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Abstract. The aim of this work is to develop a fuller theory regarding the existence, uniqueness
and approximation of solutions to third-order boundary value problems via fixed point methods.
To develop this deeper understanding of qualitative properties of solutions, our strategy involves
an analysis of the problem under consideration, and its associated operator equations, within
closed and bounded sets. This enables our new results to apply to a wider range of problems than
those covered in the recent literature and we discuss several examples to illustrate the nature of
these advancements.

1. Introduction

The goal of this work is to establish a more complete and wider-ranging theory
than is currently available in the literature regarding the qualitative nature of solutions
to the following boundary value problem (BVP):

x′′′ + f (t,x,x′,x′′) = 0, t ∈ [a,b]; (1)

x(a) = 0, x′(a) = 0, x(b) = kx(η). (2)

Above: f : Ω ⊂ [a,b]×R
3 → R is a continuous function; a < η < b ; and k ∈ R . If

k �= 0 then (2) expresses information involving three points; while if k = 0 then (2)
conveys data at two points (that is, at the boundary points of the interval). By a solu-
tion to (1), (2) we mean a real-valued function x = x(t) that has a third-order deriva-
tive that is continuous on [a,b] (which we denote by x ∈ C3([a,b])); and x satisfies:
(t,x(t),x′(t),x′′(t)) ∈ Ω for all t ∈ [a,b] ; and (1) on [a,b] ; and the boundary conditions
(2).

The literature on third-order BVPs is vast and a full review is beyond the scope of
this article. However, recent advances in our qualitative understanding include: mono-
tone positive solutions [4]; non-conjugate boundary conditions and Lypapunov func-
tions [6]; positive solutions to singular problems [7]; and oscillation theory [8, 9].
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The significance of developing a deeper qualitative understanding of differential
equations is supported by the late Louis Nirenberg’s comments in his Abel Prize lecture
of 2015 (Some remarks on mathematics):

“I’ve also worked on the theory of the (differential) equations them-
selves. Do solutions exist? In general, you cannot write down, specifi-
cally, a solution. Sometimes you can use computers to compute very good
approximations to solutions, but sometimes, somebody comes up with a
mathematical model of some problem - some (partial) differential equation
- and it turns out that it doesn’t have solutions at all. There are equations
that don’t have solutions. So, part of the problem is, given some model,
are there solutions? Are the solutions regular? Are they unique? What
properties can you show for the solutions - maybe some kind of symme-
try or monotonicity, or things like that? These are things that you want to
investigate” (our emphasis).

Furthermore, “knowing an equation has a unique solution is important from both a
modelling and theoretical point of view” [3, p.794].

Our interest in the existence, uniqueness and approximation of solutions to (1),
(2) is also partially motivated by two recent advances to knowledge appearing in the
literature: those of Smirnov [10]; and those of Almuthaybiri and Tisdell [14]. They
analyzed the following special case of (1), namely

x′′′ + f (t,x) = 0, t ∈ [a,b], (3)

subject to (2) and established sufficient conditions under which the BVP (3), (2) admit-
ted a unique (non-trivial) solution that could be approximated by Picard iterants. They
achieved this via novel and alternative uses of contractive mappings and fixed point
theorems.

Two fundamental assumptions in [10, 14] were: f : [a,b]×R → R , that is, f was
defined on the whole “infinite strip” [a,b]×R ; and f satisfied a Lipschitz condition on
the entire set [a,b]×R , that is, there was a constant L > 0 such that

| f (t,u)− f (t,v)| � L|u− v|, for all (t,u),(t,v) ∈ [a,b]×R. (4)

Furthermore, one can see that the f in (3) is of a form that does not depend on deriva-
tives of the solution x .

The results in [10, 14] form important and interesting contributions to knowledge,
however, a complete qualitative theory for the existence and uniqueness of solutions to
(1), (2) is yet to be achieved, as the following examples illustrate.

EXAMPLE 1. Consider the BVP

x′′′ + t +2+ x2 = 0; (5)

x(0) = 0, x′(0) = 0, x(1) = x(1/2). (6)

Here, our f in (5) is well-defined on [0,1]×R , but it doesn’t satisfy the Lipschitz
condition (4) therein. Thus, the results in [10, 14] do not apply to this example.
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EXAMPLE 2. Consider

x′′′ + t +1+
x
5

+
(x′)3

3000
= 0, (7)

subject to (6). The results in [10, 14] do not apply to this example because the f in (7)
is of a more general form than that in (3) due to its dependency on x′ .

EXAMPLE 3. Consider

x′′′ +
1

2− x
= 0, (8)

subject to (6). The results in [10, 14] do not apply to this example because the f in (8)
isn’t well defined on the whole of the strip [0,1]×R .

Sufficiently motivated by some of the gaps that have been identified through the
above discussion, the aim of the present work is to advance the current state of knowl-
edge on (1), (2) in a way that addresses the aforementioned challenges. Our strategy
involves undertaking an analysis: within closed and bounded sets of [a,b]×R ; and
in closed balls within infinite dimensional space. In doing so, we are able to form a
fuller theory and a deeper understanding of the qualitative properties of the solutions to
(1), (2). In particular, we develop a set of results that is applicable to a wider range of
problems than the work of [10, 14].

