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Abstract. The general problem of persistence of species, amounts to define interactions between
them ensuring the survival of all the species initially present in the system. It appears that sev-
eral relevant persistence schemes induce “forbidden sets” of zero measure for topological rea-
sons. These peculiarities (without practical consequences) are nevertheless not consistent with
certain mathematical definitions of persistence, which are too much restrictive. We come back to
definitions of McGehee – Armstrong and their celebrated counter-example to the so-called “com-
petitive exclusion principle”. We develop these concepts in relation with invasion properties of
the species in a rather practical and computational framework. Several examples of commu-
nities exhibiting persistence without internal rest point (which necessarily exists according to
strict persistence definitions) are given, with explicit description of the attractors, forbidden sets
and invasion properties. Mechanisms of contamination of these properties (based on elementary
cartesian product and structural stability) are given, showing the widespreading nature of these
schemes.

1. Introduction

The problem of persistence of species in ecological dynamics amounts to define
interactions between several species and their resources ensuring the survival of all the
species. There are many different precise definitions of such a general concept (see
for instance [6] (in particular chapters 13 and 16), [10], [22], the review paper [9] and
the book [23], as well as [14] for the ecological context), mostly concerning the very
definition of “extinction”, i. e. the proper definition of convergence to zero. Histori-
cally, the elaboration of such definitions was linked with the discovery of examples of
persistence or extinction, so that this is a naturally open question (see the review paper
[9] in this connection).

One of the main features in this context is the very controversial “Competitive
exclusion principle”, according to which two different predators cannot subsist on the
same prey. Although the first theoretical results in this connection go back to Volterra
[25], the principle was theorized by Gause [4] on the basis of heuristic reasons (some
difference between the predators should induce a demographic advantage of one of
them, which should be the survivor in the competition) and of certain experimental (not
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general) results. Nevertheless, since 1974, certain numerical computations [11] showed
in certain cases the presence of stable periodic solutions involving the three species. In
1977 appeared the very remarkable and celebrated mathematical paper of McGehee
and Armstrong [15], where was proved the existence of an attractor involving both
predators. Unfortunately, the proof is more involved, and the attractor and the phase
portrait were not very explicit. The next year appeared two papers [7], [8]) with more
explicit description and computations on this kind of solutions, and the falsehood of the
exclusion principle seemed proven. Moreover, slow-fast asymptotic techniques allowed
a further study of the problem under the restrictive assumption of a fast dynamics of the
preys with respect to the predators one ([17] and [24])).

Nevertheless, this kind of solution induces topological properties of the attractor
and of its attraction basin (which must contain exceptional sets with zero measure not
going to the attractor) that are not consistent with very strict and global definitions
of persistence (in particular that of [6], and there was a progressive marginalization
and oversight of these striking results, so that, for instance, in 2012, [1] considers the
principle true (although citing [15]), whereas other authors ([13]) rather think that it is
false.

One of the key points in this concern is that when persistence is understood in the
sense of convergence towards a bounded attractor from any initial point, one reduces
(after some technical handling to avoid neighborhoods of the coordinate planes and of
infinity) to a compact set homeomorphic to a ball, the vector field being non-vanishing
and inwards on its boundary. Index theory then implies that the vector field certainly
vanishes inside. So, non-existence of an equilibrium point inside the domain of admis-
sible initial values implies that the system is not persistent (see for instance theorem
13.3.1 of p. 158 in [6],). This argument does obviously not hold when persistence only
takes place almost everywhere. Note also that persistence according to [6] excludes
heteroclinic orbits (see hypothesis H2 of p. 211).

In recent times, explicit models (with very natural structure in biological dynam-
ics) of the two-predator problem, allowed computations and visualization of the attrac-
tor [12], [20], [21]. The attractor is merely a periodic cycle, but the main novelty was
the explicit visualization of the topological structure of the attraction basin, which is
consistent with the non-existence of rest points with non-vanishing populations. Such
a situation is classically impossible in two-dimensional patterns by elementary index
theory, whereas it is possible in dimension n > 2. One of the possible topological pat-
terns may be roughly described by saying that the cycle turns around an axis that is in
movement along itself; the axis is an exceptional set (not belonging to the attraction
basin) which is sent to the boundary (then violating strict persistence). Such a pattern
will be described in Sect 5.

In [20], [21] we exhibited a number of other examples of systems with an attrac-
tor and no internal rest point in ecological dynamics (for instance certain cases of the
so-called “stabilization by predation” and of a predator with two preys), as well as the
corresponding “normal forms” (i.e. model systems allowing explicit computation and
description of the phase portrait). The main feature of all of them is the presence of
an attractor such that the attraction basin lies around an exceptional set of zero mea-
sure which is sent to the boundary. All these situations are examples of systems (not
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necessarily in biological dynamics) enjoying endogenous oscillations without interior
rest point. In evolution theory, they are examples of pure ESS (Evolutionary Stable
Strategies).

The objective of this paper is first to come back to the general definitions and
ideas of McGeheee-Amstrong on attractors and persistence, developing them in an ex-
plicit way accessible to people (not necessarily professional mathematicians) working
in applications of dynamical systems to biological dynamics, mainly by computational
methods. In particular, the concept of persistence only makes sense when considering
the corresponding attraction basins and the associated invasion properties of the various
species from the vicinity of certain domains of the boundary. Both attraction basins and
invasion properties usually exclude “forbidden sets”, which are often of zero measure,
then without practical influence. Second, we develop various examples (in ecological
dynamics) of systems with an attractor and no internal rest point. In particular, we
revisit the “competitive exclusion principle” from this new (old in fact!) viewpoint
exhibiting explicit counter-examples (some new, other taken from previous papers).
Third, to show the very wide field of persistent systems without internal rest point, we
state the property of “contamination” from a system to others by cartesian product and
perturbation (in a classical framework of structural stability), so that we may construct
as many of such systems as we wish from a unique example.

In order to improve the practical impact in a computational context, most of the
mechanisms of persistence are exposed merely by a numerical example, allowing ver-
ification with a personal computer (and a standard Mathematica or Matlab software).
Nevertheless, the mechanisms involved in the models are explicit; moreover, all exam-
ples are in an obvious structurally stable framework, allowing small (and often large)
perturbations of the parameters and other items. In addition, invasion properties of the
species is often mentioned allowing verification.

