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LIAPUNOV FUNCTIONS FOR NEURAL NETWORK MODELS

MÁRTON NEOGRÁDY-KISS AND PÉTER L. SIMON ∗

(Communicated by M. Federson)

Abstract. The dynamical behaviour of continuous time recurrent neural network models is stud-
ied with emphasis on global stability of a unique equilibrium. First we show in a unified context
two Liapunov functions that were introduced in the nineties by Hopfield, Grossberg, Matsouka
and Forti. Then we introduce a class of networks for which the model becomes a special coop-
erative system with a unique globally stable steady state. Finally, we show that periodic orbits
may occur when the sufficient conditions for the existence of Liapunov functions are violated.

1. Introduction

Modelling neural networks has led to many mathematical challenges and research
has been carried out in different branches of applied mathematics. The focus of this
paper is global stability in continuous time recurrent neural networks with emphasis
on the application of Liapunov functions. Consider a neural network with n nodes
and with edge weights wi j from node j to node i . We can use the adjacency matrix
W = (wi j)i, j=1,2,...,n to represent the network. The activity rate of node i at time t is
denoted by xi(t) . In this paper we study the widely used Hopfield or Cowan-Wilson
model

ẋ = −Ax+Wy+ I, yi = fi(xi), (1.1)

where I ∈ R
n is the input, A is a diagonal matrix with positive entries, fi : R → R is a

strictly increasing ( f ′i > 0), differentiable activation function having finite limits at both
infinities. See [9, 10, 17] and equation (13.3) in Chapter 13 of [6]. The most frequently
studied activation functions have the form

f (x) =
1

1+ x2 , f (x) =
1

1+ e−x , f (x) = tanh(x)

or are derived from these functions by simple linear transformations as a f (bx + c) .
The theorems presented in this paper are formulated for a general class of activation
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functions containing all these functions, i.e. both the symmetric and non-symmetric
cases that are investigated in the literature [18].

The model can be formulated in a slightly different form, if a bias term Θi is
introduced to each neuron. Then the i-th equation of the above system takes the form

ẋi = −aixi +
n

∑
j=1

wi j f (x j + Θ j)+ Ii, (1.2)

i.e. the term f (x j + Θ j) takes over the role of the term f j(x j) .
The research focused to synchronization of neurons originally, some recent review

articles about this topic are [1, 15, 18]. The dynamical behaviour of (1.1) has also been
studied since the pioneeringworks of Grossberg and Hopfield [9, 10]. The parameters Ii
and Θi are used as bifurcation parameters in several papers considering small networks,
e.g. [2, 3, 5], where the detailed bifurcation diagrams were determined analytically.
Local bifurcations can be determined analytically also for larger networks when there
are only four different weights in W [7]. In that paper the effect of inhibitory neurons
is also studied in detail for a weight matrix with special structure and with parameters
Ii and Θi . However, our focus in this paper is on the effect of the weights on the
dynamical behaviour of the system.

It is known that a wide spectrum of dynamical behaviours can occur in this system
depending on the values of the different parameters. Our goal here is to identify some
important classes of networks when the trajectories tend to steady states or there is a
globally stable steady state. In order to verify global stability, appropriately chosen
Liapunov functions can be used. Before turning to the question of global stability, we
note that simple calculation shows that the cube [−K,K]n is positively invariant for
a suitable chosen value of K , and all trajectories enter this cube in finite time. Then
a straightforward application of Brouwer’s fixed point theorem shows that there is a
steady state in the cube.

The structure of the paper is as follows. In the next two sections we show two
Liapunov functions that were introduced in the nineties by Hopfield, Grossberg, Mat-
souka and Forti [8, 9, 10, 14]. In the fourth section we consider a class of networks for
which (1.1) becomes a special cooperative system with a unique globally stable steady
state. For this case the methods of monotone dynamical systems can be applied [16].
In the fifth section we will show that periodic orbits may occur when the conditions
for the existence of Liapunov functions are violated. The periodic solutions are given
analytically when the network is a directed cycle, the weights are nonnegative and the
activation function is a step function. For sake of completeness, we present the proofs
even for the previously known Liapunov functions. This also enables the Reader to see
the extent to which the given Liapunov function can be generalised.

2. Cohen-Grossberg type Liapunov function

The strongest motivation for studying system (1.1) was the observation that all
solutions tend to equilibria when the weight matrix is symmetric, paving the way for
modelling addressable memory with a simple dynamical system. Hence in this section
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we assume that matrix W is symmetric and introduce a Liapunov function that enables
us to prove that every trajectory tend to a steady state. This function was used in Hop-
field’s original paper [10] and was generalized to a wider class of dynamical systems
by Cohen and Grossberg [9].