This paper is organized as follows. We introduce some notation and other com-
ponentry associated with our work in Section 2. In Section 3 we build on some of the
ideas in [10, 14] by establishing new estimates on the integrals of derivatives of various
Green’s functions. This includes “sharp” estimates. These estimates are then applied to
(1), (2) in Section 4 via fixed point theorems to ensure the existence and uniqueness of
solutions under sufficient conditions. In addition, we establish some constructive results
regarding the approximation of solutions through the use of Picard iterations. Finally,
we illustrate the essence of the advancements of our work over existing literature via
the discussion of examples in Section 5.

2. Notation and other componentry

The following two results on fixed points of contractive operators will form im-
portant components of our methods.

THEOREM 1. (Banach, [13]) Let X be a nonempty set and let d be a metric on X
such that (X ,d) forms a complete metric space. If the mapping T : X → X satisfies

d(Tx,Ty) � αd(x,y), for some 0 < α < 1 and all x,y ∈ X ; (9)

then there is a unique z ∈ X such that T z = z.
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THEOREM 2. (Rus, [5]) Let X be a nonempty set and let d and δ be two metrics
on X such that (X ,d) forms a complete metric space. If the mapping T : X → X is
continuous with respect to d on X and:

d(Tx,Ty) � cδ (x,y), for some c > 0 and all x,y ∈ X ; (10)

δ (Tx,Ty) � αδ (x,y), for some 0 < α < 1 and all x,y ∈ X ; (11)

then there is a unique z ∈ X such that T z = z.

For a recent discussion, comparison and for some variations of the above theorems,
see [14] and [17].

Within the context of the present work, we will be concerned with the following
notation, sets and metrics. Denote the set of real-valued functions that are continuous
on [a,b] by C([a,b]) , and for x , y ∈ C([a,b]) consider the following metrics that we
will use shortly:

d∞(x,y) := max
t∈[a,b]

|x(t)− y(t)|;

δp(x,y) :=
(∫ b

a
|x(t)− y(t)|p dt

)1/p

, p > 1.

Now consider the set of real-valued functions that are defined on [a,b] and possess
second-order derivatives that are continuous therein. Denote this space by C2([a,b]) .
For functions x,y ∈C2([a,b]) we construct the following metrics from d∞ and δp :

d(x,y) := max
{
W0d∞(x,y), W1d∞(x′,y′), W2d∞(x′′,y′′)

}
; (12)

δ (x,y) := L0δp(x,y)+L1δp(x′,y′)+L2δp(x′′,y′′). (13)

Above, the non-negative constants Wi and Li will be appropriately defined in the state-
ments or proofs of our main results.

3. Establishing estimates: integrals of Green’s functions

In this section we establish various inequalities for integrals that involve a range of
Green’s functions and their derivatives that are connected with the BVP (1), (2). While
these results are of interest in their own right, we will draw on them when we form our
existence, uniqueness and approximation theorems for solutions to (1), (2).

By employing the procedure in [10, pp.173-174], it can be shown that the BVP
(1), (2) can be equivalently reformulated as the integral equation

x(t) =
∫ b

a
G(t,s) f (s,x(s),x′(s),x′′(s)) ds, t ∈ [a,b], (14)

where

G(t,s) := R(t,s)+
k(t −a)2

(b−a)2− k(η −a)2 R(η ,s), (15)
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and R is given explicitly by

R(t,s) =
1
2

⎧⎪⎪⎨
⎪⎪⎩

(t−a)2(b−s)2

(b−a)2 − (t− s)2, for a � s � t � b;

(t−a)2(b−s)2

(b−a)2 , for a � t � s � b.

(16)

The following result is found in [14, Theorems 3 and 4] and furnishes a sharp
estimate on the integral of R .

THEOREM 3. ([14]) The function R(t,s) in (16) satisfies R � 0 on [a,b]× [a,b]
and ∫ b

a
R(t,s) ds � 2

81
(b−a)3, for all t ∈ [a,b]. (17)

Inequality (17) is sharp in the sense that it is the best inequality possible.

We now establish the following new estimate involving Rt = ∂R/∂ t that comple-
ments Theorem 3.

THEOREM 4. The function R(t,s) in (16) satisfies

∫ b

a
|Rt(t,s)| ds � 5

6
(b−a)2, for all t ∈ [a,b]. (18)

Proof. For all t ∈ [a,b] we have

∫ b

a
|Rt(t,s)| ds

=
∫ t

a
|Rt(t,s)| ds+

∫ b

t
|Rt(t,s)| ds

=
∫ t

a

∣∣∣∣(t −a)(b− s)2

(b−a)2 − (t− s)
∣∣∣∣ ds+

∫ b

t

(t −a)(b− s)2

(b−a)2 ds

�
∫ t

a

(t−a)(b− s)2

(b−a)2 +(t− s) ds+
∫ b

t

(t−a)(b− s)2

(b−a)2 ds

=
∫ t

a
(t − s) ds+

∫ b

a

(t −a)(b− s)2

(b−a)2 ds

=
1
2
(t −a)2 +

1
3
(t −a)(b−a)

� 5
6
(b−a)2.

Thus we have obtained (18). �
Similarly, we have the following complementary estimate involving Rtt = ∂ 2R/∂ t2 .
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THEOREM 5. The function R(t,s) in (16) satisfies

∫ b

a
|Rtt(t,s)| ds � 2

3
(b−a), for all t ∈ [a,b]. (19)

Inequality (19) is sharp in the sense that it is the best inequality possible.