The paper is organized as follows:
Section 2 is taken from pages 34–37 of [15], with the main definitions and general

frame of persistence (attractors and attractor blocks).
In Section 3, we give a collection of explanations, remarks and other complements

allowing understanding of the previous section by non-professional mathematicians.
In particular, the structural stability of attractor blocks, which play a key role (often
instead of the attractors themselves) is emphasized.

In Sect 4 we develop the concept of invasion of a species xn . Special attention is
payed to the attraction basins. It is shown that computational checking of the invasion
may be limited to the vicinity of the attractor of the dynamics on the manifold xn = 0,
as it implies invasion from the rest of the basin (allowing nevertheless non-invasion
from a “forbidden set” out of the basin).

Section 5 contains a very elementary and explicit example of system with an at-
tractor and no interior rest point. The “forbidden set” and the invasions are apparent.

The so-called “competitive exclusion principle” is revisited in Section 6, where
(not new) counter-examples are given, as well as the invasion properties of the two
predators. In Section 7 we give new examples of very plausible communities of three
species exhibiting persistence without internal rest point.

Section 8 contains examples in this context of systems in dimension four obtained
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by interaction between two subsystems of two species.
In Section 9 we show how a system contaminates by small interaction the property

of having persistence without internal rest point. We give an example of synchronisa-
tion in this context.

Final comments on persistence and endogenous oscillations are in the conclusion,
Section 10.

2. Basic definitions and topological framework according to
McGehee-Armstrong

This section is practically a copy of parts of [15], p. 34–37.
The set of real numbers is denoted R . By a flow on a locally compact metric

space X we mean a continuous map φ : X × R �−→ X such that φ(x,0) = x and
φ(φ(x, t1), t2) = φ(x, t1 + t2) . For K ⊂ X and I ⊂ R , we write:

φ(K, I) = {φ(x,t) : x ∈ K,t ∈ I} (2.1)

A point x ∈ X will be called a rest point if φ(x,R) = x . For flows generated by
vector fields, a rest point corresponds to a critical point, or zero, of the vector field. In
such cases, the rest point x will be called degenerate if the jacobian matrix of the vector
field at x has a zero eigenvalue.

If K ⊂ X satisfies φ(K,R) = K , then K will be called invariant. Note that a rest
point is an invariant set. For U ⊂ X we define the omega-limit set of U as

ω(U) =
⋂

{cl(φ(U, [t,∞))) : t > 0} (2.2)

here cl denotes topological closure.

DEFINITION 1. A compact invariant set K will be called an attractor if there is
an open U ⊃ K such that ω(U) = K . By an attractor block B we mean a compact set
with nonempty interior such that, for each x ∈ ∂B , φ(x,(0,∞)) ∈ int(B) .

Here, ∂ denotes the boundary and int denotes the interior. It is a standard result
that every attractor block contains an attractor and that every attractor is the maximal
invariant set inside some attractor block (see refs 1, 2, 12 of [15]). For smooth flows
an attractor block can be chosen with smooth boundary and with φ transverse to the
boundary (see ref 2 of [15]).

A repeller is an attractor for the time reverse flow φ(x,−t) . Similarly, a repeller
block is an attractor block for the reverse flow.

The concept of an attractor block is particularly well suited for our purposes be-
cause it combines two different notions of stability. First, the attractor itself is “asymp-
totically stable” in the sense that orbits starting close to it approach it asymptotically.
Second, the attractor block is “stable under perturbation” in the sense that nearby flows
have nearby attractor blocks. Indeed, for smooth flows, an attractor block with φ trans-
verse to its boundary remains an attractor block under C1 perturbations. The attractor
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itself may change considerably after a perturbation, but the existence of an attractor
remains.

We now turn to the general n -species model

ẋi = fi(x1, . . . ,xn) = xigi(x1, . . . ,xn) i = 1, . . . ,n. (2.3)

Here xi � 0 is the population density and gi(x1, . . . ,xn) is the specific grow rate
of species i . This system determines a vector field f (and the reduced vector field g )
on the closed positive cone

En = {(x1, . . . ,xn) ∈ Rn : xi � 0, (i = 1, . . . ,n).} (2.4)

All functions in this paper will be assumed infinitely differentiable. A function f =
( f1, . . . ,xn) = (x1g1, . . . ,xngn) can be thought as the n -species ecological community
whose dynamics are given by equations (2.3).

We denote by φ(x,t) the solution of (2.3) starting at x∈En at time t = 0. Standard
theorems of differential equations imply that φ satisfies all the properties of a flow
except possibly that solutions may not be defined for all time. This difficulty may be
overcome in several ways. In order to streamline our presentation, we choose the easiest
way and simply assume that φ is a flow. This assumption places restrictions only on
the behavior of f near infinity. Such assumptions are of no biological importance.

We are now ready to define “persistence” and “exclusion”, at least in the context
of equation (2.3).

DEFINITION 2. An ecological community f (or g ) will be called persistent if φ
has an attractor in int(En) .We shall say that f exhibits exclusion if it is not persistent.

THEOREM 1. Suppose that K ⊂ int(En) is an attractor for φ and that there is no
rest point in int(En) . Then the Euler characteristic of K is 0.

The attractor K is not necessarily a manifold. However, it can always be sur-
rounded by an attractor block which is a manifold. We define the Euler characteristic
of K to be the Euler characteristic of B , where B is an attractor block containing K
as the maximal invariant set in B . This number is well defined and reduces to the or-
dinary Euler characteristic of K if K is a manifold (see ref 2 of [15]]. The theorem
then follows, as − f is a vector field not vanishing on B and outwards transversal on its
boundary.

3. Complements and remarks

The main information of the previous section is that persistence is not impossible
when there are no rest points in int(En) , (and persistence will be explicitly proved by
various examples). When the dimension of the space n is at least 3, this only implies
that the attractors (or the attractor blocks containing them) have Euler characteristic
0. These attractor blocks (and the corresponding attraction basins) are certainly not
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homeomorphic to balls, they are traversed by exceptional regions (usually of zero mea-
sure) mostly formed by heteroclinic orbits or families of them, which do not lead to
the attractor, but to the boundaries of En . Another important issue is that (often en-
tangled) attractors are not mostly handled themselves, but by attractor blocks around
them, which are manifolds with boundary. Moreover, attractors are not necessarily
unique, and the corresponding attraction basins should be taken in consideration. In
this section we give explanations to understand and handle these issues.

