0,d1,d2 and d3 are natural death
rates of susceptible pests, exposed pest, infected pests and natural enemies respectively,
γ1 and γ2 are half saturation constants of immature susceptible pest and natural enemy
respectively, θ1 is infused amount of infected pests and θ2 is infused amount of natural
enemies at t = nT,n = 1,2, ... and T is the period of impulse effect.

3. Preliminaries

The solution of system (2) is denoted by Y (t) = (S1(t),S2(t),E(t), I(t),N(t))
′
and

is a piecewise continuous function Y : R+ → R5
+ , that is, Y (t) is continuous in the in-

terval (nT,(n+1)T ],n ∈ Z+ and Y (nT+) = limt→nT+Y (t) exists. The global existence
and uniqueness of a solution of the model (2) is guaranteed by the existence results
given in [12].
Before proving the main results, we firstly state and establish boundedness of the pro-
posed model (2).

LEMMA 1. For any solution Y (t) = (S1(t),S2(t),E(t), I(t),N(t)) of system (2) ∃
a constant L > 0 such that S1(t) � L,S2(t) � L,E(t) � L, I(t) � L and N(t) � L with
t large enough.
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Proof. Define U(t) = ηS1(t) + ηS2(t)+ ηE(t)+ ηI(t)+ N(t) and let 0 < d <
min{d0,d1,d2,d3} . Then for t �= nT , we obtain that

D+U(t)+dU(t) � ηrK
4

= L0,

where D+U(t) denotes the derivative of U(t) as given in definition 3.1 of [9].
Now at impulsive point t = nT,U(t+) � U(t)+ θ1 + θ2.
By Lemma 3.1 of Jatav and Dhar [6] for t ∈ (nT,(n+1)T ] , we have

U(t) � U(0)exp(−dt)+
∫ t

0
L0exp(−d(t− s))ds+ ∑

0<nT<t

(θ1 + θ2)exp(−d(t−nT))

→ L0

d
+

(θ1 + θ2)exp(−dT )
exp(dT )−1

,as t → ∞, (3)

which shows that U(t) is uniformly ultimately bounded. Thus we get a constant L :=
L0
d + (θ1+θ2)exp(−dT)

exp(dT )−1 such that S1(t) � L,S2(t) � L,E(t) � L, I(t) � L and N(t) � L for
all t large enough.
This proves that all the five populations are bounded. �

Now we proceed to find pest-extinction periodic solutions for the model (2). For
the case of pest-extinction, we remain with the following impulsive subsystem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dI(t)
dt = −d2I(t),

dN(t)
dt = −d3N(t),

}
t �= nT,

I(t+) = I(t)+ θ1,

N(t+) = N(t)+ θ2,

}
t = nT.

(4)

Using Lemma 3.3 of Jatav and Dhar [6], we obtain that

I∗(t) =
θ1exp(−d2(t−nT ))

1− exp(−d2T )
, I∗(0+) =

θ1

1− exp(−d2T )
, (5)

and

N∗(t) =
θ2exp(−d3(t−nT))

1− exp(−d3T )
, N∗(0+) =

θ2

1− exp(−d3T )
(6)

are positive solutions of the subsystem (4) and are globally asymptotically stable. Thus
(0,0,0, I∗(t),N∗(t)) is the pest-extinction periodic solution of (2).

4. Stability analysis

In this section, we will discuss local and global stability of pest-extinction periodic
solution using Floquet theory and small amplitude perturbation technique.
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THEOREM 1. The pest-extinction periodic solution (0,0,0, I∗(t),N∗(t)) is locally
stable provided T � T ∗ , where

T ∗ =
1

r−α −d0

[
β1θ1

d2
− h

γ2d3
log

(
1− exp(−d3T )+ γ2θ2 exp(−d3T )

1− exp(−d3T )+ γ2θ2

)]

− 1
r−α −d0

[
αr

d0d2
log

(
β2θ1 +d0(1− exp(−d2T ))exp(d2T )

β2θ1 +d0(1− exp(−d2T ))

)]
.