Proof. For all t ∈ [a,b] we have

∫ b

a
|Rtt(t,s)| ds =

∫ t

a
|Rtt(t,s)| ds+

∫ b

t
|Rtt(t,s)| ds

=
∫ t

a

∣∣∣∣ (b− s)2

(b−a)2 −1

∣∣∣∣ ds+
∫ b

t

(b− s)2

(b−a)2 ds

=
∫ t

a
1− (b− s)2

(b−a)2 ds+
∫ b

t

(b− s)2

(b−a)2 ds

= (t −a)+
(b− t)3− (b−a)3

3(b−a)2 +
(b− t)3

3(b−a)2

= (t −a)+
2(b− t)3

3(b−a)2 −
1
3
(b−a).

In particular, if we apply basic calculus to the above cubic function then we see that it
achieves its maximum value on [a,b] at t = b , with the maximum value being 2(b−
a)/3. Thus we have established (19) and illustrated that the bound is sharp. �

The following three-point extension of Theorem 3 was proved in [14, Theorem 5].

THEOREM 6. ([14]) The function G(t,s) in (15) satisfies

∫ b

a
|G(t,s)| ds � (b−a)3

[
2
81

+
|k|(b−a)2

3|(b−a)2− k(η −a)2|
]
, for all t ∈ [a,b], (20)

where we have assumed k(η −a)2 �= (b−a)2 with a < η < b.

Through a more careful analysis of the ideas in [14] we may sharpen (20).

THEOREM 7. For all t ∈ [a,b] the function G(t,s) in (15) satisfies

∫ b

a
|G(t,s)| ds � (b−a)3

[
2
81

+
|k|(η −a)2

6|(b−a)2− k(η −a)2|
]
, (21)

where we have assumed k(η −a)2 �= (b−a)2 with a < η < b.
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Proof. Consider

∫ b

a
R(η ,s) ds =

∫ η

a

(η −a)2(b− s)2

2(b−a)2 − (η − s)2

2
ds+

∫ b

η

(η −a)2(b− s)2

2(b−a)2 ds

=
∫ b

a

(η −a)2(b− s)2

2(b−a)2 ds−
∫ η

a

(η − s)2

2
ds

=
(η −a)2(b−a)

6
− (η −a)3

6

=
1
6
(η −a)2(b−η). (22)

Thus we have

∫ b

a
|G(t,s)| ds

=
∫ b

a

∣∣∣∣R(t,s)+
k(t−a)2

(b−a)2− k(η −a)2 R(η ,s)
∣∣∣∣ ds

�
∫ b

a
|R(t,s)|+

∣∣∣∣ k(t−a)2

(b−a)2− k(η −a)2

∣∣∣∣ |R(η ,s)| ds

=
1
6
(t−a)2(b− t)+

|k|(t−a)2

|(b−a)2− k(η −a)2|
1
6
(η −a)2(b−η)

� 2
81

(b−a)3 +
|k|(b−a)2

|(b−a)2− k(η −a)2|
1
6
(η −a)2(b−a)

= (b−a)3
[

2
81

+
|k|(η −a)2

6|(b−a)2− k(η −a)2|
]
. �

REMARK 1. In addition to the sharpening of previous estimates, part of the sig-
nificance in establishing (21) is seen in its increased dependency on η when compared
with (20). This dependency acknowledges and incorporates the very nature of the three
point conditions that are embedded within our problem to a higher degree than that of
(20). Furthermore, our working in the proof of Theorem 7 corrects a small oversight in
the proof of [14, Theorem 5].

Let us now establish an analogue of Theorem 4 for Gt = ∂G/∂ t .

THEOREM 8. For all t ∈ [a,b] , the function G(t,s) in (15) satisfies

∫ b

a
|Gt(t,s)| ds � (b−a)2

[
5
6

+
|k|(η −a)2

3|(b−a)2− k(η −a)2|
]
, (23)

where we have assumed k(η −a)2 �= (b−a)2 with a < η < b.



298 S. S. ALMUTHAYBIRI AND C. C. TISDELL

Proof. For t ∈ [a,b] , we have

∫ b

a
|Gt(t,s)| ds

=
∫ b

a

∣∣∣∣Rt(t,s)+
2k(t−a)

(b−a)2− k(η −a)2 R(η ,s)
∣∣∣∣ ds

�
∫ b

a
|Rt(t,s)|+

∣∣∣∣ 2k(t−a)
(b−a)2− k(η −a)2

∣∣∣∣R(η ,s) ds

=
∫ b

a
|Rt(t,s)| ds+

2|k|(t−a)
|(b−a)2− k(η −a)2|

∫ b

a
R(η ,s) ds

� 5
6
(b−a)2 +

2|k|(t−a)
|(b−a)2− k(η −a)2|

1
6
(η −a)2(b−η)

� 5
6
(b−a)2 +

|k|(b−a)
[
(η −a)2(b−a)

]
3|(b−a)2− k(η −a)2|

= (b−a)2
[
5
6

+
|k|(η −a)2

3|(b−a)2− k(η −a)2|
]
.

Above, we employed (18) and (22). Thus we have established (23). �
Similarly, we can establish the following analogue of Theorem 5 for Gtt =∂ 2G/∂ t2 .

THEOREM 9. For all t ∈ [a,b] , the function G(t,s) in (15) satisfies

∫ b

a
|Gtt (t,s)| ds � (b−a)

[
2
3

+
|k|(η −a)2

3|(b−a)2− k(η −a)2|
]
, (24)

where we have assumed k(η −a)2 �= (b−a)2 with a < η < b.