Let Fi : R → R be a differentiable function, for which F ′
i (z) = z f ′i (z) holds. Con-

sider the following Liapunov function:

V (x) =
n

∑
i=1

aiFi(xi)− 1
2

n

∑
i=1

n

∑
j=1

wi j fi(xi) f j(x j)−
n

∑
i=1

Ii fi(xi).

Its partial derivative with respect to the k -th variable is

∂kV (x) = akF
′
k(xk)− 1

2

n

∑
j=1

wk j f
′
k(xk) f j(x j)− 1

2

n

∑
i=1

wik fi(xi) f ′k(xk)− Ik f ′k(xk).

The symmetry of the weight matrix W implies that the last two terms are equal, hence

∂kV (x) = akxk f ′(xk)−
n

∑
i=1

wik fi(xi) f ′k(xk)−Ik f ′k(xk) = f ′k(xk)
(

akxk−
n

∑
i=1

wik fi(xi)−Ik

)
.

Observe that V ′(x) is zero if and only if x is a steady state, because f ′ > 0. Thus the
Liapunov function can have a maximum or minimum only at the steady states. The
calculation below shows that V is strictly increasing along other solutions, therefore
every trajectory tends to an equilibrium.

Let V ∗(t) = V (x(t)) , where t �→ x(t) is a non-constant solution of system (1.1).
Then

V̇ ∗(t) =
n

∑
k=1

∂kV (x(t))ẋk(t) = −
n

∑
k=1

f ′(xk)
(

akxk −
n

∑
i=1

wik fi(xi)− Ik

)2

< 0.

Hence we have proved the following theorem.

THEOREM 1. Assume that the weight matrix W is symmetric. Then every trajec-
tory of system (1.1) tends to an equilibrium.

Now we turn to another Liapunov function introduced in the nineties.

3. The Matsuoka–Forti Liapunov function

In this section we present a global stability result obtained by using a Liapunov
function introduced independently by Matsuoka and Forti [14] [8]. Forti introduced the
Liapunov function for a wider class of equations, hence his result is slightly weaker
than Matsuoka’s. Therefore, we follow Matsuoka’s proof. Denote an equilibrium point
of system (1.1) by x∗ ∈ R

n . Let us introduce the functions gi(z) = fi(z+ x∗i )− fi(x∗i ) .
These are strictly increasing differentiable functions with gi(0) = 0. Let us denote their
integral by Gi(z) =

∫ z
0 gi(u)du . The relation G′

i = gi implies that the functions Gi have
a strict minimum at 0.
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Matsuoka introduced the Liapunov function

V (x) = G1(x1 − x∗1)+G2(x2 − x∗2)+ . . .+Gn(xn− x∗n).

It has a strict minimum at x∗ because Gi have a strict minimum at 0 for all i . Let us
calculate the derivative of V along solutions of system (1.1). Let x be a solution of
(1.1) and let V ∗(t) = V (x(t)) . Then

V̇ ∗(t) =
n

∑
i=1

∂iV (x(t))ẋi(t) =
n

∑
i=1

∂iV (x(t))
(
−aixi(t)+

n

∑
j=1

wi j fi(x j(t))+ Ii

)
.

Using the definition of V and that G′
i = gi , we get (after omitting t )

V̇ ∗ =
n

∑
i=1

gi(xi − x∗i )
(
−aixi +

n

∑
j=1

wi j f j(x j)+ Ii

)

=
n

∑
i=1

( fi(xi)− fi(x∗i ))
(
−aixi +

n

∑
j=1

wi j f j(x j)+ Ii

)
.

Using that

aix
∗
i −

n

∑
j=1

wi j f j(x∗j)− Ii = 0

we can put the left hand side of this equation into the equation above, leading to

V̇ ∗ =
n

∑
i=1

( fi(xi)− fi(x∗i ))
(

ai(x∗i − xi)+
n

∑
j=1

wi j( f j(x j)− f j(x∗j))
)

.

For the sake of brevity, let us introduce the notations ui = xi − x∗i and yi = fi(xi)−
fi(x∗i ) . Then

V̇ ∗ =
n

∑
i=1

yi

(
−aiui +

n

∑
j=1

wi jy j

)
= y�(−a ◦ u+Wy)

= y�
(

1
M

y−a ◦ u

)
+ y�

(
− 1

M
y+Wy

)
.