Proof. For the local stability of periodic solution (0,0,0, I∗(t),N∗(t)) , we define
S1(t) = φ1(t),S2(t) = φ2(t),E(t) = φ3(t), I(t) = I∗(t) + φ4(t),N(t) = N∗(t) + φ5(t),
where φi(t), i = 1,2, ...,5 are small amplitude perturbations of the solution respectively,
then system (2) in linearized form becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dφ1(t)
dt = rφ1(t)+ rφ2(t)− hφ1(t)N∗(t)

1+γ2N∗(t) −α1φ1(t)
−β1φ1(t)I∗(t)−d0φ1(t),

dφ2(t)
dt = α1φ1(t)−β2I∗(t)φ2(t)−d0φ2(t),

dφ3(t)
dt = β1I∗(t)φ1(t)+ β2I∗(t)φ2(t)− (μ +d1)φ3(t)

−α2N∗(t)φ3(t),
dφ4(t)

dt = μφ3(t)−d2φ4(t),
dφ5(t)

dt = ηhN∗(t)φ1(t)
1+γ2N∗(t) + ηα2N∗(t)φ3(t)−d3φ5(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= nT,

φ1(t+) = φ1(t),
φ2(t+) = φ2(t),
φ3(t+) = φ3(t),
φ4(t+) = φ4(t),
φ5(t+) = φ5(t),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

t = nT.

(7)

Let Φ(t) be the fundamental matrix of (7), then

dΦ(t)
dt

= AΦ(t), (8)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

r− hN∗(t)
1+γ2N∗(t) −β1I∗(t)−α −d0 r 0 0 0

α1 −β2I∗(t)−d0 0 0 0

β1I∗(t) β2I∗(t) −(μ +d1 +α2N∗(t)) 0 0

0 0 μ −d2 0
ηhN∗(t)

1+γ2N∗(t) 0 ηα2N∗ 0 −d3

⎞
⎟⎟⎟⎟⎟⎟⎠

≈

⎛
⎜⎜⎜⎜⎜⎜⎝

r− hN∗(t)
1+γ2N∗(t) −β1I∗(t)−α1−d0 + α1r

β2I∗(t)+d0
0 0 0 0

α1 −β2I∗(t)−d0 0 0 0

β1I∗(t) β2I∗(t) −(μ +d1 +α2N∗(t)) 0 0

0 0 μ −d2 0
ηhN∗(t)

1+γ2N∗(t) 0 ηα2N∗ 0 −d3

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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The linearization of impulsive conditions of (2) i.e. equations sixth to tenth of (2)
becomes ⎛

⎜⎜⎜⎜⎝
φ1(t+)
φ2(t+)
φ3(t+)
φ4(t+)
φ5(t+)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

φ1(t)
φ2(t)
φ3(t)
φ4(t)
φ5(t)

⎞
⎟⎟⎟⎟⎠ .

Thus the monodromy matrix of (7) is

M =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠Φ(T ).

From (8), we obtain that Φ(T ) = Φ(0)exp(
∫ T
0 Adt) , where Φ(0) is identity matrix.

Then the eigen values of the monodromy matrix M are:

λ1 = exp

(∫ T

0

(
r− hN∗(t)

1+ γ2N∗(t)
−β1I

∗(t)−α1−d0 +
α1r

β2I∗(t)+d0

)
dt

)
,

λ2 = exp

(∫ T

0
(−β2I

∗(t)−d0)dt

)
= exp

(
−β2θ1

d2

)
< 1,

λ3 = exp

(
−

∫ T

0
(μ +d1 + α2N

∗(t)dt

)
< 1,

λ4 = exp(−d2T ) < 1,

λ5 = exp(−d3T ) < 1.

Thus Floquet theory of impulsive differential equations implies that the pest extinction
periodic solution of the system (2) is locally asymptotically stable if and only if |λ1| �
1, that is T � T ∗ . Hence the result. �

THEOREM 2. The pest-extinction periodic solution (0,0,0, I∗(t),N∗(t)) of (2) is
globally attractive provided T < T ∗ .

Proof. As proved in theorem above, the system (2) is locally stable provided T <
T ∗ , so we can choose ε1 > 0 small enough such that

(n+1)T∫
nT

(
r− h(N∗(t)− ε1)

1+γ2(N∗(t)−ε1)
−β1(I∗(t)−ε1)−α1−d0+

α1r
β2(I∗(t)−ε1)+d0

)
dt :=q<0.

From the fourth and ninth equations of (2), we get{
dI(t)
dt � −d2I(t), t �= nT,

I(t+) = I(t)+ θ1, t = nT.
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Consider the following auxiliary system{
dw1(t)

dt = −d2w1(t), t �= nT,
w1(t+) = w1(t)+ θ1, t = nT.

