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Abstract. In this paper we present a theory of genera of conjoined bases for symplectic dynamic
systems on time scales and its connections with principal solutions at infinity and antiprincipal
solutions at infinity for these systems. Among other properties we prove the existence of these
extremal solutions in every genus. Our results generalize and complete the results by several
authors on this subject, in particular by Došlý (2000), Šepitka and Šimon Hilscher (2016), and the
author and Šimon Hilscher (2020). Some of our result are new even within the theory of genera
of conjoined bases for linear Hamiltonian differential systems and symplectic difference systems,
or they complete the arguments presented therein. Throughout the paper we do not assume any
normality (controllability) condition on the system. This approach requires using the Moore–
Penrose pseudoinverse matrices in the situations, where the inverse matrices occurred in the
traditional literature. In this context we also prove a new explicit formula for the delta derivative
of the Moore–Penrose pseudoinverse. This paper is a first part of the results connected with the
theory of genera. The second part would naturally continue by providing a characterization of
all principal solutions of (S) at infinity in the given genus in terms of the initial conditions and
a fixed principal solution at infinity from this genus and focusing on limit properties of above
mentioned special solutions and by establishing their limit comparison at infinity.

1. Introduction

In this paper we contribute to the qualitative theory of the symplectic dynamic
system

xΔ = A (t)x+B(t)u, uΔ = C (t)x+D(t)u, t ∈ [a,∞)T, (S)

on time scales by providing the analysis of genera of conjoined bases and its relation-
ship with the principal and antiprincipal solutions of (S) at infinity. More precisely, we
consider a time scale T , that is, T is a nonempty closed subset of R with the standard
topology inherited from R . We assume that T is unbounded from above and bounded
from below with a := minT and set [a,∞)T := [a,∞)∩T as the time scale interval. The
coefficients A (t) , B(t) , C (t) , D(t) of system (S) are real piecewise rd-continuous
n×n matrices on [a,∞)T such that the 2n×2n matrices

S (t) :=
(

A (t) B(t)
C (t) D(t)

)
, J :=

(
0 I
−I 0

)
(1.1)

Mathematics subject classification (2020): 34N05, 34C10, 39A12, 39A21.
Keywords and phrases: Symplectic system on time scale, genus of conjoined bases, antiprincipal solu-

tion at infinity, principal solution at infinity, nonoscillation, Riccati matrix dynamic equation, Moore–Penrose
pseudoinverse.

This research was supported by the Czech Science Foundation under grant GA19-01246S.

c© � � , Zagreb
Paper DEA-14-07

99

http://dx.doi.org/10.7153/dea-2022-14-07


100 I. DŘÍMALOVÁ

satisfy the identity

S T(t)J +J S (t)+ μ(t)S T(t)J S (t) = 0, t ∈ [a,∞)T. (1.2)

Here μ(t) is the graininess function of T . We consider the solutions of system (S)
as piecewise rd-continuously Δ-differentiable functions, i.e., they are continuous func-
tions on [a,∞)T and their Δ-derivative is piecewise rd-continuous on [a,∞)T . The
current literature on symplectic dynamic systems on time scales is rather rich. In [1]
the authors consider the so-called symplectic flow and alpha-derivatives on generalized
time scales. The paper [2] studies non-self-adjoint Hamiltonian systems on Sturmian
time scales. In [5, 11, 12, 6] the authors deal with the oscillation of symplectic dynamic
systems and with discrete theory of dynamic symplectic systems in general. Variational
problems for symplectic systems on time scales are considered in [18, 19, 20, 31, 32].
In [35] the author derives the Rofe-Beketov formula for symplectic systems, which
generalizes the well-known d’Alembert formula. Certain aspects of the spectral the-
ory (eigenvalue theory and the Weyl–Titchmarsh theoty) of symplectic systems on time
scales, including the oscillation theorems, are derived in [21, 30, 33, 34].