Observe that denoting the maximum of all f ′i by M , i.e. assuming 0 � f ′i � M for all i ,
if ai � 1 ( i = 1, . . . ,n ), we have y�(1/M ·y−a◦u) � 0, since the mean value theorem
yields fi(xi)− fi(x∗i ) = f ′i (ci)(xi − x∗i ) , leading to

yi

(
1
M

yi −aiui

)
= diui

(
1
M

diui−aiui

)
= −di

(
ai − 1

M
di

)
u2

i � 0,

where di = f ′(ci) � M .
On the other hand, the matrix in the quadratic form y�(−1/M · y+Wy) , can be

made symmetric y�(−1/M ·y+Wy) = y�(−1/M · I +1/2(W +W�))y . Summarising

V̇ ∗ � y�
(
− 1

M
I +

1
2
(W +W�)

)
y,
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that is, V serves as a Liapunov function to system (1.1) if this matrix is negative definite.
The above matrix is negative definite when the eigenvalues of 1/2(W +W�) are less
than 1/M . Since V has a strict minimum in x∗ , then every trajectory tends to x∗ , so
the system has a unique steady state. Hence we proved the following.

THEOREM 2. Assume that 0 � f ′i � M and ai � 1 for all i . If the eigenvalues of
matrix 1/2(W +W�) are less than 1/M, then the equilibrium of system (1.1) is unique
and asymptotically stable.

This theorem is formulated for a general class of activation functions. This can be
translated to the most widely studied special case when all the activation functions take
the form f (x) = a/(1+e−bx+c) . Then we can formulate a condition for the parameters
a,b,c for which global stability holds. In more detail, denoting by λmax > 0 the greatest
eigenvalue of 1/2(W +W�) , a sufficient condition of global asymptotic stability is
a,b > 0 and ab < 4/λmax . We note that the factor 1/4 is obtained as the maximum
value of the derivative of 1/(1+ e−x) .

Since the eigenvalues are difficult to compute, it is useful to reformulate the the-
orem in terms of a matrix norm instead of the eigenvalues. The absolute values of the
eigenvalues are less than any norm of the matrix, e.g. the maximum of the sums of
rows, hence the following is a consequence of the theorem.

COROLLARY 1. Assume that 0 � f ′i � M, ai � 1 and 1/2∑n
j=1 |wi j +wji|< 1/M

for all i . Then the equilibrium of system (1.1) is unique and asymptotically stable.

4. Lajmanovich-Yorke type Liapunov function

Studying an epidemic model, Lajmanovich and Yorke introduced a Liapunov func-
tion that enabled them to prove a global stability result [13]. Inspired by their idea, Bodó
and Simon introduced a class of dynamical systems, for which the local stability of the
trivial steady state determines the global stability of the system [4]. Here we present
this general global stability result, relate it to the theory of monotone dynamical systems
and then we generalize it to a wide class of activation functions. The result presented in
[4] is valid for the activation function 1/(1+ e−x) , here we show that global stability
holds when the activation function is strictly concave and positive in the positive half
line.

Consider the dynamical system

ẋ(t) = g(x(t)), (4.1)

in the cube Q = {x∈R
n : 0 � xi �K, i = 1, . . . ,n} , where g : R

n →R
n is a differentiable

function satisfying the following assumptions.

(A1) The cube Q is strictly positively invariant, i.e. xk = 0 implies gk(x) > 0 and
xk = K implies gk(x) < 0.

(A2) If k is an index such that xk > yk > 0 and xk/yk � x j/y j for all j , then ykgk(x) <
xkgk(y) .

The following Proposition can be easily seen.
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PROPOSITION 1. The assumption (A2) implies the Kamke-Müller condition and
strict R-concavity.

(KM) If ui � vi for all i and uk = vk , then gk(u) � gk(v) .
(SRC) If xi > 0 and gi(x) = 0 for all i implies gi(λx) > 0 for all i when 0 < λ < 1 .

Proof. We show that (A2) implies (SRC). Let gi(x) = 0, xi > 0 for all i and
y = λx for 0 < λ < 1. Then we can apply the property (A2) to every coordinate which
yields 0 = yigi(x) < xigi(y) which is equivalent to 0 < gi(λx) .

At last suppose that ui � vi for all i and uk = vk . Now apply (A2) to x = u+δek

and y = v . Then (uk +δ )/vk > 1 � ui/vi so vkgk(u+δek) < (vk +δ )gk(v) and taking
the limit δ ↘ 0 we get gk(u) � gk(v) . �

REMARK 1. Strict R-concavity does not imply property (A2) even in one dimen-
sion.