(9)

Using Lemma 3.3 of Jatav and Dhar [6], we get that the system (9) has a periodic
solution

w∗
1(t) =

θ1exp(−d2(t−nT))
1− exp(−d2T )

, nT < t � (n+1)T, n ∈ Z+,

which is globally asymptotically stable. In view of Lemma 3.3 of Jatav and Dhar [6] and
the comparison theorem of the impulsive differential equations by Lakshmikantham et
al. [12], we have I(t) � w1(t) and w1(t) → w1

∗(t) as t → ∞ . Then ∃ k1 > 0 such that

I(t) � w1(t) > I∗(t)− ε1, nT < t � (n+1)T, n > k1. (10)

Now from fifth and tenth equations of (2), we obtain the following subsystem{
dN(t)

dt � −d3N(t), t �= nT,
N(t+) = N(t)+ θ2, t = nT.

Consider the following auxiliary system{
dw2(t)

dt = −d3w2(t), t �= nT,
w2(t+) = w2(t)+ θ2, t = nT.

(11)

Using Lemma 3.3 of Jatav and Dhar [6], we obtain that the system (11) has a periodic
solution

w∗
2(t) =

θ2exp(−d3(t−nT))
1− exp(−d3T )

, nT < t � (n+1)T, n ∈ Z+,

which is globally asymptotically stable. In view of Lemma 3.3 of Jatav and Dhar [6] and
the comparison theorem of the impulsive differential equations by Lakshmikantham et
al. [12], we have N(t) � w2(t) and w2(t) → w2

∗(t) as t → ∞ . Then ∃ positive integer
k2(k2 > k1) such that

N(t) � w2(t) > N∗(t)− ε1, nT < t � (n+1)T, n > k2. (12)

Now first equation of (2) can be written as

dS1(t)
dt

�
(
r−α1−d0− h(N∗(t)− ε1)

1+γ2(N∗(t)−ε1)
−β1(I∗(t)−ε1)+

α1r
β2(I∗(t)−ε1)+d0

)
S1(t).

Integrating the above equation between the pulses, we get

S1(t) � S1(nT )exp(q),

where q is defined at the start of the proof.
After the successive pulse, we can obtain the following stroboscopic map

S1((n+1)T+) � S1(nT+)exp(q),
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where q < 0 is as defined above. Thus S1(nT+) � S1(0+)exp(qn) and so S1(nT+)→ 0
as n → ∞ .
Therefore S1(t) → 0 as n → ∞ . Therefore for ε2 > 0, small enough and ∃ positive
integer k3(k3 > k2) such that

S1(t) < ε2, ∀ nT < t � (n+1)T, n > k3.

From second equation of system (2), we obtain

dS2(t)
dt

� α1ε2 −d0S2(t).

Similarly, for ε2 > 0, small enough, ∃ positive integer k4(k4 > k3) such that

S2(t) � ε2, ∀ nT < t � (n+1)T, n > k4.

From third equation of system (2) we have

dE(t)
dt

� −(β1 + β2)ε2 − (μ +d1)E(t).

Integrating the above equation between the pulses, sloving in a similar manner as above,
we can choose ε3 > 0, small enough and ∃ positive integer k5(k5 > k4) such that
E(t) < ε3 ∀ nT < t � (n+1)T, n > k5,
where

ε3 =
(β1 + β2)ε2

μ +d1
.

Again from fourth and ninth equation of system (2), we obtain{
dI(t)
dt � με3−d2I(t), t �= nT,

I(t+) = I(t)+ θ1, t = nT.

Consider the following comparison system{
dw3(t)

dt = με3 −d2w3(t), t �= nT,
w3(t+) = w3(t)+ θ1, t = nT.

(13)

Again using Lemma 3.3 of Jatav and Dhar [6], we obtain that the system (13) has a
periodic solution

w∗
3(t) =

με3

d2
+

θ1exp(−d2(t −nT))
1− exp(−d2T )

, nT < t � (n+1)T, n ∈ Z+,

which is globally asymptotically stable. In view of Lemma 3.3 of Jatav and Dhar [6] and
the comparison theorem of the impulsive differential equations we have I(t) � w3(t)
and w3(t) → w3

∗(t) as t → ∞ . Then ∃ positive integer k6(k6 > k5) such that

I(t) � w3(t) < w∗
3 + ε1, nT < t � (n+1)T, n > k6. (14)
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From fifth and tenth equation of system (2), we obtain that{
dN(t)

dt � −(d3−ηα2ε3 −ηhε1)N(t), t �= nT,
N(t+) = N(t)+ θ2,t = nT.