The theory of extremal solutions of system (S), called principal (and nonprincipal)
solutions at infinity, was initiated by Došlý in [10] under a certain complete controlla-
bility assumption. This theory was further developed in the context of possibly uncon-
trollable or abnormal system (S) by Šepitka and Šimon Hilscher in [27] by providing
the theory of principal solutions of (S) at infinity and by the author and Šimon Hilscher
in [14] by setting the grounds for the antiprincipal solutions of (S) at infinity. In this
paper we present further development of this theory, namely we consider the concept
of a genus of conjoined bases, which is an equivalence class of all conjoined bases
(X ,U) of (S) with eventually the same image of the first component X . This notion is
known in the continuous time setting (i.e., for linear Hamiltonian differential systems)
in [23, 24, 26] and in the discrete time setting (i.e., for symplectic difference systems)
in [29] and it is used for studying limit behaviour of solutions at infinity. Here we pro-
vide the theory of genera of conjoined bases of system (S) on arbitrary time scales as
a unification and extension of the results in [23, 24, 26, 25, 29, 27], leading in some
situations to new results even for these special cases, or to corrections of the therein
presented arguments. More precisely, we emphasize the following main results of this
paper in the general time scales environment:
(i) we derive an explicit formula for the Δ-derivative of the Moore–Penrose pseudoin-
verse (Theorem 2.2), which completes its earlier properties derived in [18, Lemma 2.1],

(ii) we derive the the rank of a special antiprincipal solution of (S) at infinity (The-
orem 4.1), which generalizes [14, Theorem 6.5] to arbitrary (possibly nonmiminal)
conjoined bases and which is new even in the continuous and discrete case,

(iii) we define the notion of a genus of conjoined bases of system (S), based on the
study of the eventual equality of the image of their first component (Definition 5.2),

(iv) we establish the existence of antiprincipal solutions of (S) at infinity and principal
solutions of (S) at infinity in the given genus (Theorems 6.1 and 6.2),

(v) we provide a complete analysis of the relation being contained between two con-
joined bases of (S) regarding shifting the left endpoint of the considered interval (the
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results in Section 7 and in particular in Propositions 7.1 and 7.2), thus providing at the
same time (through Proposition 3.12) a correction of the corresponding arguments in
the proof of [29, Theorem 5.6],

The above list serves mainly as a tool for the continuation of this work covered in
Part II of this paper. However, this preparatory part has to be done inevitably, to make
following results understandable. In the continuation of this paper we will
(a) prove a characterization of all principal solutions of (S) at infinity in the given genus
in terms of the initial conditions and a fixed principal solution at infinity from this genus,
which generalizes and unifies [23, Theorem 7.13] and [29, Theorem 5.6] to arbitrary
time scales,

(b) prove a characterization of all antiprincipal solutions of (S) at infinity in the given
genus in terms of the initial conditions and a fixed principal solution at infinity from
this genus, which generalizes and unifies [24, Theorem 5.13] and [29, Theorem 5.8] to
arbitrary time scales,

(b) establish mutual limit properties of principal and antiprincipal solutions of (S) at
infinity, which generalize and unify the results in [24, Theorem 6.1] and [29, Theo-
rem 6.1], respectively in [24, Theorem 6.3] and [29, Theorem 6.4], to arbitrary time
scales.

This means that we collect (in Sections 2 and 3) all the main needed statements, to
which we refer to in our subsequent work. We believe that this makes the results as well
as the methods accessible for proper reading and further possible development, namely
the continuation of this paper, which will be called Part II of this paper. The remaining
parts of the paper (Sections 4–7) then contain the new results. Finally, we also include
some open problems, which are related to the presented theory (Section 8).

2. Matrix analysis and time scales calculus

In this section we introduce some basic matrix notation and recall the proper-
ties of the Moore–Penrose pseudoinverse. We suppose that the reader is familiar with
basic concepts of dynamic equations on time scales, such as in the introductory sec-
tions of the monographs [7, 8]. In particular, f Δ(t) denotes the Δ-derivative of the
function f : T → R , σ(t) is the forward jump operator on T , ρ(t) is the backward
jump operator on T , and μ(t) := σ(t)− t for t ∈ T is the graininess of T . The func-
tion ( f ◦σ)(t) := f (σ(t)) for t ∈ T is denoted by f σ (t) . The Δ-derivative and the
Δ-integral of a function f are denoted by f Δ(t) and

∫ b
a f (t)Δt , respectively, where

[a,b]T := [a,b]∩T is the time scale interval with endpoints a,b ∈ T such that a < b .
A point t < maxT (provided the maximum exists) is called right-dense if μ(t) = 0,
while it is called right-scattered if μ(t) > 0. We will use the concept of piecewise
rd-continuously Δ-differentiable functions on T as defined in [17]. For a function
f : T → R we will often use the well-known formula

f σ (t) = f (t)+ μ(t) f Δ(t) for all t ∈ T , for which f Δ(t) exists. (2.1)

Recall that the matrix M ∈ R2n×2n is symplectic if MTJ M = J , where the
matrix J is given in (1.1). Symplectic matrices form a group with respect to the
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matrix multiplication, and the inverse of a symplectic matrix M is given by the formula
M−1 =−J MTJ . For a matrix M ∈ Rm×n we will use the orthogonal decomposition

R
n = (ImM)⊕ (KerMT ), i.e., (ImM)⊥ = KerMT . (2.2)

For a linear subspace V ⊆ R
n we denote by PV the orthogonal projector onto V .