To show this define g : R → R as

g(x) =

{
x2 if 0 � x < 1,

2− x if x � 1

and let 0 < y < x < 1. Function g is (SRC), but yx2 > xy2 .
Hence a system satisfying (A2) is a monotone dynamical system, see Section 3.1

in [16]. Moreover, (KM) and (SRC) together imply that there is at most one steady
state ([12] Theorem 1.). The positive invariance of the cube implies the existence of the
steady state, hence it has exactly one steady state. Cooperative systems with a unique
equilibrium are globally stable when every forward semi-orbit has compact closure,
[11], hence we have the following theorem.

THEOREM 3. Assume that system (4.1) satisfies assumptions (A1) and (A2). Then
there exists a (coordinate-wise) positive steady state that is globally asymptotically
stable in Q.

Now we apply Theorem 3 to system (1.1) when the inputs and the weights are
nonnegative and each row of the weight matrix contains at least one non-zero entry. We
note that this last assumption is not restrictive, since it means that there is now isolated
neuron in the network. (Isolated neurons can be treated separately and the remaining
part of the network can be considered instead of the original one.) It is easy to see that
xi = 0 implies ẋi > 0, and there exist a number K , such that xi = K implies ẋi < 0 for
all indices i . Hence the cube Q = [0,K]n is strictly positively invariant. We show that
assumption (A2) holds if the function f is strictly concave in the positive half of the
real line and the inputs are non-negative. Assumption (A2) can be written as follows:
assuming xk > yk and xk/yk � x j/y j for all j , we need to verify that

ykgk(x) = Ikyk −akxkyk +
n

∑
j=1

wjk f j(x j)yk < Ikxk −akxkyk +
n

∑
j=1

wjk f j(y j)xk = xkgk(y).
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Hence it is enough to prove that xk > yk and xk/yk � x j/y j imply

f j(x j)yk < f j(y j)xk. (4.2)

This will be proved by using the following proposition.

PROPOSITION 2. If f : [0,+∞)→R is strictly concave and positive, then f (cx) <
c f (x) holds for all c > 1 and for all x > 0 .

Proof. Applying the definition of concavity in the interval [0,cx] to the interior
point x = 1/c · cx+(1−1/c) ·0, we obtain

f (x) = f

(
1
c
cx+

(
1− 1

c

)
·0

)
>

1
c

f (cx)+
(

1− 1
c

)
f (0) >

1
c

f (cx),

that yields the a statement. �
Now we prove that inequality (4.2) holds. Introducing c = xk/yk > 1, the inequal-

ity x j/y j � c holds for all j . Inequality (4.2) can be written in the form f j(x j)yk <
f j(y j)cyk , hence we need to show that f j(x j) < f j(y j)c . The monotonicity of f j im-
plies f j(x j) � f j(cy j) , since x j � cy j . Therefore it is enough to prove that f j(cy j) <
c f j(y j) , which follows directly from the concavity of f j .

Thus we have proved the following theorem.

THEOREM 4. Assume that the functions fk are strictly concave in the half line
[0,+∞) , Ik � 0 for all k , all the entries of matrix W are nonnegative and each row of
the weight matrix contains at least one non-zero entry. Then the equilibrium of system
(1.1) is unique and asymptotically stable.

We note that the result in [4] follows from this theorem when it is applied to the
activation function having the form f (x) = a/1+e−(bx+c) . Then for a,b > 0 and c � 0
the conditions of the Theorem above hold, i.e. global stability follows. We note that
here we have a restriction for the translation parameter c , while Theorem 2 holds for
any value of c , instead it restricts the product ab .

5. Periodic solution

Theorems 2 and 4 yield sufficient conditions for the global stability of a unique
steady state. Now, we investigate to what extent are these conditions necessary when
the weights are non-negative. Theorem 4 requires the activation function to be concave
on the positive half line, while in Theorem 2 the slope of the activation function is under
a certain bound. We show an activation function that violates these conditions and
enables the existence of a periodic solution, i.e. excludes global stability. (The system
remains cooperative, hence the periodic orbit will not be stable [16].) The activation
function will be the step function

f (x) =

{
0 if x < 1/2,

1 if x > 1/2.
(5.1)
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because of two reasons. On one hand, analytical results are possible to achieve by
manipulating with explicit formulas, on the other hand, these kind of functions can be
thought of as the limits of sigmoid functions with increasing slope. This step function
violates the conditions of the Theorems above.