In a similar manner, there exists positive integer k7(k7 > k6) such that

N(t) � Ñ(t)+ ε1, nT < t � (n+1)T, n > k7. (15)

where

Ñ(t) =
θ2 exp(−(d3−ηα2ε3 −ηhε1)(t −nT))

1− exp(−(d3−ηα2ε3 −ηhε1))
, nT < t � (n+1)T, n ∈ Z+.

Since ε1,ε2 and ε3 are small enough, we have w∗
1 → I∗(t), Ñ(t) → N∗(t) as ε3 → 0.

Thus it is obtain that S1(t)→ 0,S2(t)→ 0,E(t)→ 0, I(t)→ I∗(t) and N(t) →N∗(t) as
t → ∞ . Hence (0,0,0, I∗(t),N∗(t)) is globally attractive. �

REMARK 1. Theorem 1 and 2 imply that necessary and sufficient condition for
the pest-extinction periodic solution (0,0,0, I∗(t),N∗(t)) to be globally asymptotically
is T < T ∗.

5. Permanence

The populations S1(t),S2(t),E(t), I(t) and N(t) of system (2) are said to be per-
manent if there exist positive constants n,N and T0 such that each positive solution
of system (2) satisfies n � S1(t),S2(t),E(t), I(t),N(t) � N, ∀ t � T0 . In this section
permanence of the system (2) is proved.

THEOREM 3. The system (2) is permanent if T > T ∗ .

Proof. Let (S1(t),S2(t),E(t), I(t),N(t)) be any solution of (2). From the Lemma 1,
we have S1(t) � L,S2(t) � L,E(t) � L, I(t) � L and N(t) � L ∀ t � 0.
From equations (10) and (12), it is obtained that

I(t) > I∗(t)− ε1 := a1 > 0, nT < t � (n+1)T, n � k1,

N(t) > N∗(t)− ε1 := a2 > 0, nT � t � (n+1)T, n � k2.

Therefore, I(t) and N(t) are bounded below.
Now, for the permanence of the model (2), we only need to find a3, a4 and a5 such
that S1(t) � a3,S2(t) � a4 and E(t) � a5 for t being large enough.
First, we prove that S1(t) � a3 for t large enough and the result is proved in two steps.
Step I First suppose that S1(t) � a3 is not true, ∃ K1 ∈ Z+, such that S1(t) < a3, ∀ t �
K1T . Using this assumption, we are left with following subsystem of (2).{

dI(t)
dt � μL−d2I(t), t �= nT,

I(t+) = I(t)+ θ1, t = nT.
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Consider the auxiliary system{
dv1(t)

dt = μL−d2v1(t), t �= nT,
v1(t+) = v1(t)+ θ1, t = nT.

(16)

Using Lemma 3.3 of Jatav and Dhar [6], the system (16) has a periodic solution

v∗1(t) =
μL
d2

+
θ1exp(−d2(t−nT ))

1− exp(−d2T )
,

which is globally asymptotically stable. Then, ∃ an integer K2(K2 > K1) such that
I(t) � v∗1(t) < v∗1(t)+ ε5 , for t � K2T .
Again from the model (2), we obtain the following subsystem:{

dN(t)
dt � −(d3−ηha3−ηα2L)N(t), t �= nT,

N(t+) = N(t)+ θ2, t = nT.

Again considering auxiliary system:{
dv2(t)

dt = −(d3−ηha3−ηα2L)v2(t), t �= nT,
v2(t+) = v2(t)+ θ2, t = nT,

(17)

and using similar analysis, we get that ∃ an integer K3(K3 > K2) such that

N(t) � v∗2(t) < v∗2(t)+ ε5, for t � K3T.

Thus, from the system (2), we get that

dS1(t)
dt

�
(

r−α1−d0−h(v∗2(t)+ ε5)−β1(v∗1(t)+ ε5)+
α1r

β2(v∗1(t)+ ε5)+d0

)
S1(t),

integrating the above equation between the pulses, we get

S1(t) � S1(K2T )exp(σ2),

where

σ2 =
∫ t

K2T

(
r−α1 −d0−h(v∗2(t)+ ε5)−β1(v∗1(t)+ ε5)+

α1r
β2(v∗1(t)+ ε5)+d0

)
dt.

