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WEAKLY NONLOCAL BOUNDARY VALUE

PROBLEMS WITH APPLICATION TO GEOLOGY
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Abstract. In many cases, groundwater flow in an unconfined aquifer can be simplified to a one-
dimensional Sturm-Liouville model of the form:

x′′(t)+λx(t) = h(t)+ ε f (x(t)), t ∈ (0,π)

subject to non-local boundary conditions

x(0) = h1 + εη1(x) and x(π) = h2 + εη2(x).

In this paper, we study the existence of solutions to the above Sturm-Liouville problem under
the assumption that ε is a small parameter. Our method will be analytical, utilizing the implicit
function theorem and its generalizations.

1. Introduction

Many groundwater systems in the coastal regions of the southeastern United States
are characterized as shallow, unconfined aquifers. Understanding the flow of ground-
water in such systems is integral to flood hazard management and contaminant remedi-
ation. It is well known that groundwater flow through a porous material can be modeled
by the diffusion equation,
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−W ; (1)

see [16, 22] for a thorough treatment of these ideas.
In the above equation, x,y,z are spatial variables, t represents time, Ss denotes

specific storage of the material (a constant), h is the hydraulic head as a function of
x,y,z, and t , W is the recharge or discharge of water into or out of the system as a
function of x,y,z, t, and potentially h , and K is hydraulic conductivity which may be
a function of x,y,z, and t . Hydraulic conductivity is often assumed to be constant
in time. Moreover, if one stratigraphic layer is assumed to have the same hydraulic
conductivity in all spatial directions (i.e. Kxx = Kyy = Kzz ), then the system is said to
be isotropic.
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If we make the common assumption that the groundwater system is isotropic and
additionally that hydraulic conductivity is constant, then (1) simplifies to

K
(∂ 2h

∂x2 +
∂ 2h
∂y2 +

∂ 2h
∂ z2

)
= Ss

∂h
∂ t

−W (2)

or

Ss
∂h
∂ t

−KΔh = W, (3)

where Δ is the Laplacian operator and K is the hydraulic conductivity in all directions.
In applications, boundary conditions representing various properties of the aquifer are
assumed in addition to (3).

It is very common in groundwater modeling to make the simplifying assumption
that the groundwater recharge function W is strictly a function of x,y,z , and possibly
t . However, in many cases, groundwater flow has a complicated dependence on water
table height which leads to nonlinear recharge/discharge and nonlinear boundary con-
ditions of the groundwater flow equation (3). For example, it is well documented that
evaporation of water from a shallow aquifer is heavily dependent on water table height,
see [18, 19]. In semi-arid and arid environments where evaporation can comprise up to
70% of the water budget [17], these nonlinear conditions cannot be ignored. It is this
nonlinear dependence that is the focus of this paper.

The existing literature on nonlinear boundary value problems is extensive. For
ideas closely related to the ideas of this paper, we suggest [1, 2, 3, 4, 5, 6, 7, 11, 12, 13,
14, 15, 20, 21].

2. Derivation of one-dimensional flow

In situations of unidirectional groundwater flow with no seepage, flow can be de-
scribed by the one dimensional flow equation

∂u
∂ t

−α
∂ 2

∂x2 u = β , (4)

see [10] for the details, with the constant α and the function β determined by various
aquifer properties and u(t,x) representing water table height as a function of time t and
the spacial variable x . If we make the simplifying assumption that u can be separated
into a steady state and transient component, then we have

u(t,x) = v(x)+w(t,x) (5)

where v is the steady state component of u and w is the transient component of u . The
steady state component can be thought of as persisting behaviors in the aquifer system
such as flow due to aquifer slope, evaporation, etc., whereas the transient component
can be thought of as groundwater behavior due to temporary influences such as flood,
precipitation events, etc. The flow equation, (4), now becomes

ut −αuxx = wt −αvxx −αwxx = β .
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If we consider this simplified version of the model on the infinite strip [0,∞)× [0,L] ,
and impose nonlinear boundary and initial conditions, we arrive at

wt −αvxx−αwxx = β
u(t,0) = v(0)+w(0,t) = h1(t)+ γ1

u(t,L) = v(L)+w(L,t) = h2(t)+ γ2

u(0,x) = v(x)+w(x,0) = h0(x)

,

where we assume h1,h2 and h0 are arbitrary real-valued continuous functions with
hi := limt→∞ hi(t) existing for i = 1,2 and γ1,γ2 are possibly nonlinear functionals on
the space of continuous functions, C([0,∞)× [0,L]) . Note that constant-head bound-
ary conditions, in which h1(·) and h2(·) are constants and γ1 = 0 = γ2 , correspond
to Dirichlet boundary conditions. Other commonly modeled boundary conditions are
discussed in [9].