For the results of this paper it is essential to use the following properties of the
Moore–Penrose pseudoinverse. It is defined by the following four properties, which we
often use in the proofs, see e.g. [3]. Let M be a real m×n matrix. A real n×m matrix
M† satisfying

MM†M = M, M†MM† = M†, M†M = (M†M)T , MM† = (MM†)T , (2.3)

is called the Moore–Penrose pseudoinverse of the matrix M . We will use the following
properties of the Moore–Penrose pseudoinverse, which can be found e.g. in [3, 4, 9, 15]
and [18, Lemma 2.1]. These properties play an essential role in our theory.

REMARK 2.1. For any real matrix M ∈ R
m×n there exists a unique matrix M† ∈

Rn×m satisfying the identities in (2.3). Moreover, the following properties hold.

(i) (M†)T = (MT )† , (M†)† = M , and ImM† = ImMT , KerM† = KerMT .

(ii) If M ∈ R
m×n is full rank matrix, then

M† = MT (MMT )−1 when rankM = m, (2.4)

M† = (MT M)−1MT when rankM = n. (2.5)

These formulas can be verified by checking the four properties in (2.3).

(iii) The matrix MM† is the orthogonal projector onto ImM , and the matrix M†M is
the orthogonal projector onto ImMT . Moreover, rankM = rank(MM†) = rank(M†M) .

(iv) Let M(t) be an m× n matrix function defined on the interval [a,∞)T such that
limt→∞ M(t) = M . Then the limit of M†(t) for t → ∞ exists if and only if there exists
a point t0 ∈ [a,∞)T such that rankM(t) = rankM for all t ∈ [t0,∞)T . In this case we
have limt→∞ M†(t) = M† .

(v) Let M1 and M2 be symmetric and positive semidefinite matrices such that M1 � M2 .
Then the inequality M†

2 � M†
1 holds if and only if ImM1 = ImM2 , or equivalently if

and only if rankM1 = rankM2 .

(vi) If M is symmetric and positive semidefinite, then also M† is symmetric and posi-
tive semidefinite. That is, M � 0 if and only if M† � 0.

(vii) For any matrices M and N with suitable dimensions we have

(MN)† = (PImMT N)† (MPImN)† = (M†MN)† (MNN†)†. (2.6)

In particular, if one of the matrices M or N is orthogonal, then

(MN)† = N†M† (2.7)
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This formula can also be verified by checking the four properties in (2.3).

(viii) If M is a given matrix and 0 is a matrix with suitable dimension, then

(
0 M

)† =
(

0
M†

)
,

(
0
M

)†

=
(
0 M†

)
. (2.8)

The following lemma deals with the delta derivative of the Moore-Penrose pseu-
doinverse. Note that the first part about the existence of Δ-derivative is known in [18,
Lemma 2.1], based on the result in [22, Lemma 6]. Here we derive explicit formulas
(2.11) and (2.12), which are new on time scales.

THEOREM 2.2. Let M(t) be an m×n piecewise rd-continuously Δ-differentiable
matrix function defined on the interval [α,∞)T such that KerM(t) is constant on
[α,∞)T . Then the matrix function M†(t) is also piecewise rd-continuously Δ-differen-
tiable on [α,∞)T and

[M†(t)]ΔM(t) = −[M†(t)]σ MΔ(t) = −[Mσ (t)]† MΔ(t), t ∈ [α,∞)T, (2.9)

[M†(t)]ΔMσ (t) = −M†(t)MΔ(t), t ∈ [α,∞)T. (2.10)

Moreover, for [M†(t)]Δ on [α,∞)T we have the formula (suppressing the argument t )

(M†)Δ = −M†MΔ(M†)σ +M†M†T (MΔ)T [I−Mσ (M†)σ ], (2.11)

or equivalently the formula

(M†)Δ = −(M†)σ MΔM† +(M†)σ (M†T )σ (MΔ)T (I−MM†). (2.12)

Proof. The proof of the statement that M† is piecewise rd-continuously Δ-diffe-
rentiable on [α,∞)T follows the idea in [22, Lemma 6], but here we add more details.
Let D be a constant matrix such that KerM(t) = ImD for t ∈ [α,∞)T , which we denote
by D = (d1, . . . ,dk) ∈ R

n×k with di ∈ R
n , and we define

k := defM(t) = n− rankM(t), t ∈ [α,∞)T. (2.13)