Let us first recall some general features on topology of manifolds, which are
widely known for manifolds without boundary, but a little less for manifolds with
boundary, which are mainly concerned here because of the role of attractor blocks.

Manifolds without boundary have an Euler characteristic, a number χ which is a
topological invariant of the manifold and is defined as follows. Let v be a vector field
defined on the manifold. The rest points of v are in finite number. Each rest point has
an index, equal to +1 or −1 according to the sign (+ or − ) of the determinant of the
matrix A which linearizes the vector field at the rest point. This amounts to saying that
the index is +1 (resp. −1) when the matrix A preserves (resp. reverse) the orientation
of the space. Obviously, the previous assertion only makes sense when there are no
degenerate rest points, but this case is (very technically) avoided using the property that
a small perturbation of v eliminates the degeneration. The celebrated Poincaré-Hopf
theorem asserts that the sum of the indices of the rest points is independent of the vector
field, then a topological property of the manifold, called its Euler characteristic χ .

It follows that, in order to compute the Euler characteristic of manifold, it suffices
to have a vector field on it, and to perform the computation on it. Moreover, if there
exists a vector field without rest point, χ is equal to 0, and any other vector field will
have rest points with “balanced” indices (i. e., with sum 0).

The Poincaré-Hopf theorem may appear at first glance as a little magic, but in fact,
it is only concerned with changes of the orientations of the local tangent space induced
by the vector field at the singularities. In fact, it furnishes a topological property of
the manifold from topological properties of the field and in particular it asserts that the
vector fields on the manifold cannot have arbitrary singularities.

The elementary example of (smooth) vectors fields on a cycle (torus of dimension
1, noted T 1 ), which is easily handled using either a drawing or evident properties of
periodic functions, shows that the Euler characteristic of a cycle is 0, and that any rest
point preserving (resp., inverting) the local orientation must be balanced by another one
inverting (resp. preserving) it. The tore of dimension n , noted Tn has also χ = 0; you
may see T 2 either as a manifold in itself or as surface in R3 (the surface of a tire).

The point in the present paper is that all the above properties of manifolds without
boundary also hold true for manifolds with boundary, under the condition that the vector
fields are transversally outgoing on the boundary. Proofs and general theory may be
seen for instance in [16] chapter 6, in particular pages 35–37]. The outgoing condition
is chosen by convention, and this is the reason why we usually deal with the vector field
− f instead of f itself in attractor blocks.

Usual examples are the solid torus (the interior of a tire) and the ball, which have
χ = 0 and χ = 1 respectively.
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REMARK 1. It may happen that an attractor block contains several attractors, and
several attractor blocks. Let us consider, for instance the equation ẋ = −x(1−x)(1+x)
on R . there are three rest points, −1 and +1 are attractors and 0 is a repeller. We
may take as attractor blocks small closed segments containing −1 and +1, but a large
segment as [−2,+2] is also an attractor block, and its maximal attractor is the set of
the two attractors −1 and +1. Note also that the attraction basin of an attractor block
may differ from that of its maximal attractor. Indeed, in the previous example, the
attraction basin of the large segment [−2,+2] is the whole line, but the attraction basin
of its maximal attractor is the line with the exception of the origin. In practice, we shall
mainly deal with attractor blocks and their attraction basins.

REMARK 2. The existence of an attractor A contained in int(En) (i. e., persis-
tence) is equivalent to the existence of an attractor block contained in int(En) . Indeed,
as A is compact, it remains at distance > 0 from the boundary, and it has an attractor
block K , which cannot touch the boundary, otherwise the solution issued from such a
contact point (which remain on the boundary) should not satisfy the condition of going
inside K .

We are now in position to understand (and almost prove) Theorem 1. Indeed, if K
is an attractor in int(En) , let S be an attractor block contained in int(En) and having K
as maximal attractor (i. e. not containing other attractors). Then S is a manifold with
boundary, and − f is a vector field transverse and outgoing on the boundary; as there is
no rest point in S , the Euler characteristic of S is χ(S)= 0. This number is independent
of the choice of S , provided of course that it contains K and no other attractor, so that it
is well defined by K , it is a number associated to K , which (by definition) is called the
Euler characteristic χ(K) of K (which is not a manifold). Note, by the way, that the
hypothesis that there is no rest point in int(En) may be replaced by the non-existence
of rest point in a neighborhood of K . It also appears that the (somewhat entangled)
property that χ(K) = 0 amounts merely to χ(S) = 0 for any attractor block S having
K as maximal attractor.

Another point which deserves explanation is the concept of smooth boundary of
a compact with non empty interior. When the compact set K has a non-empty inter-
section with ∂En (i. e. when it contains points of the coordinate planes or edges),
only piecewise smoothness is supposed. More precisely, it suffices to assume that the
domain is the intersection with En of a compact of Rn with smooth boundary. This is
allowed by the special form of the field f , which has the boundary as invariant mani-
fold. Note that, without this remark, only boundaries tangent to the coordinate planes
and edges should be allowed.

In the previous section it was mentioned the fact that, provided the vector field
is smooth, the attractor blocks may be taken themselves smooth. The construction of
attracting blocks (and even the larger concept of isolating blocks) may be seen in [2]
(in particular Sect 5, p. 53–60). This construction holds inside any open set U of the
definition of the attractor. It then follows that, if a (non-smooth) attractor block K is
known, it is possible to construct a smooth one K̃ inside K .

Moreover, as the attractors are not necessarily unique and it may happen that there
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is one in int(En) and others not, an essential complement to the previous considerations
is the definition of the attraction basins.

DEFINITION 3. The attaction basin of an attractor A is the maximal open set sat-
isfying U ⊃ A such that ω(U) = A .

Nevertheless, as we shall mainly deal with attractor blocks, it is even more useful
to define their attraction basin:

DEFINITION 4. Let K be an attractor block. Its attraction basin is the set of points
x such that φ(x, t) is in K for sufficiently large t . Obviously, this amounts to the union
of the complete orbits (i. e. for t ∈ R) of the points of K . It is also equivalent to the
union of K and the negative half-orbits issued from the boundary of K .