As described in [10], it is reasonable to assume the transient component w and its
derivatives vanish as t →∞ (as the system reaches equilibrium). Under this assumption,
and appropriate convergence assumptions, we deduce, as t → ∞ ,

−αvxx = β

and
v(0) = h1 + γ1 and v(L) = h2 + γ2.

Since we are considering the one-dimensional case, this equates to

vxx = v′′(x) = −β/α (6)

with boundary conditions

v(0) = h1 + γ1 and v(L) = h2 + γ2. (7)

In general, β is a function of water table height, u , but a common practice in
groundwater modeling is to assume α and β are constant and that γ1 = 0 = γ2 . This
is often referred to as “constant-head” boundary conditions. Under this assumption we
are lead to the well known result in hydrology (see [8]),

v(x) =
−β
2α

x2 +
(h2−h1

L
+

β
2α

L
)
x+h1.

Therefore, solving the groundwater flow equation (4) is reduced to solving the homo-
geneous linear PDE describing the transient component

wt = αwxx (8)

which can be easily solved with well-known results from PDEs upon defining an initial
condition, h0 . When β is not assumed to be constant and/or γ1,γ2 are assumed to be
nonzero, the situation is much more complicated. It is in this direction that we turn for
the for the remainder of the paper.
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3. Weak nonlinearities

3.1. Preliminaries

Based on our derivations in previous section, we will now study one-dimensional
groundwater flow in an unconfined aquifer via (6)–(7). For many aquifer systems un-
der natural conditions, it is reasonable to assume that β , representing groundwater
recharge, has an “almost” linear relationship to groundwater height; that is, β consists
of a linear term and some “small” possibly nonlinear term. From (6), consider the case
where β (x,v) = λv− h− ε f (x,v) for λ ,ε ∈ R and some fixed continuous functions
h : R→R and f : R

2 →R . In addition, assume that for i = 1,2, γi = εηi where η1,η2

are smooth functionals. A concrete example of η1,η2 might be multi-point boundary
operators such as

η1(v) =
n

∑
k=1

gk(v(tk)),

η2(v) =
m

∑
j=1

h j(v(t j)),

where each gk , h j is a differentiable function and each tk , t j ∈ [0,L] .
If we assume, without loss of generality, that α = 1 and L = π , then (6)–(7)

becomes
v′′(x)+ λv(x) = h(x)+ ε f (x,v(x)), x ∈ (0,π), (9)

subject to
v(0) = h1 + εη1(v) (10)

v(π) = h2 + εη2(v). (11)

Equation (9) along with boundary conditions (10) and (11) is a special case of what is
often referred to as a regular Sturm-Liouville boundary value problem.

We choose to study (9)–(11) through the use of operators on Banach spaces. Be-
fore getting to our main result, we introduce appropriate spaces and operators. We let
C := C[0,π ] denote the space of real-valued continuous functions topologized by the
supremum norm, ‖·‖∞ . The space L2 := L2[0,π ] will denote, as usual, the space of
real-valued square-integrable functions defined on [0,π ] . The topology on L2 will be
that induced by the standard L2 -norm, ‖·‖2 . We use H2 to denote the Sobelov space
of functions with two weak derivatives in L2 ; that is,

H2 = {x ∈ L2 | x′ is absolutely continuous and x′′ ∈ L2}.
Unless otherwise stated, the topology on H2 will be the subspace topology inherited
from L2 . On occasion, we may also view H2 as a subspace of C . Each scenario should
be clear from the context of our discussion. Finally, we will use | · | to denote the
Euclidean norm on R

2 , and 〈·, ·〉2 and 〈·, ·〉R will denote the inner products on L2 and
R

2 , respectively.
For each λ ∈ R , we define a differential operator Aλ : H2 → L2 by

Aλ v = v′′ + λv.
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For i = 1,2, we define boundary operators Bi : H2 → R by

B1 : H2 → R by B1v = v(0),

and

B2 : H2 → R by B2v = v(π).