After k successive pulses, we obtain the following stroboscopic map

S1((K2 + l)T ) � S1(K2T )exp(σ2),
S1(K2T

+) � S1(0+)exp(kσ2).

As σ2 > 1 when T > T ∗ , thus it is obtained that, S1(K2T+) → +∞ as k → +∞ ,
which is a contradiction to the boundedness of S1(t) .Therefore S1(t) � a3, for t1 >
K1T for some K1 ∈ Z+.
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Step II If S1(t) � a3, ∀ t � t1 , then we are done. Otherwise, S1(t) < a3 for some
t > t1 . Let t∗ = inf{t|S1(t) < a3,t > t1} , then we have, S1(t) � a3 for t ∈ [t,t∗) and
t∗ ∈ (b1T,(b1 + 1)T ),b1 is some positive integer. Continuity of S1(t) implies that
S1(t∗) = a3 . Assume that T1 = b2T + b3T where b2 and b3 satisfy the following
inequalities:

b2T > max

{− ln ε4
2L

d2
,

− ln ε4
2L

d3−ηha3−ηα2L

}
,

b3σ3 >
( r

K
+h+ β1 + α +d0

)
L(b2 +1)T.

Now, we claim that ∃ a time t
′ ∈ ((b1 +1)T,(1+b1+b2 +b3)T ) such that S1(t

′
) � a3.

On contrary, let

S1(t) < a3,t ∈ ((b1 +1)T,(1+b1 +b2 +b3)T ).

If the system (16) is considered with initial value v1((b1 + 1)T+) = I((b1 + 1)T+) ,
then using Lemma 3.3 of Jatav and Dhar [6], for t ∈ (nT,(n + 1)T ] and b1 < n �
b1 +b2 +b3 , we get

v1(t) = (v1((b1 +1)T+)−
(

μL
d2

+
θ1

exp(−d2T )

)
exp(−d2(t− (b1 +1)T )+ v∗1(t),

which confirm that

|v1(t)− v∗1(t)| < 2Lexp(−d2(t− (b1 +1)T)) < ε5,

and
I(t) � v1(t) < v∗1(t)+ ε5, ∀ (b1 +1)T � t � (b1 +b2 +b3 +1)T.

Now, we consider the system (17) with initial value v2((b1 + b2 + 1)T+) = N((b1 +
b2 +1)T+) . Similarly using Lemma 3.3 of Jatav and Dhar [6], we get that

|v2(t)− v∗2(t)| < 2Lexp(−d3−ηha3−ηα2L)(t − (b1 +b2 +1)T )) < ε5,

and

N(t) � v2(t) < v∗2(t)+ ε5, ∀ (b1 +b2 +1)T � t � (b1 +b2 +b3 +1)T.

Thus, we have

dS1(t)
dt

�
(

r−α1 −d0−h(v∗2(t)+ ε5)−β1(v∗1(t)+ ε5)+
α1r

β2(v∗1(t)+ ε5)+d0

)
S1(t),

∀(b1 + b2 + 1)T � t � (b1 + b2 + b3 + 1)T . Integrating on [b1 + b2 + 1)T,(b1 + b2 +
b3 +1)T ] , we obtain

S1((b1 +b2 +b3 +1)T ) � S1((b1 +b2 +1)T)exp(b3σ3). (18)
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Now, for t ∈ (t∗,(b1 +1)T) , two possible cases arise:
Case (a): If S1(t) < a3 for t ∈ (t∗,(b1 + 1)T ) then S1(t) < a3 for t ∈ (t∗,(b1 + b2 +
1)T ) . Therefore, we get

dS1(t)
dt

�
[−r

K
−h−β1−α1−d0

]
LS1(t) := ζS1(t). (19)

Integrating above inequality in the interval [t∗,(b1 +b2 +1)T ] , we get that

S1((b1 +b2 +1)T) � S1(b1T )exp(ζ (b2 +1)T ). (20)

Using the value of S1((b1 +b2 +1)T ) from (20) into (18), we get

S1((b1 +b2 +b3 +1)T ) � S1(b1T )exp(b3σ3)exp(ζ (b2 +1)T )
� a3 exp(b3σ3)exp(ζ (b2 +1)T) > a3,

which is a contradiction. Let ť = inf{t|S1(t)� a3,t > t∗} , then S1(ť)= a3 . For t ∈ [t∗, ť)
(19) holds and integrating on t ∈ [t∗, ť) , we obtain

S1(ť) � S1(t∗)exp(ζ (t − t∗)) � a3 exp(ζ (1+b2 +b3)T ) := a3.