In order to have an explicit formula for the periodic orbit, the network is chosen to
be a directed cycle i.e. w1n = 1 and wi,i−1 = 1 for i = 2, . . . ,n , and all other entries of
W are zero. In this case the differential equation takes the following form:

ẋ1(t) = f (xn(t))− x1(t), (5.2)

ẋi(t) = f (xi−1(t))− xi(t) for i = 2, . . . ,n (5.3)

We will show that with a properly chosen T -periodic function p the periodic solution
of this system takes the form xi(t) = p(t− (i−1)l) for i = 1,2, . . . ,n , where T = nl .

PROPOSITION 3. Let T, l ∈ R be such that nl = T . Assume that there exists a
continuous, T -periodic function p satisfying the inequalities

p(t) <
1
2
, when t ∈ (l,T/2+ l) and p(t) >

1
2
, when t ∈ (T/2+ l,T + l) (5.4)

and the differential equation
ṗ(t) = q(t)− p(t), (5.5)

where q is a T -periodic function satisfying

q(t) =

{
0 if 0 < t < T/2,

1 if T/2 < t < T.

Then the functions xi defined as xi(t) = p(t − (i−1)l) for i = 1,2, . . . ,n are solutions
of equations (5.2)-(5.3).

Proof. Observe first that f (xi(t)) = q(t− il) . This follows from the fact that both
sides can be only zero or one. The left hand side is zero when xi(t) < 1/2, that is when
p(t − (i− 1)l) < 1/2. This inequality holds if t − (i− 1)l ∈ (l,T/2 + l) , i.e. when
t− il ∈ (0,T/2) , which means that q(t − il) = 0, that is the right hand side is zero. In
a similar way, one can see that if the left hand side is one then so is the right hand side.
Then taking an index i = 2, . . . ,n we have

ẋi(t) = ṗ(t− (i−1)l) = q(t− (i−1)l)− p(t− (i−1)l) = f (xi−1(t))− xi(t),

that is xi satisfies (5.3). Similarly, it is easy to check that x1 satisfies (5.2) as follows.

ẋ1(t) = ṗ(t) = q(t)− p(t) = q(t−nl)− p(t) = f (xn(t))− x1(t). �

Finally, we prove the existence of the periodic function p satisfying the Proposi-
tion above.
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Solving the differential equation (5.5) in (0,T/2) we get p(t) = c1e−t and in
(T/2,T ) we have p(t) = 1 + c2e−t . The continuity of p at T/2 and at T and its
periodicity require

c1e
−T/2 = 1+ c2e

−T/2 and c1 = 1+ c2e
−T . (5.6)

The inequalities in (5.4) hold if p(l) = 1/2 = p(T/2+ l) and p is strictly decreasing
(i.e. c1 > 0) in (0,T/2) and strictly increasing (i.e. c2 < 0) in (T/2,T ) . So we need

c1e
−l =

1
2

= 1+ c2e
−l−T/2. (5.7)

Substituting c1 and c2 from (5.7) into the equations in (5.6), we can observe that the
two equations are identical, both are equivalent to

el + el−T/2 = 2.

Now we show that for any n � 5 there is a positive period T , for which this equation
holds with l = T/n . Introducing x = el and using T = nl this equation is equivalent to

h(x) := x+ x1−n/2 = 2.

It is straightforward to check that h(1) = 2, h′(1) < 0 and limx→+∞ h(x) = +∞ . Hence
the continuity of h implies that there is x∗ > 1, for which h(x∗) = 2. Hence l = log(x∗)
and T = nl yield the required period.

Thus we have proved the following result about the periodic solution.

THEOREM 5. If n � 5 is a natural number, W is a directed cycle with weights 1 ,
the activation function f takes the form (5.1), Ik = 0 , ak = 1 , then (1.1) has a periodic
solution.

Conclusion

The main goal of this paper is to study the global stability of a widely used con-
tinuous time recurrent neural network model, given in (1.1). In the second and third
sections we presented two previously known Liapunov functions, which can be used
to guarantee stability under certain restrictions on the network. The Cohen-Grossberg
type Liapunov function requires the network to be symmetric. The Matsuoka–Forti
Liapunov function roughly requires that the entries of the matrix are relatively small
compared to the steepness of the activation function.

In the fourth section we showed that global stability can also be guaranteed when
the entries of the matrix are nonnegative and the activation function is positive and
strictly concave in the positive half line.

In the fifth section we proved that if we relax the conditions on the activation
function given in the previous two sections, then we can choose a network and an
activation function such that a periodic solution exist. That is violating the conditions
ensuring the existence of the Liapunov functions we loose global stability.

In the future, we plan to extend these results to the case when there are negative
weights as well in certain columns, by using monotone systems.
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