Finally, we let

Lλ : H2 → L2×R×R by L v =

⎡
⎣Aλ v

B1v
B2v

⎤
⎦ , and

F : H2 → L2 ×R×R by F (v) =

⎡
⎣ f (·,v)

η1(v)
η2(v)

⎤
⎦ .

With this notation, solving (9) with boundary conditions (10) and (11) is equivalent to
solving Lλ v =

−→
h + εF (v) , where

−→
h =

⎡
⎣ h

h1

h2

⎤
⎦ .

The study of the nonlinear boundary value problem (9)–(11) will be intimately
related to the linear nonhomogeneous boundary value problem

v′′(x)+ λv(x) = h(x), x ∈ (0,π) (12)

v(0) = h1 and v(π) = h2, (13)

where h is an arbitrary element of L2 and h1 and h2 are elements of R . Using our
notation from above, we have that solving (12)–(13) is equivalent to solving

Lλ v =
−→
h =

⎡
⎣ h

h1

h2

⎤
⎦ . (14)

The analysis of the boundary value problem (9)–(11) follows two distinct routes,
one in which λ is an eigenvalue of the operator v→−v′′ (subject to Dirichlet boundary
conditions v(0) = 0 = v(π)) and one in which it is not. The difficulty in the analysis lies
mostly in the case where λ is an eigenvalue; this is, λ = n2 for some natural number
n . When λ is an eigenvalue, this case is often referred to as the case of resonance. It
is the case of resonance that we are most interested in, however, for completeness, we
we include, in what follows, an analysis of (9)–(11) for the case in which λ is not an
eigenvalue.
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3.2. Invertible Lλ

It is well-known that when λ 	= n2 for some natural number n , that is, when λ is
not an eigenvalue of the mapping v → −v′′ (subject to Dirichlet boundary conditions
v(0) = 0 = v(π)), Lλ is an invertible operator. Under this assumption, the existence
of solutions to (9)–(11) follows easily under very mild assumptions on f (see (9) for
notation). We present two such cases.

THEOREM 3.1. Suppose that f is continuously differentiable with respect to its
second component, that for each i = 1,2 , ηi is continuously differentiable (relative to
the supremum norm), and λ 	∈ N

2 . Then there exists a δ > 0 such that if −δ < ε < δ ,
the boundary value problem (9)–(11) has a unique solution vε . Moreover, the mapping
ε → vε is continuously differentiable.

Proof. Our proof is an application of the implicit function theorem. Under the as-
sumption that f is continuously differentiable in its second component, it is an easy ex-
ercise to show that F is continuously differentiable on C[0,π ] (when given the supre-
mum norm). The fact that λ 	∈ N

2 allows us to define a function Gλ : R×C[0,π ] →
C[0,π ] by

Gλ (ε,v) = v−L−1
λ

−→
h − εL −1

λ F (v).

Note that here we are using Lλ to denote the restriction of Lλ to C2[0,π ] .
We take a moment to point out a few obvious facts. First, it is clear that v∈C[0,π ]

solves (9)–(11) if and only if Gλ (ε,v) = 0. Secondly, Gλ is continuously differentiable

since F is. Finally, Gλ (0,L −1
λ

−→
h ) = 0.

Now, differentiating Gλ with respect to v , we see that

∂Gλ
∂v

(0,L −1
λ

−→
h ) = I,

which is certainly a topological isomorphism. Under these conditions, by the implicit
function theorem, there must exists a δ > 0 and a unique C1 function u : (−δ ,δ ) ⊂
R → C[0,π ] such that G(ε,u(ε)) = 0 for each ε ∈ (−δ ,δ ) . The proof is now com-
plete. �

We finish the case of invertible Lλ under an assumption of “Lipschitzness”.

THEOREM 3.2. Suppose f is Lipschitz with respect to its second component, that
for each i = 1,2 , ηi is Lipschitz, and that λ 	∈ N

2 . Then there exists a δ > 0 such that
if −δ < ε < δ , the boundary value problem (9)–(11) has a unique solution.