By the Gram-Schmidt theorem, it is possible to select the columns of D as the or-
thonormal basis of ImD , and then to complete this basis by the vectors dk+1, . . . ,dn

to an orthonormal basis of Rn . Then the matrix D̃ := (d1, . . . ,dk,dk+1, . . . ,dn) ∈ Rn is
orthogonal and the matrix

M̃(t) := M(t)D̃ = (0,N(t)), t ∈ [α,∞)T, where 0 ∈ R
m×k, (2.14)

is such that N(t) ∈ Rm×r with r := n− k and N(t) := M(t)D̃(0, I)T is piecewise rd-
continuously Δ-differentiable on [α,∞)T . Moreover, the matrix N(t) has a full (col-
umn) rank r by (2.13). Then the matrix F(t) := NT (t)N(t) ∈ R

r×r is invertible for
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all t ∈ [α,∞)T . Thus functions F(t) and F−1(t) are both piecewise rd-continuously
Δ-differentiable on the interval [α,∞)T . Moreover by (2.7), (2.8), and (2.5) we get

M†(t) (2.14)= (M̃(t)D̃T )† =
(
(0,N(t))D̃T )† (2.7)= D̃(0,N(t))† (2.8)= D̃

(
0

N†(t)

)
(2.5)
= D̃

(
0

F−1(t)NT (t)

)
, t ∈ [α,∞)T.

It implies M†(t) is piecewise rd-continuously Δ-differentiable on [α,∞)T . The ex-
pressions in (2.9) and (2.10) now follow directly from the rules for the Δ-derivative of
the product and the fact that the matrix M†(t)M(t) is constant on [α,∞)T , since it is
an orthogonal projector onto the constant subspace ImMT (t) = [KerM(t)]⊥ on [α,∞)T

by Remark 2.1(iii).
The proof of (2.11) and (2.12) follows from the basic properties of Δ-derivative

together with the properties of the Moore-Penrose pseudoinverse. Fix now a point t ∈
[α,∞)T , and note that the argument t will be suppressed in the following computation.
From the defining property (2.3) and using the product rule ( f g)Δ = f Δg+ f σ gΔ we
get

MΔ = (MM†M)Δ =(MM†)ΔM +(MM†)σ MΔ, (2.15)

MΔ = (MM†M)Δ =(MM†)ΔMσ +MM†MΔ. (2.16)

It allows us to find that

(MM†)ΔM
(2.15)
= [I− (MM†)σ ]MΔ, (2.17)

(MM†)ΔMσ (2.16)
= (I−MM†)MΔ. (2.18)

Notice also that

[(MM†)ΔMM†]T = MM†(MM†)Δ, (2.19)

[(MM†)Δ(MM†)σ ]T = (MM†)σ (MM†)Δ. (2.20)

Now again using the defining property for the Moore–Penrose pseudoinverse we get

(MM†)Δ (2.3)= (MM†MM†)Δ = (MM†)Δ(MM†)σ +MM†(MM†)Δ

(2.18)
= (I−MM†)MΔ(M†)σ +MM†(MM†)Δ

(2.19)
= (I−MM†)MΔ(M†)σ +[(MM†)Δ(MM†)σ ]T

(2.17)= (I−MM†)MΔ(M†)σ +
{
[I− (MM†)σ ]MΔM†

}T
. (2.21)

It shows that

M†(MM†)Δ (2.21)
= M†(I−MM†)︸ ︷︷ ︸

=0

MΔ(M†)σ +M†{[I− (MM†)σ ]MΔM†}T

= M†(M†)T (MΔ)T [I−Mσ (M†)σ ]. (2.22)
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By using the last equality we then obtain that

(M†)Δ (2.3)
= (M†MM†)Δ = (M†)ΔMσ (M†)σ +M†(MM†)Δ

(2.10)= −M† MΔ(M†)σ +M†(MM†)Δ

(2.22)= −M† MΔ(M†)σ +M†(M†)T (MΔ)T [I−Mσ (M†)σ ],

which proves formula (2.11). Similarly, it is possible to show by using the dual product
rule ( f g)Δ = f Δgσ + f gΔ and by (2.20) that formula (2.12) also holds. �

REMARK 2.3. Equalities (2.11) and (2.12) are extensions of the known expres-
sion for the derivative of M†(t) on the real interval [α,∞) from the continuous case,
i.e., if T = R , see [23, Remark 2.3]. When we investigate what follows from (2.11)
and (2.12), while hoping we get something new, we find out that these formulas reduce
to the trivial identity ΔM†

k = M†
k+1−M†

k .