4. Invading species

One of the main applications of the concept of persistence is the study of invading
species. Roughly speaking, a species is said invading in an ecological pattern if a small
insemination of it leads to a new pattern involving the new species. In our framework,
this involves the attraction basin of the new attractor and its proximity with the subspace
where the new species vanishes. Moreover (specially if there are several attractors) a
species may be invading from a region and not from another.

We note
x = (x̃,xn) (4.1)

Obviously, the system on En induces automatically a dynamics on En−1 of the
x̃ components, which is an invariant manifold. For the same reason, if there is an
attractor (or an attractor block) A disjoint of En−1 , its (open) attraction basin B(A) is
also disjoint of En−1 . We then define:

DEFINITION 5. Let k be a compact in En−1 . The species xn is said to be uni-
formly invading from the vicinity of k if the system has an attractor (or an attractor
block) A disjoint of En−1 and there exists δk > 0 such that k× (0,δk) is contained in
the attraction basin B(A) . Moreover, if σ is a set in En−1 which is a union of com-
pacts, the species xn is said to be invading from the vicinity of σ if the system has an
attractor (or an attractor block) A disjoint of En−1 and xn is uniformly invading from
the vicinity of each compact (then allowing non-uniformity in δ ).

It should be noticed that in the previous definition, the attractor A is not necessarily
in the interior of En , it may happen that it be on a boundary disjoint of xn = 0; in
that case, the species xn displaces others. For the same reason, a system with all the
variables invading is not necessarily persistent. The next more strict definition is often
useful:

DEFINITION 6. The slightly different concepts of “strictly uniform invading” and
“strictly invading” species are defined as the non-strict ones replacing A disjoint of
En−1 by A ⊂ int(En) .
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We are now developing the main property of invasion. It consists in the fact that,
roughly speaking, as the dynamics for small xn is close to a surface dynamics on En−1 ,
invasion from the vicinity of the attractor of the dynamics on this surface implies in-
vasion from the vicinity of the whole attraction basin of the surface dynamics. More
precisely:

THEOREM 2. In the dynamics on En−1 , let a be an attractor block with smooth
boundary, and k a compact contained in the attraction basin B(a) . Then, if xn is
uniformly invading (strictly or not) from the vicinity of a , it also does on the vicinity of
k .

LEMMA 1. In the dynamics on En−1 , the entry time of points in a is bounded on
k .

Proof. Under a local diffeomorphism, which preserves transversality, the bound-
ary of a becomes x1 = 0, and the time of entry t is given by the equation φ1(x,t) = 0.
This equation defines localy t as a smooth function of x by the implicit function the-
orem, as, by transversality, ∂φ1/∂ t = f1 �= 0. The entry time is then a well defined
smooth function, so bounded on the compact k . �

REMARK 3. The previous proof is general and works as well for the entry time
from any compact in a smooth attractor block. Moreover, (joint to standard perturbation
theory) it proves that the property “the compact K is in the attraction basin of a smooth
attractor block A” is preserved by small perturbation of the vector field.

We are ready for the proof of Theorem 2.

Proof. Let δa be the δ involved in the definition of the invasion from the vicinity
of a , and let T be a bound of the entry time from k into a . We consider the continuous
mapping x �→ φ(x,2T ) . It then suffices to prove that there exists δk > 0 such that the
mapping maps

k× [0,δk) �→ int(a)× [0,δa) (4.2)

We note that the right hand side is an open set of the topology induced by the
restriction to En (alternatively we may replace in the right hand side [0,δa) by the open
set (−δa,δa)). Moreover, the mapping sends k×{0} (and so also does a neighborhood
of it) into that open set. The conclusion then follows. �

REMARK 4. As a consequence of the previous theorem, invasion is mainly ruled
by the behavior of the vector field in the vicinity of the (even very small) attractor blocks
of the dynamics on xn = 0.

REMARK 5. It should be noticed that the very concept “invading”was not defined,
but only invading from the vicinity of some set. Often in practice the set is obvious;
moreover, according to Theorem 2, invasion of xn may be understood from the vicinity
of the attraction basin of the dynamics on xn = 0, and there is ambiguity only in the
case of several attractors.
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In practical problems, the question of the structural stability of invasion from the
vicinity of a compact k arises in a natural way. We shall prove such a property under
suited hypotheses, usual in structural stability theory.

DEFINITION 7. A rest point is said to be hyperbolic when the eigenvalues of the
matrix that linearizes the system at that point has no eigenvalues with vanishing real
part. A cycle is said to be hyperbolic when the matrix that linearizes the (discrete)
system at a Poincaré section has no eigenvalues with vanishing real part (this property
is independent of the section).

REMARK 6. The classical construction of the stable and unstable manifolds takes
a very simple form under the hypothesis of hyperbolicity, as the two manifolds are
locally complementary. The local flow in a neighborhood of the point or cycle then
takes the classical “hyperbolic form”. In particular, with the sole exception of the stable
manifold, each point goes out of the neighbourhood in sufficiently large positive time;
this property will be a key point of the proof of the next stability theorem. See any
classical treatise of ODE for these questions, for instance [5] sect. 3.3, Saddles for rest
points in the plane, [3] sect 2.4 for cycles.

THEOREM 3. Let f be a vector field in En and a an attractor block of the dynam-
ics on xn = 0 , and k a compact of xn = 0 such that k ⊃ a. Let the maximal attractor
of a be either a hyperbolic rest point or a hyperbolic cycle (note that then it is a rest
point or a cycle of the whole dynamics on En as well).

Then the property “xn is invading from the vicinity of k” is preserved by small
perturbation of the vector field.

Proof. We first note that it is sufficient to prove the invasion from the vicinity of
a , or even from any other smaller smooth attractor block.

It follows from the hypotheses that the stable manifold of the attractor is xn = 0,
whereas the unstable manifold is (in the two cases of a point and a cycle) either a
smooth curve transversal to xn = 0 or a smooth two-dimensional manifold containing
the cycle, transversal to xn = 0 along the cycle. We then choose the smooth attractor
block inside the neighborhood of the attractor mentioned in Remark 4.