Proof. For each ε ∈ R , define Hλ : R×C[0,π ]→C[0,π ] by

Hλ (ε,v) = L −1
λ

−→
h + εL −1

λ (F (v)).

For each fixed ε , the solutions of (9)–(11) are the fixed points of Hλ (ε, ·) . By as-
sumption, F is Lipschitz, say with Lipschitz constant α � 0. Note that since Lλ is
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a differential operator, L −1
λ will be an integral operator, and is therefore linear and

bounded. Thus, for a fixed ε and and any u,w ∈C[a,b] ,

‖Hλ (ε,u)−Hλ (ε,w)‖∞ = |ε|∥∥L −1
λ F (u)−L −1

λ F (w)
∥∥

∞

= |ε|∥∥L −1
λ (F (u)−F (w))

∥∥
∞

� |ε|∥∥L −1
λ

∥∥‖F (u)−F (w)‖
� |ε|∥∥L −1

λ
∥∥ ·α ‖u−w‖∞ .

If 0 � |ε|∥∥L −1
λ

∥∥α < 1, then Hλ (ε, ·) is a contraction and from the contraction map-
ping theorem has exactly one fixed point. �

3.3. Noninvertible Lλ

We now come to the main focus of this paper, that is, existence results for prob-
lem (9)–(11) under the assumption that λ = n2 . It is well known that under this as-
sumption Ln2 is not invertible and that ker(Ln2) = span{sin(nt)} . Define ψn(t) =√

2
π sin(nt) so that ψn is an L2 -normalized basis for ker(Ln2) . Further, define ϕn(t) =

−√π
2 cos(nt)
n

. A simple calculation shows that 〈ψn,ϕn〉2 = 0, where again 〈·, ·〉2 de-

notes the standard inner product on L2 = L2[0,π ] . Moreover, we have that

wr(ψn,ϕn) =

∣∣∣∣∣∣∣
√

2
π sin(nt)

−√π
2 cos(nt)
n√

2
π ncos(nt)

√π
2 sin(nt)

∣∣∣∣∣∣∣
= 1.

It follows from the theory of second-order linear differential equations that {ψn,ϕn} is
a basis for the ker(An2) .

In cases where Lλ is not invertible, the methods of the previous section clearly
fail, since they depend crucially on the existence of L −1

λ . Thus, proving the existence
of solutions in the case when λ = n2 for some natural number n will have to proceed
via an alternate route. Our approach in this direction will be to introduce a projection
scheme (Lyapunov-Schmidt) which will allow us to reduce the problem of solving (9)–
(11) to solving a system of equivalent equations. The construction of our projection
scheme will depend heavily on a characterization of the image of Lλ , thus, we begin
by characterizing Im(Ln2) for any natural number n . Our characterization is in the
spirit of results found in [15].

We start by defining

ωn(t,s) =

⎧⎨
⎩

ψn(t)ϕn(s) 0 � t � s � 1

ψn(s)ϕn(t) 0 � s � t � 1
,
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that is,

ωn(t,s) =

⎧⎪⎪⎨
⎪⎪⎩

−sin(nt)cos(ns)
n

0 � t � s � 1

−sin(ns)cos(nt)
n

0 � s � t � 1

.

Now define Kn : L2 → H2 by

Knh(t) =
∫ 1

0
ωn(t,s)h(s)ds.

From standard results in analysis, Kn is compact, self-adjoint, and satisfies An2Knh = h
for every h ∈ L2 . By direct calculation, one easily establishes that for every h ∈ L2 ,
B1Knh = 〈h,ϕn〉2B1ψn = 0 and B2Knh = 〈h,ψn〉2B2ϕn . Let

v1,n = B1ϕn = −
√

π
2n2 and v2,n = B2ϕn = (−1)n+1

√
π

2n2 .

We are now in a position to characterize Im(Ln2) . To this end, define an inner
product on L2[0,π ]×R

2 by

〈
⎡
⎣ h

w1

w2

⎤
⎦ ,

⎡
⎣ g

y1

y2

⎤
⎦〉 =

π
π +4n2

(
〈h,g〉2 + 〈

[
w1

w2

]
,

[
y1

y2

]
〉R

)
. (15)

Further, define

−→ψn =

⎡
⎣ ψn

v−1
1,n

−v−1
2,n

⎤
⎦

and for h ∈ L2 , h1,h2 ∈ R , define

−→
h =

⎡
⎣ h

h1

h2

⎤
⎦ .