Further, we use the Moore–Penrose pseudoinverse for the construction of the or-
thogonal projectors. We consider X(t) to be a matrix function X : [a,∞)T → Rn×n .
Then we define the orthogonal projectors onto the image of XT(t) or onto the image of
X(t) on [α,∞)T as follows. For t ∈ [a,∞)T we put

P(t) := PImXT(t) = X†(t)X(t), R(t) := PImX(t) = X(t)X†(t), (2.23)

i.e., matrices P(t) and R(t) are symmetric on [a,∞)T and

ImXT (t) = ImP(t), ImX(t) = ImR(t), t ∈ [a,∞)T. (2.24)

Using the defining properties of the Moore–Penrose pseudoinverse in (2.3) its easy to
find out that for t ∈ [a,∞)T we have

P(t)X†(t) = X†(t), X†(t)R(t) = X†(t), X(t)P(t) = X(t), R(t)X(t) = X(t).
(2.25)

Recall that for the orthogonal projectors P(t) and R(t) on [a,∞)T , as well as for all
orthogonal projectors in general, it holds that they are idempotent, i.e.,

P(t)P(t) = P(t), R(t)R(t) = R(t), t ∈ [a,∞)T. (2.26)

If matrix functions X(t) has constant kernel on [α,∞)T , then the orthogonal projector
P(t) defined in (2.23) is constant on [α,∞)T , since [KerX(t)]⊥ = ImXT(t) is constant
on [a,∞)T . Then we denote by P the corresponding constant orthogonal projector in
(2.23), i.e., we define

P := P(t) for t ∈ [α,∞)T, where KerX(t) is constant. (2.27)
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3. Symplectic dynamic systems and their properties

In this section we present needed properties of symplectic systems on time scales
and their conjoined bases. These results are known in the literature, we refer to [27,
14, 13, 16, 18], and they include the order of abnormality of system (S), properties of
the associated matrices S(t) and T (which are used for the definitions of a principal
solution at infinity and an antiprincipal solution at infinity), a mutual representation of
conjoined bases with specific properties, and (with high importance) the relation being
contained between two conjoined bases. We start with basic notation for solutions of
system (S). Vector solutions of (S) will be denoted by the small letters, typically (x,u) ,
and 2n×n matrix solutions of system (S) will be denoted by the capital letters, typically
(X ,U) or with tildes and hats over the involved matrices.

3.1. Conjoined bases and their properties

Notice that identity (1.2) implies that the 2n×2n matrix I+μ(t)S (t) is symplec-
tic, hence invertible, on [α,∞)T . This implies through [7, Theorem 5.8] that system (S)
is uniquely solvable on [α,∞)T given any initial point t0 ∈ [α,∞)T and any initial val-
ues (vector or matrix) at t0 . A solution (X ,U) of system (S) is called a conjoined basis,
if the matrix XT(t)U(t) is a symmetric matrix and rank(XT(t), UT(t))T = n at some
and hence at any point t ∈ [a,∞)T . According to [13, Definition 3], a conjoined basis
(X ,U) of (S) is called nonoscillatory, if there exists point α ∈ [a,∞)T such that (X ,U)
has no focal points in the real interval (α,∞) , i.e., if

KerX(s) ⊆ KerX(t) for all t,s ∈ [α,∞)T with t � s, (3.1)

X(t) [Xσ (t)]† B(t) � 0 for all t ∈ [α,∞)T. (3.2)

We will say that the conjoined basis (X ,U) has constant kernel (or constant rank) on
the interval [α,∞)T , if the kernel (or rank) of the matrix X(t) is constant on [α,∞)T .
As a consequence of (3.1), such properties are always satisfied on intervals [β ,∞)T for
sufficiently large β ∈ [a,∞)T , when the conjoined basis (X ,U) is nonoscillatory.