Since S1(t) � a3 for t > ť , the same argument can be obtained. Thus, we have S1(t) �
a3, ∀ t > t1 .
Case (b): There exists t

′′ ∈ (t∗,(b1 +1)T ] such that S1(t
′′
) � a3 . Let t =

inf{t|S1(t) � a3, t > t∗} , then S1(t) < a3 for t ∈ [t∗, t ) and S1( t ) = a3 . For t ∈ [t∗, t ) ,
(19) holds. Integrating (5.4) on [t∗, t ) , we have

S1(t) � S1(t∗)exp(ζ (t − t∗) � a3 exp(ζT ) > a3.

The same argument can be continued, since S1( t ) � a3 ∀ t > t1 Thus, in both cases,
we conclude S1(t) � a3 ∀ t � t1 . Therefore S1(t) is ultimately bounded below.
Now, in order to prove that S2(t) is ultimately bounded below, from system (2) we have

dS2(t)
dt

� α1a3 −d0S2(t).

Solving, we obtain

S2(t) � α1a3

d0
:= a4.

It is easy to prove that limt→∞ infS2(t) � a4 , where a4 = α1a3
d0

.
Lastly to prove that E(t) is ultimately positively bounded below. We have from system
(2):

dE(t)
dt

� β1a3a1 + β2a4a1− (μ +d1)E(t).



82 B. GUPTA, A. SHARMA, J. DHAR AND S. K. SRIVASTAVA

Solving, we obtain

E(t) � (β1a3 + β2a4)a1

μ +d1
:= a5.

It can be easily obtain that limt→∞ infE(t) � a5 , where a5 = (β1a3+β2a4)a1
μ+d1

.
Let a = min{a1,a2, a3,a4,a5} using Step I, Step II and Lemma 1, we get ∧ =
{(S1,S2,E, I,N) : a � S1(t),S2(t),E(t), I(t),N(t) � L} . Hence the result. �

6. Numerical simulations and discussion

In this paper, a stage-structured pest management model with mixed type of func-
tional responses i.e., Beddington-DeAngelis and Holling type-I functional responses
with the periodic infusion of infected pest and the natural enemy is proposed and dis-
cussed. The sufficient conditions, for pest-extinction periodic solution to be locally and
globally asymptotically stable, are established. Also under certain condition, the system
is proved to be permanent. In this section, we shall verify the established theoretical
results by performing numerical simulation on the system (2). To plot the results, we
choose the values of parameters and initial values arbitrarily as given in Table 1 and
Table 2 respectively. Theorem 1 and 2 imply that the pest extinction periodic solution
is locally as well as globally asymptotically stable if and only if T < T ∗ . For the given
values of parameters, we have T ∗ = 5.8. Fig. 1 clearly show that if T < T ∗ = 5.8 (in
Fig.1a, T = 5 and in Fig.1b, T = 4), then immature pests, mature susceptible pests and
exposed pests eradicate and infected pests and natural enemies exist impulsively. This
verifies the results of Theorems 1 and 2.

From a biological point of view, the complete eradication of pest populations is
neither desired nor safer. We only need to control the pests up to a level that it may not
destroy the crop. Theorem 3 implies that if T > T ∗ then all the populations coexist and
the system becomes permanent. Fig. 2 verifies the result stated that when T > T ∗ = 5.8
(in Fig.2a, T = 7 and in Fig.2b, T = 20) then all the populations will coexist and hence
the system becomes permanent.

Further extensive simulation is performed to analyze the effect of impulsive re-
leasing of infectious pest as well as natural enemies on eradication and permanence of
system (2). In Fig. 3 time series of immature pests, mature pests and exposed pests
population is plotted for different pulse releasing amounts (i.e., θ1 and θ2 ). It is an-
alyzed that higher the value of pulse releasing the immature pests, mature pests and
exposed pests population becomes eradicated.