Note that
∥∥−→ψn

∥∥ = 1 for the norm generated by the inner product on L2 ×R
2 . It can be

shown, see [15], that
−→
h is in the image of Ln2 iff 〈−→h ,−→ψn〉 = 0. Since

〈−→h ,−→ψn〉 =
π

π +4n2

(
〈
√

2
π

sin(nt),h(t)〉2 + 〈
⎡
⎣ −

√
2n2

π

(−1)n
√

2n2

π

⎤
⎦ ,

[
h1

h2

]
〉R

)

=
π

π +4n2

(∫ π

0

√
2
π

sin(nt)h(t)dt +

√
2n2

π
((−1)nh2−h1)

)
,
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we see that
−→
h is in the image of Ln2 if and only if

n(h1 +(−1)n+1h2) =
∫ π

0
sin(nt)h(t)dt. (16)

Note that if h1 = 0 = h2 , we get the very famous result that h ∈ L2 is in the image of

An2 (with Dirichlet boundary condtions) if and only if
∫ π

0
sin(nt)h(t)dt = 0.

We now introduce projection operators for our Lyapunov-Schmidt projection sche-
me. Since ker(Ln2) is spanned by ψn , the orthogonal projection operator Pn : L2 → L2

onto the kernel of Ln2 is given by

Pn(x) = 〈x,ψn〉2ψn.

Also, we define Qn : L2 ×R
2 → L2 ×R

2 by

Qn(
−→
h ) = 〈−→h ,−→ψn〉−→ψn.

From our analysis above, Qn is a projection onto Im(Ln2)⊥ , and so I −Qn is a pro-
jection onto Im(Ln2) .

We will proceed by applying the Lyapunov-Schmidt projection scheme, as out-
lined in [14, 15]. Since I−Qn is the orthogonal projection onto the image of Ln2 and
Qn is a projection onto Im(Ln2)⊥ , we get

Ln2v =
−→
h + εF (v)

if and only if ⎧⎪⎨
⎪⎩

(I−Qn)Ln2v = (I−Qn)
−→
h +(I−Qn)εF (v)

and

QnLn2v = Qn
−→
h +QnεF (v)

.

Since Ln2u ∈ Im(Ln2) , (I −Qn)Ln2u = Ln2u . Likewise, for
−→
h ∈ Im(Ln2) , (I −

Qn)
−→
h =

−→
h , and so solving (9)–(11) is equivalent to solving⎧⎨

⎩
Ln2v =

−→
h + ε(I−Qn)F (v)

and
0 = εQnF (v)

.

Let Mn denote the generalized inverse of Ln2 such that Mn : Im(Ln2)→ ker(Ln2)⊥ .
By applying Mn to the first equation of our system, we get

⇔
{

MnLn2v = Mn
−→
h + εMn(I−Qn)F (v)

εQnF (v) = 0
.

Recalling that Pn was the projection onto ker(Ln2) , we see MnLn2 = I −Pn . Thus,
our system is equivalent to{

(I−Pn)v = Mn
−→
h + εMn(I−Qn)F (v)

εQnF (v) = 0
.
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We are interested in finding solutions to (9)–(11) for ε 	= 0, so we will assume that

εQnF (u) = 0 ⇔ QnF (u) = 0.

Thus, the system becomes

⇔
{

(I−Pn)u = Mn
−→
h + εMn(I−Qn)F (u)

QnF (u) = 0
.

Since we are assuming h ∈ C[0,π ] , we can define Gn : R×C[0,π ] → Im(I −Pn)×
Im(Qn) by

Gn(ε,u) =

{
(I−Pn)u−Mn

−→
h − εM (I−Qn)F (u)

QnF (u)
.

Solving (9)–(11) is now equivalent to

Gn(ε,u) =
[
(I−Pn)u−Mn

−→
h − εMn(I−Qn)F (u)
QnF (u)

]
= 0.