For any two solutions (X ,U) and (X ,U) of system (S) their Wronskian matrix

W [(X ,U),(X ,U)] := XT(t)U(t)−UT(t)X(t), t ∈ [a,∞)T,

is constant on [a,∞)T , as we can verify by the Δ-differentiation. Recall that two con-
joined bases (X ,U) and (X ,U) of (S) are called normalized if

W [(X ,U),(X ,U)] = I. (3.3)

It is easy to verify that two conjoined basis (X ,U) and (X ,U) of (S) on [a,∞)T are
normalized if and only if the matrix

Z (t) :=
(

X(t) X(t)
U(t) U(t)

)
, t ∈ [a,∞)T, (3.4)
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is symplectic on [a,∞)T . Then by the expression Z −1(t) = −J Z T (t)J on [a,∞)T

for the inverse of a symplectic matrix and the product Z (t)Z −1(t) = I , it follows that

X(t)U
T
(t)−X(t)UT (t) = I, t ∈ [a,∞)T. (3.5)

This equality is very similar to (3.3) and we will use it later in the proofs. Using the
formula for inverse of symplectic matrix it is possible to derive an equivalent expression
of the original system (S), the so-called time reversed (or adjoint) system, which has
according to [18, Remark 3.1(iii)] the form

xΔ = −DT (t)xσ +BT (t)uσ , uΔ = C T (t)xσ −A T (t)uσ , t ∈ [a,∞)T. (3.6)

Recall that by the principal solution of (S) at the point α ∈ [a,∞)T , denoted by
(X̂ [α ],Û [α ]) , we mean the conjoined basis of the system (S) satisfying the initial condi-
tions

X̂ [α ](α) = 0 and Û [α ](α) = I. (3.7)

3.2. Order of abnormality

In this article we deal with a possibly abnormal symplectic system (S), for which
we use the order of abnormality. We recall its definition from [18, 27]. For any
α ∈ [a,∞)T we denote by Λ[α,∞)T the linear space of n -vector functions u : [α,∞)T →
Rn such that B(t)u(t) = 0 and uΔ = D(t)u(t) on [α,∞)T . Therefore, a function
u ∈ Λ[α,∞)T if and only if the pair (x ≡ 0,u) is a solution of system (S). The num-
ber d[α,∞)T := dimΛ[α,∞)T is called the order of abnormality of system (S) on the
interval [α,∞)T . The limit

d∞ := lim
t→∞

d[t,∞)T with 0 � d[t,∞)T � d∞ � n for t ∈ [a,∞)T,

is then called the maximal order of abnormality of system (S). In a similar way we
define the order of abnormality d[α,t]T of system (S) on [α,t]T and then d[α,∞)T =
limt→∞ d[α, t]T holds. In addition, we denote by Λ0[α,∞)T the subspace of Rn of the
initial values u(α) of the elements u∈ Λ[α,∞)T . Then dimΛ0[α,∞)T = dimΛ[α,∞)T

holds.

3.3. Auxiliary matrices S(t) , T , and PS∞

Let (X ,U) be a conjoined basis of system (S) with constant kernel on the interval
[α,∞)T . Then according to Theorem 2.2 the matrix X†(t) is piecewise rd-continuously
Δ-differentiable on [α,∞)T , and hence we may define the associated S -matrix by

S(t) :=
∫ t

α
[Xσ (s)]† B(s) [X†(s)]T Δs, t ∈ [α,∞)T. (3.8)

By [18, Lemma 3.1], the matrix

X(t) [Xσ (t)]† B(t) is symmetric for all t ∈ [α,∞)T. (3.9)
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when the kernel of X(t) is constant on [α,∞)T . This yields that

[Xσ (t)]† B(t) [X†(t)]T is also symmetric for all t ∈ [α,∞)T, (3.10)

and the corresponding S -matrix given by (3.8) is symmetric. Moreover, if the matrices
P and S(t) are defined by (2.27) and (3.8), then [14, Lemma 3.2] gives that

ImS(t) ⊆ ImP for all t ∈ [α,∞)T. (3.11)

The inclusion of the sets in (3.11) can be equivalently written as

PS(t) = S(t) = S(t)P, PS†(t) = S†(t) = S†(t)P, t ∈ [α,∞)T. (3.12)

The following result is proven in [14, Theorem 3.4], see also [27, Lemma 3.1],
and it plays a key role in definitions of antiprincipal and principal solutions of (S) at
infinity.

PROPOSITION 3.1. Let (X ,U) be a conjoined basis of (S) with constant kernel
on [α,∞)T and no focal points in (α,∞) and let the matrix S(t) given by (3.8). Then
the limit of S†(t) as t → ∞ exists. Moreover, the matrix T defined by

T := lim
t→∞

S†(t) (3.13)

is symmetric and positive semidefinite, i.e., T � 0 , and there exists β ∈ [α,∞)T such
that

rankT � rankS(t) � rankX(t) for all t ∈ [β ,∞)T.

The next proposition is proven in [27, Theorem 3.2] and it brings additional prop-
erties of the matrices S(t) and T , which we will often use later.