In Fig. 4 the bifurcating behavior of immature pests population is plotted with
respect to infectious pests and natural enemies respectively. It is seen that phase portrait
changes from one periodic→ two periodic→ chaos. In Fig. 5 the bifurcation of mature
pests population is seen with respect to infectious pests. Again, it is seen that phase
portrait changes from one periodic→ two periodic→ chaos. In Fig. 6 the bifurcating
behavior of exposed pests population is plotted with respect to infectious pests and
natural enemies respectively.
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Table 1 Parametric values chosen for simulation.

Parameter Description Value
per week

r Growth rate of immature susceptible pest 1.7
K Carring capacity 5
d0 Natural death rate of immature and mature

susceptible pest 0.05
d1 Natural death rate of exposed pest 0.01
d2 Natural death rate of infected pest 0.3
d3 Natural death rate of natural enemy 0.2
α1 Maturity rate of immature pest 0.7
α2 Predation rate of exposed pest by natural enemy 0.7
β1 Conversion rate of immature susceptible pest by

infected pest to exposed pest 2
β2 Conversion rate of mature susceptible pest by

infected pest to exposed pest 2.5
h Predation rate of immature susceptible pest by

natural enemy 0.5
μ Amount of exposed pest shifted to infected pest 0.01
η Conversion rate of predation by natural enemy 0.2
γ1 Half saturation constant for immature susceptible pest 0.1
γ2 Half saturation constant for natural enemy 0.1
θ1 Impulsive releasing amount of infected pest 1.1
θ2 Impulsive releasing amount of natural enemy 0.7

Table 2 Initial values chosen for simulation.

Population Description Inital value

S1(0+) Intial value of immature susceptible pest 0.5
S2(0+) Intial value of mature susceptible pest 0.5
E(0+) Intial value of exposed pest 1.5
I(0+) Intial value of infected pest 0.8
N(0+) Intial value of natural enemy 0.5
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Figure 1: The pest extinction periodic solution (0,0,0, I∗(t),N∗(t)) for (a)T = 5 <
T ∗ = 5.8 and (b)T = 4 < T ∗ = 5.8
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Figure 2: The time series plot of all populations S1(t),S2(t),E(t), I(t) and N(t) for
(a)T = 7 > T ∗ = 5.8 and (b)T = 20 > T ∗ = 5.8 showing permanence of the system.

7. Conclusion

In this paper, the effect of impulsive perturbations on stage-structured pest man-
agement model with mixed type of functional responses is investigated. The theoretical
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Figure 3: Time series plots for immature susceptible pests, mature susceptible pests
and exposed pests populations for different values of pulse releasing amount (i.e.,
(a)S1(t) vs t , (b)S2(t) vs t and (c)E(t) vs t )
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Figure 4: Dynamical behavior of Fig.4a− 4c immature susceptible pests verses in-
fectious pests (i.e., S1(t) vs I(t)) and Fig.4d − 4 f immature susceptible pests verses
natural enemies population (i.e., S1(t) vs N(t))

results obtained are verified numerically. It is concluded that impulsive control strategy
plays an important role in the extinction and permanence of species. Our results an-
alyze that immature-mature susceptible pests and exposed pests eradicate completely
when the impulsive period is less than some critical value and all the pest populations
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Figure 5: Dynamical behavior of Fig.5a−5c mature susceptible pests verses infectious
pests (i.e., S2(t) vs I(t))
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Figure 6: Dynamical behavior of Fig.6a− 6c exposed pests verses infectious pests
(i.e., E(t) vs I(t)) and Fig.6d − 6 f exposed pests verses natural enemies population
(i.e., E(t) vs N(t))

with natural enemies will coexist when the impulsive period is greater than the critical
value. In other words, we can say that the eradication of immature/mature susceptible
and exposed pests depends upon the pulse releasing amount as well impulsive period.
The analysis also shows that the biological techniques are efficient and sufficient to
control the pests.
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Key features and future scope

From the environment and farmers point of view, our analysis has the following
key features:

1. Found under which condition all the pest populations and natural enemies will
co-exist, without harming crops.

2. Found that pulse releasing amount and impulsive period is responsible for eradi-
cation/permanence of the system.

It is further stated that, the proposed model can be extended by incorporatingmaturation
time (i.e., delay) from immature pest to mature pest. We will keep on studying these
problems in future and try our best to find some nice results.
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