Our goal is to apply the implicit function theorem to prove the existence of so-
lutions to (9)–(11). For reference in what is to follow, we point out here that Gn is
continuously differentiable (relative to the supremum norm) with

D2G(ε,u) =
∂Gn

∂u
(ε,u) =

[
(I−Pn)− εMn(I−Qn)DF (u)

QnDF (u)

]
,

where

DF (u) =

⎡
⎣ f2(·,u)

η ′
1(u)

η ′
2(u)

⎤
⎦ . (17)

For a proof along these lines, see [14].
We now come to our main existence theorem in the case of noninvertible Lλ . We

prove the existence of solutions to problem (9)–(11) under mild assumptions on the
solutions to the nonhomogeneous problem (12)–(13).

THEOREM 3.3. Suppose λ = n2 for some n ∈ N and that u is a particular solu-
tion to the nonhomogeneous equation (12)–(13). If

n

[
η1(u)+ (−1)n+1η2(u)

]
=

∫ π

0
f (s, u(s))sin(ns)ds (18)

and

n

[
η ′

1(u)(sin(n·))+ (−1)n+1η ′
2(u)(sin(n·))

]
	=

∫ π

0
f2(s, u(s))sin2(ns)ds, (19)

then (9) subject to boundary conditions (10) and (11) has at least one solution for small
ε .
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Proof. First, note that under the assumptions on u , we have Gn(0, u) = 0. If we
can show that D2Gn is invertible as a continuous linear map, then the result will follow
from the implicit function theorem. As a consequence of the open mapping theorem,
D2Gn is a topological isomorphism if and only if it is a bijection. We start by showing
D2Gn is injective.

Suppose for the moment that

D2Gn(0, u)(w) =
[

(I−Pn)(w)
QnDF (u)(w)

]
= 0.

Since w = Pn(w) , we conclude that QnDF (u)(Pn(w)) = 0. Using (17) we conclude

2
π
〈w,sin(n·)〉2Qn

⎡
⎣ f2(·, u)sin(n·)

η ′
1(u)(sin(n·))

η ′
2(u)(sin(n·))

⎤
⎦ = 0

or

2
π
〈w,sin(n·)〉2 · 〈

⎡
⎣ f2(·, u)sin(n·)

η ′
1(u)(sin(n·))

η ′
2(u)(sin(n·))

⎤
⎦ ,

⎡
⎢⎢⎢⎣

√
2
π sin(n·)
−

√
2n2

π

(−1)n
√

2n2

π

⎤
⎥⎥⎥⎦〉

⎡
⎢⎢⎢⎣

√
2
π sin(n·)
−

√
2n2

π

(−1)n
√

2n2

π

⎤
⎥⎥⎥⎦ = 0.

Using the definition of 〈·, ·〉 , we deduce

(
2
π

)3/2

· 〈w,sin(n·)〉2

·
(∫ π

0
f2(s, u(s))sin2(ns)ds−nη ′

1(u)(sin(n·))+ (−1)nnη ′
2(u)(sin(n·))

)
= 0.

Since we are assuming

n

[
η ′

1(u)(sin(n·))+ (−1)n+1η ′
2(u)(sin(n·))

]
	=

∫ π

0
f2(s, u(s))sin2(ns)ds,

we conclude that 〈w,sin(n·)〉2 = 0, which is only the case when w = 0 (since Pn(w) =
w). It follows that D2Gn(0, u) is injective.

We finish the proof by showing that D2Gn(0, u) is onto. To this end, let q be an
arbitrary element in Im(I−Pn) , p an element of Im(Qn) and define c ∈ R by

c =
〈p,−→ψn〉− 〈DF (u)(q),−→ψn〉

〈DF (u)(ψn),
−→ψn〉

,

for u the particular solution to the nonhomogeneous linear equation. Note that this is
well defined since in the proof that D2Gn(0, u) is injective, we showed

〈DF (u)(ψn),
−→ψn〉

=
2
π

(∫ π

0
f2(s, u(s))sin2(ns)ds−nη ′

1(u)(sin(n·))+ (−1)nnη ′
2(u)(sin(n·))

)
,
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which is nonzero by the assumption on u .
Consider, r = cψn +q . Then

D2Gn(0, u)(r) =
[

(I−Pn)(r)
QnDF (u)(r)

]
.

Since ψn forms a basis for Im(Pn) , we deduce

D2Gn(0, u)(r) =
[

q
QnDF (u)(r)

]
.