PROPOSITION 3.2. Let (X ,U) be a conjoined basis of (S) with constant kernel
on [α,∞)T and let the matrices P, R(t) , T be defined in (2.27), (2.23), and (3.13).
Then

Rσ (t)B(t) = B(t), B(t)R(t) = B(t), t ∈ [α,∞)T. (3.14)

If in addition (X ,U) has no focal points in (α,∞) , then

PT = T = TP, PT † = T † = T †P. (3.15)

According to [14, Remark 3.5], the S -matrix associated with a conjoined basis
(X ,U) of (S) with constant kernel on [α,∞)T and no focal points in (α,∞) has non-
decreasing image on [α,∞)T and hence, in this case there exists β ∈ [α,∞)T such that
ImS(t) is constant on [β ,∞)T . On such intervals [β ,∞)T we define the associated
constant orthogonal projector

PS∞ := PImS(t) = S(t)S†(t) = S†(t)S(t), t ∈ [β ,∞)T. (3.16)
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The last equality in (3.16) follows from the symmetry of the matrix S(t) . From (3.12)
we get

ImS(t) ⊆ ImPS∞ ⊆ ImP, t ∈ [β ,∞)T. (3.17)

The inclusions in (3.17) can be written as

PS∞ S(t) = S(t) = S(t)PS∞, t ∈ [β ,∞)T, PPS∞ = PS∞ = PS∞P. (3.18)

Using the definition of the Moore–Penrose pseudoinverse in (2.3) and observing the
limit limt→∞ S†(t) we obtain the equalities

PS∞ T = T = TPS∞, i.e., ImT ⊆ ImPS∞. (3.19)

In some places, e.g. in Proposition 3.9, we will use the time dependent orthogonal
projector

PS(t) := PImS(t), t ∈ [α,∞)T, lim
t→∞

PS(t) = PS∞,

where the matrix on the right-hand side is given in (3.19).

REMARK 3.3. Let (X ,U) be a conjoined basis of (S) with constant kernel on
[α,∞)T and no focal points in (α,∞) . Let the matrices P , R(t) , S(t) , PS∞ be defined
by (2.27), (2.23), (3.8), (3.16). Then from [27, Proposition 3.9] it follows that

rankPS∞ = n−d[α,∞)T, (3.20)

n−d[α,∞)T � rankX(t) � n. (3.21)

A conjoined basis (X ,U) with constant kernel on [α,∞)T and no focal points in
(α,∞) is called minimal on the interval [α,∞)T , if it has the smallest possible rank,
i.e., if

rankX(t) = n−d[α,∞)T = n−d∞, t ∈ [α,∞)T.

On the other hand, if rankX(t) = n on [α,∞)T , then (X ,U) is called maximal on
[α,∞)T . Obviously, the matrix X(t) is invertible on [α,∞)T in this case. The existence
of conjoined bases of (S) with the range given in (3.21) is discussed in Proposition 3.16
below.

3.4. Antiprincipal and principal solutions at infinity

Now we recall the definitions of an antiprincipal solution of (S) at infinity from
[14, Definition 4.1] and a principal solution of (S) at infinity from [27, Definition 6.1],
see also [10] for a special case when the matrices X(t) and S(t) are invertible.

DEFINITION 3.4. A conjoined basis (X ,U) of (S) is said to be an antiprincipal
solution at infinity with respect to the interval [α,∞)T ⊆ [a,∞)T if

(i) the order of abnormality of (S) on the interval [α,∞)T is maximal, i.e., d[α,∞)T =
d∞ ,

(ii) the conjoined basis (X ,U) has constant kernel on [α,∞)T and no focal points in
(α,∞) ,
(iii) the matrix T defined in (3.13) corresponding to (X ,U) satisfies rankT = n−d∞ .
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DEFINITION 3.5. A conjoined basis (X̂ ,Û) of (S) is said to be a principal solu-
tion at infinity with respect to the interval [α,∞)T ⊆ [a,∞)T if

(i) the conjoined basis (X̂ ,Û) has constant kernel on [α,∞)T and no focal points in
(α,∞) ,

(ii) the matrix T̂ defined in (3.13) associated with (X̂ ,Û) satisfies rank T̂ = 0, i.e.,
T̂ = 0.

REMARK 3.6. The results in [27, Theorem 6.8] and in [14, Theorem 5.3] states
that a nonoscillatory system (S) possesses a principal solution at infinity and an an-
tiprincipal solution at infinity for any admissible rank. More precisely, for any integer
value r between the numbers n−d∞ and n there exists a principal and an antiprincipal
solution (X̂ ,Û) of (S) at infinity with the rank of X̂(t) equal to r for large t .