Let ∂a be the boundary of a (in xn = 0). The vector field f enters transversaly to
it and has vanishing xn component. Then, for sufficiently small δ , f enters transver-
saly to ∂a× [0,δ ] too. By Remark 6, all the points of a× (0,δ ] (note that (0,δ ] is
open on the left) go out of it in the future, and they go out necessarily by the upper face
a×{δ} . We then note that all these properties are classically preserved under small
perturbation of the field, so that, after small perturbation, all the points of a× (0,δ ] go
in the future to a×{δ} ; this is the key point of the proof, which allows to replace a
non-compact domain by a compact one (note, nevertheless, that the previous times of
displacement of the points are unbounded, but this is irrelevant). The ulterior movement
of the points to a global smooth attractor block disjoint of xn = 0 is trivial according to
Remark 3, then achieving the proof. �
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5. A first example of system without interior equilibrium and a cyclic attractor

We are giving here a very simple (academic) example allowing explicit compu-
tation and understanding of the topological structure of attractors and invasions. This
example will be developed in three versions; the first one is two-dimensional, very close
to a predator-prey system, the second is three-dimensional; obtained from the previous
one by revolution around an axis, and the third is a diffeomorphic deformation of the
second.

We first consider the system

{
ṙ = r(1− r2− z)

ż = z(−c+ r)
(5.1)

with c = 0.4, in the positive cone of the plane (r,z) . It is easily seen that there is
a unique interior rest point (c,1− c2) which is an attractor. The coordinate axes are
invariant manifolds; there are two other equilibria, the origin (0,0) and (1,0) , which
are saddles. The global phase portrait is shown in Fig. 1. Note in particular that along
the z-axis there is a dynamics towards the origin. It then appears that there is an attractor
in int(E2) , the attraction basin being the whole interior of E2 . Moreover, the species
z is uniformly invading from the vicinity of any compact of the r axis, whereas r is
uniformly invading from the vicinity of any compact of the z axis without the origin.

Figure 1: Two orbits of system (7). The dynamics on the z axis is towards the origin.

Moreover, we consider r and z as cylindrical coordinates, and we add a rotation
with unit angular velocity, i. e. we add the equation θ̇ = 1. We then have

⎧⎪⎪⎨
⎪⎪⎩

ṙ = r(1− r2− z)

θ̇ = 1

ż = z(−c+ r)

(5.2)
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in the half space z � 0. This is equivalent to the system⎧⎪⎪⎨
⎪⎪⎩

ẋ = −y+ x(1− x2− y2− z)

ẏ = x+ y(1− x2− y2− z)

ż = z(−c+ r)

(5.3)

in the half space z � 0 of the cartesian frame (x,y,z) . The interior equilibrium (c,1−
c2) of (7) becomes the attractor cycle r = 1− c2 , z = c , whereas the dynamics on the
z axis is not modified (dynamics along the axis, towards the origin), Fig. 2. It may be
said that the half-space turns around the axis z , which is itself in movement along itself
towards the origin. This axis is then an exceptional set of zero measure which leads to
the boundary, not to the global cyclic attractor. Moreover, the variable z is uniformly
invading from the vicinity of any compact of the plane z = 0 without the origin.

Figure 2: An orbit and the limit (circular) cycle of system (9) in the half space z � 0 of R3 . The
dynamics derives from that of Fig. 1 by rotation around the z axis with constant angular speed.
The axis z is always an orbit going to the boundary z = 0 .

In order to have an explicit example for a system on the positive cone E3 we then
use the diffeomorphism

(x,y,z) �−→ (X = ex,Y = ey,Z = z). (5.4)

The cycle is no longer a circle (it may be parametrized as X = eccos(θ) , Y =
ecsin(θ) , z = 1−c2 ) and the exceptional orbit becomes X = 1, Y = 1, Z ∈ R+ (Fig. 3).

Figure 3: The same as Fig. 2 under the diffeomorphism (10) in E3 . The attractor is no longer
a circle. The straight line X = Y = 1 is always an orbit going to the boundary Z = 0
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The coordinate planes are invariant manifolds, indeed Ẋ = exẋ tends to 0 as x →−∞ ,
as the first factor is exponentially small and the second algebraically large. It should be
nevertheless noted that it is not smooth in the sense of this article, as the derivative has
a slight (logarithmic) singularity; it is obviously possible to avoid it by modifying the
initial vector field in order to become bounded at infinity.

6. Two predators and one prey. Various counter-examples to the so-called
exclusion principle

As we pointed out in the introduction, even longtime after the (entangled or not
very explicit) papers [11], [15], [7], [8], the so called “competitive exclusion principle”
was more or less admitted by a part of the scientific community, and a “proof” of it may
be seen for instance in [1] sect 5.11, p. 217–218. In fact, their proof relies on the fact
that, in their opinion, if the predator y1 (resp. y2 ) is a survivor, then y1 (resp. y2 ) is
necessarily invading from the equilibrium of x and y2 (resp. y1 ); and they prove the
impossibility of these simultaneous properties. In fact, as we shall show, the invasion
of one of the predators takes place on the attractor of the other with the preys, which is
a cycle, distinct of the equilibrium.

We consider the system⎧⎪⎪⎨
⎪⎪⎩

ẋ = ax(1− x/p)+ y1b1Tanh(e1x/b1)+ y2b2Tanh(e2x/b2)

ẏ1 = y1(−c1 +b1Tanh(e1x/b1))

ẏ2 = y2(−c2 +b2Tanh(e2x/b2))

(6.1)

for a prey x and two predators y1,y2 . It is immediately seen that there is no interior
equilibrium, i. e. a rest point (x0,y0

1,y
0
2) , all different from 0. Indeed, the corresponding

algebraic system has two equations with the unique unknown x0 .