Proof. For t ∈ [a,b] , we have

∫ b

a
|Gtt(t,s)| ds

=
∫ b

a

∣∣∣∣Rtt(t,s)+
2k

(b−a)2− k(η −a)2 R(η ,s)
∣∣∣∣ ds

�
∫ b

a
|Rtt(t,s)|+

∣∣∣∣ 2k
(b−a)2− k(η −a)2

∣∣∣∣R(η ,s) ds

=
∫ b

a
|Rtt(t,s)| ds+

2|k|
|(b−a)2− k(η −a)2|

∫ b

a
R(η ,s) ds

� 2
3
(b−a)+

2|k|
|(b−a)2− k(η −a)2|

1
6

[
(η −a)2(b−a)

]
= (b−a)

[
2
3

+
|k|(η −a)2

3|(b−a)2− k(η −a)2|
]
.

Above, we employed (19) and (22). Thus we have established (24). �
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4. Existence, uniqueness and approximation

In this section we establish various results for the existence, uniqueness and ap-
proximation of solutions to (1), (2) via analyses within closed and bounded sets. Our
approach involves applications of: the metrics in Section 2; the bounds formed in Sec-
tion 3; and fixed point theory.

To avoid the repeated use of long and complicated expressions, we define the
following constants to simplify our application of the bounds that we established in
Section 3. The following notation will be used in the statement and proof of our main
results:

β0 := (b−a)3
[

2
81

+
|k|(η −a)2

6|(b−a)2− k(η −a)2|
]
;

β1 := (b−a)2
[
5
6

+
|k|(η −a)2

3|(b−a)2− k(η −a)2|
]
;

β2 := (b−a)
[
2
3

+
|k|(η −a)2

3|(b−a)2− k(η −a)2|
]
; (25)

where we assume that (b−a)2 �= k(η −a)2 .

4.1. Banach fixed point approach

Let us now apply the results of Sections 2 and 3 to the existence, uniqueness and
approximation of solutions to the BVP (1), (2) via Banach’s fixed point theorem.

THEOREM 10. Let f : B → R be continuous and uniformly bounded by M > 0
on the “block”

B :=
{

(t,u,v,w) ∈ R
4 : t ∈ [a,b], |u| � R, |v| � β1

β0
R, |w| � β2

β0
R

}
,

where R > 0 is a constant and each βi is defined in (25). Let f (t,0,0,0) �= 0 for all
t ∈ [a,b] and assume Mβ0 � R. For i = 0,1,2, let Li be non-negative constants (not
all zero) such that

| f (t,u0,u1,u2)− f (t,v0,v1,v2)| �
2

∑
i=0

Li|ui− vi|,

for all (t,u0,u1,u2),(t,v0,v1,v2) ∈ B. (26)

If k(η −a)2 �= (b−a)2 with a < η < b and

L0β0 +L1β1 +L2β2 < 1, (27)

then the BVP (1), (2) has a unique (nontrivial) solution in C3([a,b]) such that
(t,x(t),x′(t),x′′(t)) ∈ B for all t ∈ [a,b] .
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Proof. Consider the pair (C2([a,b]),d) , where the constants Wi in our d in (12)
are chosen to form

d(x,y) := max

{
d∞(x,y),

β0

β1
d∞(x′,y′),

β0

β2
d∞(x′′,y′′)

}

(that is, W0 = 1, W1 = β0/β1 and W2 = β0/β2 ). Our pair forms a complete metric
space. Now, for the constant R > 0 in the definition of B , consider the following ball
BR ⊂C2([a,b]) defined via

BR := {x ∈C2([a,b]) : d(x,0) � R}.
Since BR is a closed subspace of C2([a,b]) , the pair (BR,d) forms a complete metric
space.

Consider the operator T : BR →C2([a,b]) defined by

(Tx)(t) :=
∫ b

a
G(t,s) f (s,x(s),x′(s),x′′(s)) ds, t ∈ [a,b].

In view of (14) we wish to show that there exists a unique x ∈ BR such that

Tx = x.

Every such solution will also lie in C3([a,b]) as can be directly shown by differentiating
(14) and confirming the continuity.

To establish the existence and uniqueness to Tx = x , we show that the conditions
of Theorem 1 hold with X = BR .

Let us show T : BR → BR . For x ∈ BR and t ∈ [a,b] , consider

|(Tx)(t)| �
∫ b

a
|G(t,s)| | f (s,x(s),x′(s),x′′(s))| ds

� M
∫ b

a
|G(t,s)| ds

� Mβ0

where we have applied Theorem 7. Thus we have d∞(Tx,0) � Mβ0 .
Similarly,

|(Tx)′(t)| �
∫ b

a
|Gt(t,s)| | f (s,x(s),x′(s),x′′(s))| ds

� M
∫ b

a
|Gt(t,s)| ds

� Mβ1

where we have applied Theorem 8. Thus β0d∞((Tx)′,0)/β1 � Mβ0 .
In addition, via similar arguments, we obtain

|(Tx)′′(t)| � Mβ2
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by drawing on Theorem 9, so that β0d∞((Tx)′′,0)/β2 � Mβ0 .
Thus, for all x ∈ BR we have

d(Tx,0) = max

{
d∞(Tx,0),

β0

β1
d∞((Tx)′,0),

β0

β2
d∞((Tx)′′,0)

}
� max{Mβ0,Mβ0,Mβ0}
= Mβ0

� R

where the final inequality holds by assumption. Thus, for all x∈BR we have Tx∈BR

so that T : BR → BR .
Let us now show that T is contractive on BR with respect to d . For x,y ∈ BR

and t ∈ [a,b] , consider

|(Tx)(t)− (Ty)(t)|
�
∫ b

a
|G(t,s)| | f (s,x(s),x′(s),x′′(s))− f (s,y(s),y′(s),y′′(s))| ds

�
∫ b

a
|G(t,s)|

(
2

∑
i=0

Li |x(i)(s)− y(i)(s)|
)

ds

� β0
(
L0d∞(x,y)+L1d∞(x′,y′)+L2d∞(x′′,y′′)