Recalling that

c =
〈p,−→ψn〉− 〈DF (u)(q),−→ψn〉

〈DF (u)(ψn),
−→ψn〉

,

we get that

QnDF (u)(r) =
〈p,−→ψn〉− 〈DF (u)q,−→ψn〉

〈DF (u)ψn,
−→ψn〉

· 〈DF (u)ψn,
−→ψn〉+ 〈DF (u)q,−→ψn〉)−→ψn

= (〈p,−→ψn〉− 〈DF (u)q,−→ψn〉+ 〈DF (u)q,−→ψn〉)−→ψn

= 〈p,−→ψn〉−→ψn

= p.

It follows that D2Gn(0, u) is onto and therefore invertible. By the open mapping the-
orem, D2Gn has a continuous inverse and the result now follows from the implicit
function theorem. �

4. An example

In this section we give a concrete example of the application of our main result,
Theorem 3.3.

Consider
v′′ +n2v = ε f (v(·)) (20)

subject to
v(0) = 1+ εg1(v(t1)) and v(π) = (−1)n + εg2(v(t2)), (21)

where n ∈ N , g1 , g2 are real-valued differentiable functions, and t1 , t2 ∈ [0,π ] .
In this specific case, solutions to the associated linear nonhomogeneous problem

are given by
u(x) = csin(nx)+ cos(nx).

A simple calculation shows that (18) and (19) become

n[g1(u(t1))+ (−1)n+1g2(u(t2))] =
∫ π

0
f (u(s))sin(ns)ds (22)
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and

n[g′1(u(t1))sin(n · t1)+ (−1)n+1g′2(u(t2))sin(n · t2)] 	=
∫ π

0
f ′(u(s))sin2(ns)ds, (23)

respectively.
If we take f (x) = x2 , then (22) and (23) become

n[g1(u(t1))+ (−1)n+1g2(u(t2))] =
(2c2 +1)(1+(−1)n+1)

3n
(24)

and

n[g′1(u(t1))sin(n · t1)+(−1)n+1g′2(u(t2))sin(n · t2)] 	= 4c(1+(−1)n+1)
3n

, (25)

respectively. It is clear that there are an abundance of functions g1,g2 and points
t1,t2 ∈ [0,π ] such that (24) and (25) are satisfied.

For a concrete example, take g1(x) = xm for some m ∈ N,m > 2, and assume
g2(x) = (−1)nK , where 0 < K . In this case, (24) and (25) become

(csin(n · t1)+ cos(n · t1))m −K =
(2c2 +1)(1+(−1)n+1)

3n2 (26)

and

m(csin(n · t1)+ cos(n · t1))m−1 sin(n · t1) 	= 4c(1+(−1)n+1)
3n2 , (27)

respectively.

Suppose now that t1 	= kπ
n

for each k ∈ {1, · · · ,n} . It can be shown that there

exists a c ∈ R such that

(c sin(n · t1)+ cos(n · t1))m −K =
(2c2 +1)(1+(−1)n+1)

3n2 . (28)

To see this, define j : R → R by

j(w) = (wsin(n · t1)+ cos(n · t1))m −K− (2w2 +1)(1+(−1)n+1)
3n2 .

If we take w = −cot(n · t1) , then

j(w) = −
(

K +
(2(−cot(n · t1))2 +1)(1+(−1)n+1)

3n2

)
< 0;

depending on whether m is odd or even, and also the sign of sin(n · t1) , we have
limw→−∞ j(w) = ∞ or limw→∞ j(w) = ∞ . The existence of a c such that (28) holds
now follows from intermediate value theorem.

If we now assume that n ∈ 2N , then (27) becomes

m(csin(n · t1)+ cos(n · t1))m−1 sin(n · t1) 	= 0.
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However, m(c sin(n · t1) + cos(n · t1))m−1 sin(n · t1) = 0 if and only if sin(n · t1) = 0,

which is not the case, since t1 	= kπ
n

for each k ∈ {1, · · · ,n} . Thus, we conclude from

Theorem 3.3 the existence of solutions to

v′′ +n2v = εv2 (29)

subject to
v(0) = 1+ εvm(t1) and v(π) = 1+ εK (30)

for “small” ε (small depends on m,n , K , and t1 ), for all m ∈ N with m > 2, any

n ∈ 2N , every K > 0, and any t1 	= kπ
n

for each k ∈ {1, · · · ,n} .
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