Figure 4: The attractor of system (11) (parameters a = 1 , p = 4 , b1 = 1 , b2 = 2 , c1 = c2 = 0.7 ,
e1 = 1.8 , e2 = 1 ) and an orbit starting near the plane y1 = 0 (see text).
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The values of the various parameters are a = 1, p = 4, b1 = 1, b2 = 2, c1 =
c2 = 0.7, e1 = 1.8, e2 = 1, so that the predation of the y1 is more efficient than the
other (e1 > e2 ) but the y2 have a larger bound of satiety (b2 > b1) . It then appears
a three-dimensional cyclic attractor (Fig. 4). The attractors of the surface dynamics
on the planes y1 = 0 and y2 = 0 are a point and a cycle respectively; they are both
stable in their planes and transversally unstable. The cycle on the plane x,y1 obviously
encloses a rest point, which is unstable in its plane (an unstable focus) but transversally
stable. In the three-dimensional dynamics there is a heteroclinic orbit starting from the
equilibrium on y1 = 0 and finishing at the equilibrium on y2 = 0; its shape is almost
straight. The numerical experience of Figs. 4 and 5 was done starting close to the plane
y1 = 0 (from (2,0.000001,1)) in order to visualize these items. The solution is initially
very close to the plane y1 = 0 and it spirals approaching the corresponding attractor
point; as it is transversally unstable, the solution then runs close to the heteroclinic
orbit approaching the equilibrium on the plane y2 = 0. As this equilibrium is unstable
in that plane, the solution then spirals dilatating and then approaches the cycle which
is the attractor in that plane. But, approaching to it, as it is transversally unstable,
the solution then takes off from the vicinity of the plane and goes towards the tree-
dimensional cyclic attractor. Fig. 5 is a plot of y1 and y2 exhibiting these various
phases, in particular the “exhange” of y1 and y2 along the heteroclicic orbit.

Figure 5: Plot of y1(t) and y2(t) for the same solution. Note the exchange (from the vicinity of
x1 = 0 to that of x2 = 0 ) when passing along the heteroclinic orbit.

The basin of the attracting cycle is int(E3) without an exceptional set (the het-
eroclinic orbit binding the two equilibria on y1 = 0 and y2 = 0). The species y1 is
invading from the vicinity of int(E2) (in the plane y1 = 0). But y2 is only invading
from the vicinity of int(E2) (in the plane y2 = 0) without the rest point on y2 = 0.

There are very many variants of this basic scheme. Here we have an example
where the advantage of the efficiency of the y1 is balanced by a greater mortality ratio.
We take the same system (11) with the parameters a = 1, p = 4, b1 = b2 = 1, c1 =
0.60, c2 = 0.55, e1 = 1.5, e2 = 1. In this case there is again an attractor in int(E3) ,
but the attractors on the faces y1 = 0 and y2 = 0 are both cycles. The three attractors
are simultaneously represented on Fig. 6.

Otherwise, it is also possible to get explicit examples of two perfectly analogous
predators with a prey provided that the terms c1y1 and c2y2 accounting for the natural
decrease rates of the predators become nonlinear convex functions (the rate of natural
deceases decreases with the size of the population). The fact that nonlinear terms inval-
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Figure 6: System (11) with a = 1 , p = 4 , b1 = b2 = 1 , c1 = 0.60 , c2 = 0.55 , e1 = 1.5 , e2 = 1.
Plot of the three-dimensional cyclic attractor and of the cyclic attractors in the faces y1 = 0 and
y2 = 0 .

idate the competitive exclusion principle is known (see for instance [6] or [13]). As a
matter of fact, the principle is invalidated by any change in system (11) destroying the
peculiarity that the algebraic system for the internal equilibria has two equations with
only one unknown; so that obvious modifications send the system into a more classical
nonlinear framework. This we proceed to do in the next example, which also exhibits
a cyclic attractor. But, because of the symmetry, the plane y1 = y2 is an invariant man-
ifold, which contains the attractor; by classical index theory in that plane, it has an
internal unstable rest point. So, this new counter-example to the exclusion is out of the
main focus of this paper, as it satisfies strict persistence.

Specifically, we consider the system⎧⎪⎪⎨
⎪⎪⎩

ẋ = ax(1− x/p)+ y1b1Tanh(e1x/b1)+ y2b2Tanh(e2x/b2)

ẏ1 = y1(−c1 + δe−λ y1 +b1Tanh(e1x/b1))

ẏ2 = y2(−c2 + δe−λ y2 +b2Tanh(e2x/b2))

(6.2)

Figure 7: An orbit and the cyclic attractor in the plane y1 = y2 for system (12).
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with the values of the parameters: a = 1, p = 4, b1 = b2 = 1, c1 = c2 = 0.7, e1 =
e2 = 1, δ = 0.1, λ = 2. The attractor is shown in Fig. 7. In addition, this effect of
the new nonlinear terms also holds in the case when the attractor is a point instead of a
cycle (for instance, taking e1 = e2 = 0.75 (instead of 1), the attractor becomes a point).

REMARK 7. The effect of the new nonlinear terms is easily understood using the
“splitting” procedure (see [19] for the splitting-perturbation method). Indeed, in the
case of symmetry in y1,y2 without the new terms, it is easily seen that the system is the
splitting under y = y1 + y2 of an analogous system with only one predator y . Such a
system has automatically a family of attractors in the family of planes y1/y2 = const ;
the extremities of the family being on the planes y1 = 0 and y2 = 0, which obviously
have “neutral transversal stability”. The new nonlinear terms do not result from a split-
ting. By comparing them with those obtained by a splitting, it is easily seen that they
have a transversally destabilizing effect for δ > 0 (and stabilizing for δ < 0) on the
cycles on the planes y1 = 0 and y2 = 0, so sending the attractor towards int(E3) . The
opposite holds for δ < 0, which exhibits bi-stability (two three-dimensional attractors
on the planes y1 = 0 and y2 = 0).

7. Other examples of persistent communities of three species
without internal equilibrium

The examples in the previous section (system (11)) of persistence of two predators
on one prey rely on the balance of an advantage and a disadvantage of the predation pro-
cess itself along the cycle. But there are many other mechanisms of preservation using
interactions (commensalism, symbiotic interactions. . . ) between the predators. We are
giving here two examples where one of the predators y1 is less efficient than the other
y2 , but it takes a demographic advantage of the presence of the y2 (commensalism).
The two examples differ by the expression (linear and nonlinear) of the commensalism
term.

We consider the system⎧⎪⎪⎨
⎪⎪⎩

ẋ = ax(1− x/p)+ y1b1Tanh(e1x/b1)+ y2b2Tanh(e2x/b2)

ẏ1 = y1(−c1 +b1Tanh(e1x/b1))+ εy1y2

ẏ2 = y2(−c2 +b2Tanh(e2x/b2))

(7.1)

which only differs from (11) by the presence of the term +εy1y2 in the equation for
ẏ1 . The values of the parameters are a = 1, p = 4, b1 = b2 = 1, c1 = c2 = 0.75,
e1 = 0.6, e2 = 1.1, ε = 0.2. This system is persistent, with a cyclic attractor (Fig. 8).
This sytem has no rest point in int(E3) . This is easily seen as the algebraic system for
the interior rest points reduces to a linear system with the solution (0.88,−0.62,1.32) ,
then out of int(E3) . The topological structure of the attraction basin and the invasion
of the predators are the same as in Fig. 4 (the exceptional set is the heteroclinic orbit
binding the equilibria on y1 = 0 and y2 = 0.