)
(28)

� β0

(
L0d(x,y)+L1

β1

β0
d(x,y)+L2

β2

β0
d(x,y)

)
= (L0β0 +L1β1 +L2β2)d(x,y) (29)

where we have applied (21) and (26).
Similarly, we can show

|(Tx)′(t)− (Ty)′(t)| � β1

(
L0 +L1

β1

β0
+L2

β2

β0

)
d(x,y); (30)

|(Tx)′′(t)− (Ty)′′(t)| � β2

(
L0 +L1

β1

β0
+L2

β2

β0

)
d(x,y). (31)

Thus, for all x,y ∈ BR we have

d(Tx,Ty)

= max

{
d∞(Tx,Ty),

β0

β1
d∞((Tx)′,(Ty)′),

β0

β2
d∞((Tx)′′,(Ty)′′)

}
� (L0β0 +L1β1 +L2β2)d(x,y).

Due to our assumption (27) we see that T is a contractive map on BR . Thus all of the
conditions of Theorem 1 hold with X = BR . We conclude that the operator T has a
unique fixed point in BR ⊂C2([a,b]) . This solution is also in C3([a,b]) and we have
equivalently shown that the BVP (1), (2) has a unique solution.
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We note that our solution cannot be the zero function, as our assumption f (t,0,0,0)
�= 0 excludes this possibility. �

As we can see from the proof of Theorem 10, the assumption Mβ0 � R is applied
to ensure the “invariance” of T , namely T : BR → BR . Let us explore this idea fur-
ther with the following variations on the theme of Theorem 10 where we modify the
aforementioned condition.

THEOREM 11. Let f : C → R be continuous and uniformly bounded by M > 0
on the “block”

C :=
{

(t,u,v,w) ∈ R
4 : t ∈ [a,b], |u| � β0

β1
R, |v| � R, |w| � β2

β1
R

}
,

where R > 0 is a constant and each βi is defined in (25). Let f (t,0,0,0) �= 0 for all
t ∈ [a,b] and assume Mβ1 � R. For i = 0,1,2, let Li be non-negative constants (not
all zero) such that

| f (t,u0,u1,u2)− f (t,v0,v1,v2)| �
2

∑
i=0

Li|ui− vi|,

for all (t,u0,u1,u2),(t,v0,v1,v2) ∈C. (32)

If k(η −a)2 �= (b−a)2 with a < η < b and

L0β0 +L1β1 +L2β2 < 1, (33)

then the BVP (1), (2) has a unique (nontrivial) solution in C3([a,b]) such that
(t,x(t),x′(t),x′′(t)) ∈C for all t ∈ [a,b] .

Proof. The proof follows similar ideas to that of the proof of Theorem 10 and so
is only summarized.

Consider the pair (C2([a,b]),d) where now the constants Wi in our d in (12) are
chosen to form

d(x,y) := max

{
β1

β0
d∞(x,y), d∞(x′,y′),

β1

β2
d∞(x′′,y′′)

}

(that is, W0 = β1/β0 , W1 = 1 and W2 = β1/β2 ). For the constant R > 0 in the definition
of C , consider the following ball CR ⊂C2([a,b]) defined via

CR := {x ∈C2([a,b]) : d(x,0) � R}.
Since CR is a closed subspace of C2([a,b]) , the pair (CR,d) forms a complete metric
space.

Following the same type of arguments as in the proof of Theorem 10 it can be
shown that the condition Mβ1 � R ensures T : CR → CR . Furthermore, (32) and (33)
guarantee that T is contractive on CR .

The existence and uniqueness now follows from Theorem 1. �
Similarly, we have the following result.
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THEOREM 12. Let f : D → R be continuous and uniformly bounded by M > 0
on the “block”

D :=
{

(t,u,v,w) ∈ R
4 : t ∈ [a,b], |u| � β0

β2
R, |v| � β1

β2
R, |w| � R

}
,

where R > 0 is a constant and each βi is defined in (25). Let f (t,0,0,0) �= 0 for all
t ∈ [a,b] and assume Mβ2 � R. For i = 0,1,2, let Li be non-negative constants (not
all zero) such that

| f (t,u0,u1,u2)− f (t,v0,v1,v2)| �
2

∑
i=0

Li|ui− vi|,

for all (t,u0,u1,u2),(t,v0,v1,v2) ∈ D. (34)

If k(η −a)2 �= (b−a)2 with a < η < b and

L0β0 +L1β1 +L2β2 < 1, (35)

then the BVP (1), (2) has a unique (nontrivial) solution in C3([a,b]) such that
(t,x(t),x′(t),x′′(t)) ∈ D for all t ∈ [a,b] .

Proof. Once again, the proof follows similar ideas to that of the proof of Theorem
10 and so we provide just an outline of the ideas.

Consider the pair (C2([a,b]),d) where now the constants Wi in our d in (12) are
chosen to form

d(x,y) := max

{
β2

β0
d∞(x,y),

β2

β1
d∞(x′,y′), d∞(x′′,y′′)

}

(that is, W0 = β2/β0 , W1 = β2/β1 and W2 = 1). For the constant R > 0 in the definition
of D , consider the following ball DR ⊂C2([a,b]) defined via

DR := {x ∈C2([a,b]) : d(x,0) � R}.

Since DR is a closed subspace of C2([a,b]) , the pair (DR,d) forms a complete metric
space.

Following the same type of arguments as in the proof of Theorem 10 it can be
shown that the condition Mβ2 � R ensures T : DR → DR . Furthermore, (34) and (35)
guarantee that T is contractive on DR .

The existence and uniqueness now follows from Theorem 1. �

REMARK 2. As flagged earlier, part of the significance in including Theorem 11
and Theorem 12 in addition to Theorem 10 involves exploring variations on the theme
of the invariance condition Mβi � R . We see from their statements and proofs therein
that we can modify the invariance condition in each of the theorems at the expense of
“modifying” the block on which we consider f and the associated metric.
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Picard iterations form an important structure for successively approximating solu-
tions [2, 18]. We can now form the following results that involve approximations to the
unique solution x of the BVP (1), (2). They are a consequence of Theorem 1 holding
for the operator T therein, see [16, Theorem 1.A].

REMARK 3. Let the conditions of Theorem 10, Theorem 11 or Theorem 12 hold.
If we recursively define a sequence of approximations xn = xn(t) on [a,b] via

x0 := 0, xn+1(t) :=
∫ b

a
G(t,s) f (s,xn(s),x′n(s),x

′′
n(s)) ds, n = 0,1,2, · · ·

then, for each of the corresponding metrics defined in the proofs of Theorem 10, Theo-
rem 11 and Theorem 12:

• the sequence xn converges to the solution x of (3), (2) with respect to the d
metric and the rate of convergence is given by

d(xn+1,x) � (L0β0 +L1β1 +L2β2)d(xn,x);

• for each n , an a priori estimate on the error is

d(xn,x) � (L0β0 +L1β1 +L2β2)n

1− (L0β0 +L1β1 +L2β2)
d(x1,0);

• for each n , an a posteriori estimate on the error is

d(xn+1,x) � (L0β0 +L1β1 +L2β2)
1− (L0β0 +L1β1 +L2β2)

d(xn+1,xn).

REMARK 4. We can see that Theorem 10 and its variations involve the same con-
dition (27). Here, it would seem that “all roads lead to Rome”, as no matter which other
sets or variations of (12) we employ, we keep returning to the same inequality (27).

4.2. Fixed point approach with two metrics

To avoid the repeated use of complicated expressions, we define the following
constants to simplify certain notation. Let p > 1 and q > 1 be constants such that
1/p+1/q = 1. Define

c0 := max
t∈[a,b]

[(∫ b

a
|G(t,s)|q ds

)1/q
]

;

c1 := max
t∈[a,b]

[(∫ b

a
|Gt(t,s)|q ds

)1/q
]

;

c2 := max
t∈[a,b]

[(∫ b

a
|Gtt (t,s)|q ds

)1/q
]

; (36)
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and

γ0 :=

(∫ b

a

(∫ b

a
|G(t,s)|q ds

)p/q

dt

)1/p

;

γ1 :=

(∫ b

a

(∫ b

a
|Gt(t,s)|q ds

)p/q

dt

)1/p

;

γ2 :=

(∫ b

a

(∫ b

a
|Gtt (t,s)|q ds

)p/q

dt

)1/p

. (37)

We will draw on the following relationship between the two metrics δ and d in
the proof of our main result.

THEOREM 13. For x,y ∈C2([a,b]) we have

δ (x,y) � (b−a)1/p
(

L0

W0
+

L1

W1
+

L2

W2

)
d(x,y). (38)

Proof. It is well known that

δp(x,y) � (b−a)1/pd∞(x,y), for all x,y ∈C([a,b]), (39)

and so repeatedly applying (39) we have

δ (x,y) = L0δp(x,y)+L1δp(x′,y′)+L2δp(x′′,y′′)

� (b−a)1/p(L0d∞(x,y)+L1d∞(x′,y′)+L2d∞(x′′,y′′)
)

� (b−a)1/p
(

L0

W0
+

L1

W1
+

L2

W2

)
d(x,y).

Thus we have obtained (38). �
Let us now state and prove our results on existence and uniqueness of solutions to

(3), (2) where we employ two metrics under Rus’s theorem.

THEOREM 14. Let f : B→R be continuous and uniformly bounded by M > 0 on
the “block” B defined in Theorem 10. Let f (t,0,0,0) �= 0 for all t ∈ [a,b] and assume
Mβ0 � R. For i = 0,1,2, let Li be non-negative constants (not all zero) such that

| f (t,u0,u1,u2)− f (t,v0,v1,v2)| �
2

∑
i=0

Li|ui− vi|,

for all (t,u0,u1,u2),(t,v0,v1,v2) ∈ B. (40)

If k(η −a)2 �= (b−a)2 with a < η < b and there are constants p > 1 and q > 1 with
1/p+1/q = 1 such that

L0γ0 +L1γ1 +L2γ2 < 1, (41)

where each of the γi are defined in (37), then the BVP (1), (2) has a unique (nontrivial)
solution in C3([a,b]) such that (t,x(t),x′(t),x′′(t)) ∈ B for all t ∈ [a,b] .
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Proof. Define BR , d and T as in the proof of Theorem 10. We want to show that
there exists a unique x ∈ BR such that

Tx = x.

Such a solution will also lie in C3([a,b]) as can be directly shown by differentiating
(14) and confirming the continuity.

To establish the existence and uniqueness to Tx = x , we show that the conditions
of Theorem 2 hold.