An analogous result is obtained when the commensalism term is nonlinear, ex-
hibiting an upper bound analogous to the satiety bound of the predation. Specifically,
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Figure 8: An orbit and the cyclic attractor for system (13).

we consider the system

⎧⎪⎪⎨
⎪⎪⎩

ẋ = ax(1− x/p)+ y1b1Tanh(e1x/b1)+ y2b2Tanh(e2x/b2)

ẏ1 = y1(−c1 +b1Tanh(e1x/b1))+ εy1b3Tanh(e3y2/b3)

ẏ2 = y2(−c2 +b2Tanh(e2x/b2)).

(7.2)

with the values of the parameters a = 1, p = 4, b1 = b2 = b3 = 1, c1 = c2 = 0.75,
e1 = 0.8, e2 = 1.5, e3 = 1, ε = 0.3. This system is again persistent, with a cyclic
attractor (Fig. 9). Once more, there is no rest point in int(E3) , as the algebraic system
reduces to a linear system with the solution (0.64,−1.27,1.53) , then out of int(E3) .

Figure 9: An orbit and the cyclic attractor for system (14).

It should be noted that analogous properties of persistence hold true for a symbiotic
interaction between y1 and y2 instead of commensalism, but in that case, the algebraic
system for the rest points is no longer reducible to a linear system, and the non existence
of a rest point in int(E3) cannot be rigorously proved.

8. Examples with four species without interior rest point

In this section we are considering two examples of four-dimensional systems ob-
tained by coupling two systems of two species. The heuristic mechanism to obtain a
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cyclic attractor is very easy to understand. We first consider{
ẋ1 = a1x1(1− (x1 + δx2)/q1)+ νyx1

ẋ2 = a2x2(1− (x2 + δx1)/q2)
(8.1)

with ν = 0 for two species x1,x2 in competition for resources. They obey to logistic
equations with population capacities q1,q2 and δ is the parameter of interdependence
(see [19] if necessary). The system has the equilibria (q1,0) and (0,q2) as well as
another out of the coordinate axes. We may easily choose the parameters (see hereafter)
in order to have the third rest point out of E2 and (0,q2) as attractor. Moreover, the
term +νyx1 with positive ν and y (which are taken as parameters for the time being)
gives a demographic advantage to x1 , so that, with sufficiently large νy the attractor
is on the x1 axis, specifically (q1(νy+ a1)/a1,0) . In other words, for νy = 0 (resp.
sufficiently large νy) system (8.1) has a point attractor on the x2 axis (resp. on the x1

axis).
We then consider an auxiliary system with two species y,z (y is a prey and z a

predator) with a cyclic attractor, and we use the y(t) function as parameter y in (15).
This amounts to saying that there is an influence of y on x1 of commensalism nature.
System (15) becomes non-autonomous, and clearly the vector field oscillates between
a trend towards the attractors on the two axes, so that x1 and x2 are incorporated into
the oscillation.

Specifically, we consider the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = a1x1(1− (x1 + δx2)/q1)+ νyx1

ẋ2 = a2x2(1− (x2 + δx1)/q2)

ẏ = by(1− y/p)− zTanh(y)

ż = z(−c+Tanh(y))

(8.2)

with a1 = 0.73, a2 = 1, b = 1, c = 0.7616, ν = 0.15, δ = 0.9, p = 4, q1 = 0.73,
q2 = 1. This system has a cyclic attractor. The established oscillations of the four
variables are shown in Fig. 10. A projection of the cycle on the x1,x2,y space appears
in Fig. 11. Moreover, this system has no internal equilibrium; indeed, the algebraic
system for the internal equilibria is reducible to a linear system with the rest point
x1 = −0.318, x2 = 1.286, y = 1, so out of the positive cone.

The special structure of this system allows an explicit description of the excep-
tional manifold of dimension 2 = 4− 2 formed by the heteroclinic orbits not leading
towards the attractor. Indeed, the auxiliary system in y,z obviously has a (unstable) rest
point inside the limit cycle; it is y = y0 = 1.0, z = z0 = 0.985. The exceptional mani-
fold is y = y0 , z = z0 , and the dynamics on it is described by the two first equations of
(16) with y = y0 .

Concerning the invasion of the various species, it is easily seen by simple inspec-
tion of the system that the prey y is invading from the vicinity of the whole (three-
dimensional) subspace y = 0, and the predator z is invading from the vicinity of the
(three-dimensional) subspace z = 0 unless the (two-dimensional) subspace y = 0.
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Figure 10: Plot of the established oscillation of system (16).

As for the invasion of x1 , we consider the dynamics on the subspace x1 = 0.
It is the cartesian product of the dynamics on the axis x2 and on the plane (y,z) , so
that there is the attractor {q2}×C , where C denotes the cyclic attractor of the system
(y,z) . The corresponding attraction basin is the product of the axis x2 without the origin
and the plane (y,z) without the rest point (y0,z0) inside this cycle (which necessarily
exist according to elementary index theory). This basin is clearly the whole (three-
dimensional) manifold x1 = 0 with the exception of a zero-measure set, so that the
invasion of x1 is checked merely by observation of one or several orbits starting with
small x1(0) .

The same holds true for the invasion of (x2 ); the only difference is the dynamics
on the subspace x2 = 0, which is no longer a cartesian product. Nevertheless, for small
ν the attractor is a cycle as in the previous case; this follows either from structural
stability from the cartesian product or directly using classical periodic stable solution
theory for x1 submitted to small periodic forcing coming from (y,z) .

Figure 11: A projection on the subspace x1,x2,y of the attractor of system (16).