The pair (BR,d) forms a complete metric space. Following the same type of
arguments as in the proof of Theorem 10 it can be shown that the condition Mβ0 � R
ensures T : BR → BR .

In addition, consider the metric δ in (13) on BR where p > 1 and the Li come
from (40).

For x,y ∈ BR and t ∈ [a,b] , consider

|(Tx)(t)− (Ty)(t)|
�
∫ b

a
|G(t,s)| | f (s,x(s),x′(s),x′′(s))− f (s,y(s),y′(s),y′′(s))| ds

�
∫ b

a
|G(t,s)|

(
2

∑
i=0

Li |x(i)(s)− y(i)(s)|
)

ds

�
(∫ b

a
|G(t,s)|q ds

)1/q
(

2

∑
i=0

Li

(∫ b

a
|x(s)− y(s)|p ds

)1/p
)

(42)

= c0δ (x,y).

Above, we have used (40) and Hoelder’s inequality [12, 11] to obtain (42). Similar
calculations lead us to

|(Tx)′(t)− (Ty)′(t)| � c1δ (x,y)
|(Tx)′(t)− (Ty)′(t)| � c2δ (x,y).

Combining the above inequalities we obtain

d(Tx,Ty) � cδ (x,y), for some c > 0 and all x,y ∈ BR (43)

where

c := max

{
c0,

β0

β1
c1,

β0

β2
c2

}
.

Thus, the inequality (10) of Theorem 2 holds.
Furthermore, T is continuous on BR with respect to the d metric as can be shown

from the following arguments. For all x,y ∈ BR we may apply (38) from Theorem 13
to (43) to obtain

d(Tx,Ty) � cδ (x,y)

� c(b−a)1/p
(

L0 +L1
β1

β0
+L2

β2

β0

)
d(x,y).
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Thus, given any ε > 0 we can choose

Δ =
ε

c(b−a)1/p
(
L0 +L1

β1
β0

+L2
β2
β0

)
so that d(Tx,Ty) < ε whenever d(x,y) < Δ . Hence T is continuous on BR with
respect to the d metric.

Finally, we show that T is contractive on BR with respect to the δ metric, that
is, the inequality (11) in Theorem 2 holds. From (42) and the associated discussion, for
each x,y ∈ BR and t ∈ [a,b] we have

(∫ b

a
|(Tx)(t)− (Ty)(t)|p dt

)1/p

� γ0δ (x,y);

(∫ b

a
|(Tx)′(t)− (Ty)′(t)|p dt

)1/p

� γ1δ (x,y);

(∫ b

a
|(Tx)′′(t)− (Ty)′′(t)|p dt

)1/p

� γ2δ (x,y);

and so we obtain
δ (Tx,Ty) � (L0γ0 +L1γ1 +L2γ2)δ (x,y).

From our assumption (41), we thus have

δ (Tx,Ty) � αδ (x,y),

for some α < 1 and all x,y ∈ BR .
Thus, Theorem 2 is applicable and the operator T has a unique fixed point in BR .

This solution is also in C3([a,b]) and we have equivalently shown that the BVP (1), (2)
has a unique solution.

We note that our solution cannot be the zero function, as our assumption f (t,0,0,0)
�= 0 excludes this possibility. �

Similarly, we have the following two results which we state without proof due to
concerns of brevity and repetition. The proofs follow similar lines to that of the proof
of Theorem 14.

THEOREM 15. Let f :C →R be continuous and uniformly bounded by M > 0 on
the “block” C defined in Theorem 11. Let f (t,0,0,0) �= 0 for all t ∈ [a,b] and assume
Mβ1 � R. For i = 0,1,2, let Li be non-negative constants (not all zero) such that

| f (t,u0,u1,u2)− f (t,v0,v1,v2)| �
2

∑
i=0

Li|ui− vi|,

for all (t,u0,u1,u2),(t,v0,v1,v2) ∈C. (44)

If k(η −a)2 �= (b−a)2 with a < η < b and there are constants p > 1 and q > 1 with
1/p+1/q = 1 such that

L0γ0 +L1γ1 +L2γ2 < 1, (45)
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where each of the γi are defined in (37), then the BVP (1), (2) has a unique (nontrivial)
solution in C3([a,b]) such that (t,x(t),x′(t),x′′(t)) ∈C for all t ∈ [a,b] .

THEOREM 16. Let f : D → R be continuous and uniformly bounded by M > 0
on the “block” D defined in Theorem 12. Let f (t,0,0,0) �= 0 for all t ∈ [a,b] and
assume Mβ2 � R. For i = 0,1,2, let Li be non-negative constants (not all zero) such
that

| f (t,u0,u1,u2)− f (t,v0,v1,v2)| �
2

∑
i=0

Li|ui− vi|,

for all (t,u0,u1,u2),(t,v0,v1,v2) ∈ D. (46)

If k(η −a)2 �= (b−a)2 with a < η < b and there are constants p > 1 and q > 1 with
1/p+1/q = 1 such that

L0γ0 +L1γ1 +L2γ2 < 1, (47)

where each of the γi are defined in (37), then the BVP (1), (2) has a unique (nontrivial)
solution in C3([a,b]) such that (t,x(t),x′(t),x′′(t)) ∈ D for all t ∈ [a,b] .

REMARK 5. Similarly to Remark 4, our Theorem 14 and its variations involve the
same condition (41).

REMARK 6. Let m := d∞( f (·,0,0,0),0) . Each of the invariance conditions Mβi �
R can be replaced with

mβi � (1− (L0β0 +L1β1 +L2β2))R

in our existence theorems herein and their conclusions will still hold. To see this, for
example, we show that T : BR → BR . For all x ∈ BR we have

d(Tx,0) � d(Tx,T0)+d(T0,0)
� (L0β0 +L1β1 +L2β2)d(x,0)+mβ0

� (L0β0 +L1β1 +L2β2)R+(1− (L0β0 +L1β1 +L2β2))R
= R.

Thus we see that under this condition we ensure that T : BR → BR . The other cases
may be shown in similar ways.

5. Examples and remarks

Let us discuss the nature of the advancement of our new results by revisiting our
intractable examples originally posed in Section 1. We show how our new results can
be applied.
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EXAMPLE 4. The BVP (5), (6) has a unique solution such that |x(t)| � 1 for all
t ∈ [a,b] .

We show that the conditions of Theorem 10 are satisfied. Choose R = 1 and
consider our

f (t,x) := t +2+ x2

restricted to the accompanying rectangle

B := {(t,u) ∈ R
2 : t ∈ [0,1], |u| � 1}. (48)

Observe that | f | � 4 =: M on B . Furthermore we can obtain β0 = 13/162. Thus we
have Mβ0 = 52/162 � 1 =: R . In addition, |∂ f/∂x| = |2x|� 2 on B and thus we may
choose L0 = 2 to ensure (26) holds on B (with the other Li being zero). Finally, we
note that L0β0 = 26/162 < 1. Thus, we see that all of the conditions of Theorem 10
are satisfied and its conclusion holds for this example.

EXAMPLE 5. The BVP (7), (6) has a unique solution such that |x(t)| � 1 and
|x′(t)| � 153/13 for all t ∈ [a,b] .

We show that the conditions of Theorem 10 are satisfied for the rectangle B de-
fined via R = 1, namely

B := {(t,u,v) ∈ R
3 : t ∈ [0,1], |u| � 1, |v| � β1/β0}. (49)

As in the previous example, β0 = 13/162 and now β1 = 17/18 with β1/β0 = 153/13<
12. Observe that | f | < 2 + 1/5 + (12)3/3000 < 3 =: M on B . We have Mβ0 =
39/162 � 1. In addition, on B we have: |∂ f/∂x|= 1/5; and |∂ f/∂x′|= |(x′)2/1000|<
1/5 and thus we may choose L0 = 1/5 and L1 = 1/5 so that (26) holds on B . Finally,
we note that L0β0 +L1β1 < 1. Thus, we see that all of the conditions of Theorem 10
are satisfied and its conclusion holds for this example.

EXAMPLE 6. The BVP (8), (6) has a unique solution such that |x(t)| � 1 for all
t ∈ [a,b] .

We show that the conditions of Theorem 10 are satisfied for the rectangle B de-
fined in (48) where R = 1. Observe that | f | � 1 =: M on B . As before, β0 = 13/162.
Thus we have Mβ0 = 13/162 � 1. In addition, |∂ f/∂x| = |1/(2− x)2| � 2 on B and
thus we may choose L0 = 2 so that (26) holds on B . Finally, we note that L0β0 =
26/162 < 1. Thus, we see that all of the conditions of Theorem 10 are satisfied and its
conclusion holds for this example.

Let us discuss on example involving the conditions of Theorem 14.

REMARK 7. In the case: [a,b] = [0,1] ; η = 1/2; k = 1; p = 2 = q ; the left hand
side of (41) can be evaluated (see [14]) to obtain∫ 1

0

∫ 1

0
G(t,s)2 ds dt =

16
14175

.
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Thus, (41) takes the form

L0γ0 = L0
4
√

7
315

< 1 (50)

which will be satisfied, for example, if

L0 � 29.

The condition (27) takes the form

L0β0 = L0
13
162

< 1. (51)

For an f such as
f (t,x) := 13x2 +(t +1)2

the assumptions of [10, 14] are not satisfied because this f is not Lipschitz on the strip
[0,1]×R . In addition, note that for R = 1 and L0 = 26 the condition (27) in its form
(51) does not hold and so Theorem 10 does not apply in this case. On the other hand,
our f does satisfy (50) on the ball B with R = 1 with L0 = 26. Thus we see that
Theorem 14 is sharper than Theorem 10.

We note that Theorem 10 and its variations do not rule out the existence of addi-
tional solutions to our problem whose graphs are not completely contained in the sets
under consideration. For instance, in Example 4 we restricted our attention to a subset
of the domain of f , rather than working with its maximal domain of [0,1]×R . Other
solutions may exist whose graphs are not completely contained in our B .

REMARK 8. We note our new estimates in Section 3 and those used in the dis-
cussion of our examples are a mixture of sharp and rough estimates. However, the
rough estimates are simple and reasonably easy to calculate. The significance of rough
inequalities such as (23) and (24) has been promoted by mathematicians such as Niren-
berg and Friedrichs, “who often stressed the applicability of rough inequalities to vari-
ous problems” [15, p.483]. In this spirit, we note that (22) may be further estimated to
form ∫ b

a
R(η ,s) ds � 1

6
(η −a)2(b−a)

� 1
6
(b−a)3.

This rougher estimate can also be applied in a similar fashion to the ideas and methods
herein.

It can be the case that certain problems do not satisfy the assumptions of fixed point
theory, but the operators therein actually will admit a fixed point. Thus, it is important
that we keep developing alternative perspectives in mathematics because they can open
up new ways of thinking and working [22, p.1292], [2, Sec.3], [21], [20], [19]. This
includes a need to think beyond the current limitations of fixed point theory.
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