Very many variants of the previous mechanism are easily obtained by perturbation,
as the pattern is structurally stable. We are now giving an example where the x1,x2

subsystem has in its turn an influence on the y,z , so exhibiting a real interaction between
the two subsystems. For instance, we suppose that the presence of x1 increases the
efficiency of the predation of z on y . Specifically, we consider the new system (17)
with the new parameter β = 1.1 and the same values of the other parameters (we note
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that this change goes out of small perturbation theory).⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = a1x1(1− (x1 + δx2)/q1)+ νyx1

ẋ2 = a2x2(1− (x2 + δx1)/q2)

ẏ = by(1− y/p)− zTanh((1+βx1)y)

ż = z[−c+Tanh((1+ βx1)y)]

(8.3)

Once more, system (17) has a cyclic attractor, shown in Fig. 12 and Fig. 13. This
system has no internal equilibrium. In the present case, the algebraic system for the
internal equilibria is not reducible to a linear system, but to a quadratic one, with the
rest points x1 =−0.178, x2 = 1.24, y = 1.16 and x1 =−1.626, x2 =−1.27, y = 2.46,
so both out of the positive cone.

Figure 12: Plot of the established oscillation of system (17).

Figure 13: A projection on the subspace x1,y,z of the attractor of system (17).

9. Contamination properties by cartesian product of persistent systems
with no internal rest point

The cartesian product of dynamical systems with attractors enjoys very simple
properties of contamination of the property of not having rest points, which are struc-
turaly stable by ulterior perturbation of the product vector field. They follow imme-
diately from the properties of attractor blocks with smooth boundary. This induces
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technical difficulties as the cartesian product of two domains with smooth boundary
has not a smooth boundary (think to the square product of two segments), but such
difficulties are easily overcame using the properties recalled in Sect 3. In addition, non-
existence of rest point is structurally stable on compact domains; its generalization to
En needs usual hypotheses on the behavior at infinity. For these reasons, the very sim-
ple properties hereafter are stated in a slightly entangled way; there are obvious variants
of them.

Let f 1, f 2 be two persistent sytems (in the general framework of this paper) on
En and Em , with the (internal and with smooth boundary) attractor blocks K1 and K2

respectively. Then, the system F = ( f 1, f 2) has an attractor K with smooth bound-
ary inside K1 ×K2 . Moreover, this conclusion is structurally stable with respect to
perturbations of the reduced field G = (g1,g2) .

Under the same conditions, if f 1 (or g1 ) does not vanish in K1 , then F does
not vanish in K , and this conclusion is structurally stable with respect to perturbations
of the reduced field G = (g1,g2) . This property also holds true replacing K1 by the
whole En under usual conditions on the behavior of the fields and their perturbations
at infinity.

There are obvious corollaries of these properties when f 1 (or g1 ) has no rest point
and the attractor in K1 is a cycle. If the attractor in K2 is a point, then F has a stable
cycle in K , (structurally stable) and no rest point. If the attractor in K2 is a cycle, then
F has an invariant torus (which is structurally unstable, whereas the smooth attractor
block K is structurally stable) and no rest point. In that case, the perturbations behave
according to classical perturbation theory of invariant tori, without rest points.

In this framework, we are now giving an example of product and perturbation ex-
hibiting a synchronisation phenomenon without internal rest point. We consider a sys-
tem on E5 which is the cartesian product of two subsystems on E3 (species x,y1,y2 )
and E2 (species u,v) respectively. the first subsystem is precisely (13) of section 7;
it has an internal attractor without internal rest point. This subsystem has no influence
from the second, so that it plays the role of driver. The second subsystem is an indepen-
dent predator-prey system with an attractor cycle; the parameters were chosen in order
to have a cycle with period slightly different of that of the first subsystem. Moreover,
there is an extra term +ηy2v on v̇ which accounts for an influence of the first (driver)
subsystem on the second. The nature of this influence is of the commensalism nature,
of v on y2 , with parameter of intensity η .

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = x(1− x/p)+ y1Tanh(e1x)+ y2b2Tanh(e2x/b2)

ẏ1 = y1(−c1 +Tanh(e1x))+ εy1y2

ẏ2 = y2(−c2 +Tanh(e2x))

u̇ = u(1−u/q)+ vTanh(u)

v̇ = v(−d +Tanh(u))+ ηy2v

(9.1)

The values of the parameters are p = 4, c1 = c2 = 0.75, e1 = 0.6, e2 = 1.1,
ε = 0.2, d = 0.7, q = 4.
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For η = 0 the two subsystems are independent, and the attractor is the cartesian
product of the two cycles with slightly different periods. Fig. 14 is a plot of the pro-
jection of this product of cycles on the plane (y1,u) , accounting for a species of the
first subsystem and a species of the second, exhibiting the lack of synchronism of the
two variables. For 0.045 < η < 0.22 the second subsystem adopts the same period as
the first (which is invariable). Fig. 15 is analogous to Fig. 14 with η = 0.1, showing
synchronism. The whole system, with any value of η has no interior rest point.

Figure 14: System (18) with η = 0 . A projection of the attractor on the subspace y1,u, showing
non-synchronism of the two subsystems.

Figure 15: System (18) with η = 0.1 . A projection of the attractor on the subspace y1,u,
showing synchronisation of the two subsystems.
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10. Conclusion

In dimension n � 3 there are very many dynamical systems (making sense in ecol-
ogy) with an attractor inside the variables domain and a large attraction basin, often
going to the boundaries (so accounting for invasive dynamics) without internal equilib-
rium point; they are pure ESS (Evolutionary Stable Strategies). In most examples, the
attractor itself is very simple, a periodic cycle; the dynamics “turns around an axis” of
dimension n−2 which is not necessarily at rest, it usually undergoes a movement tan-
gentially to itself (so often sending the axis to the boundary). As a consequence, there
is no rest point inside the domain, but obviously the axis itself is not in the attraction
basin of the cycle, so that this one excludes exceptional sets with zero n -dimensional
measure. A model example of such dynamics is given in Sect 5. This kind of dynamics
is (under wide hypotheses) structurally stable. Moreover, it is “contagious” by cartesian
product with any other dynamical system, and the product is itself structurally stable, so
admitting small interactions between the two subsystems, the whole system becoming
itself a pure ESS.

This kind of systems is very wide and includes well established counter examples
to the “competitive exclusion principle”; as a matter of fact, two predators may live on
a prey in a pure ESS framework without equilibrium point.

This kind of pure ESS are discarded by strict definitions of persistence, which, in
our opinion, should be avoided and replaced by the classical one (see for instance [15])
which amounts merely to the existence of an internal attractor. The utilization of this
definition in practice is often facilitated using properties of invasion from the boundary
(sect 4).
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