In the context of Remark 3.6 and Definitions 3.4 and 3.5 we will use the following
terminology. A conjoined basis (X ,U) of (S) is a minimal (or maximal) antiprincipal
solution at infinity, if it is an antiprincipal solution at infinity with respect to some inter-
val [α,∞)T (according to Definition 3.4) and at the same time the rank of X(t) is equal
to n−d∞ (or to n ) on [α,∞)T . Similarly, a conjoined basis (X̂ ,Û) of (S) is a minimal
(or maximal) principal solution at infinity, if it is a principal solution at infinity with
respect to some interval [α,∞)T (according to Definition 3.5) and at the same time the
rank of X̂(t) is equal to n− d∞ (or to n ) on [α,∞)T . The essential uniqueness of the
minimal principal solution of (S) at infinity is proven in [27, Theorem 6.9].

PROPOSITION 3.7. Let (X̂ ,Û) be a principal solution of (S) at infinity with rank
equal to r satisfying n−d∞ � r � n. Then (X̂ ,Û) is unique up to a right nonsingular
multiple if and only if r = n−d∞ .

The following result from [14, Theorem 4.4] reveals that the property of the exis-
tence of the limit of the S -matrix associated with a conjoined basis of (S) with constant
kernel on [α,∞)T and no focal points in (α,∞) is a characterizing property of antiprin-
cipal solutions of (S) at infinity.

PROPOSITION 3.8. Let (X ,U) be a conjoined basis of (S) with constant kernel
on [α,∞)T and no focal points in (α,∞) , let the matrices S(t) and T be given by
(3.8) and (3.13), and assume that d[α,∞)T = d∞ . Then the following statements are
equivalent.

(i) The conjoined basis (X ,U) is an antiprincipal solution of (S) at ∞ .

(ii) The limit of S(t) for t → ∞ exists.

(iii) The condition limt→∞ S(t) = T † holds.
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3.5. Mutual representation

Now we recall important concepts regarding mutual representations of conjoined
bases of (S) with constant kernel on the interval [α,∞)T . These are based on find-
ing a suitable conjoined basis (X ,U) of (S), which completes a given conjoined basis
(X ,U) to a normalized pair, thus allowing to construct through (3.4) a special sym-
plectic fundamental matrix of system (S). The following result is from [14, Proposi-
tion 3.14].

PROPOSITION 3.9. Let (X ,U) be a conjoined basis of (S) with constant kernel
on [α,∞)T , let the matrices P and S(t) defined by (2.27) and (3.8). Then there exists
a conjoined basis (X ,U) of (S) such that (X ,U) and (X ,U) satisfy

(i) the Wronskian W := XT (t)U(t)−UT (t)X(t) ≡ I on [a,∞)T , and

(ii) X†(α)X(α) = 0 .

Moreover, such a conjoined basis (X ,U) then satisfies

(iii) the equality X†(t)X(t)P = S(t) for all t ∈ [α,∞)T ,

(iv) the equalities X(t)P = X(t)S(t) for all t ∈ [α,∞)T (in particular X(α)P = 0 )

and U(t)P = U(t)S(t)+X†T (t)+U(t)(I−P)X
T
(t)X†T (t) for all t ∈ [α,∞)T ,

(v) the equality KerX(t) = Im [P−PS(t)] = ImP∩KerS(t) for all t ∈ [α,∞)T ,

(vi) the equality P(t) = I−P+PS(t) for all t ∈ [α,∞)T , where P(t) := X
†
(t)X(t) ,

(vii) the equalities S†(t) = X
†
(t)X(t)PS(t) = X

†
(t)X(t)P(t) for all t ∈ [α,∞)T .

Note that in the above proposition we displayed only those properties of the con-
joined basis (X ,U) , which are directly needed in this paper and its continuation. Some
additional properties are derived in [14, Proposition 3.14]. Based on the result in Propo-
sition 3.9 we can present the following mutual representation of conjoined bases of (S)
with constant kernel on [α,∞)T and no focal points in (α,∞) , see [27, Proposition 3.6].

PROPOSITION 3.10. Let (Xi,Ui) for i∈ {1,2} be two conjoined bases of (S) with
constant kernel on [α,∞)T and no focal points in (α,∞) and let Pi be the constant
orthogonal projector defined in (2.27) through the function Xi . Let the conjoined basis
(X3−i,U3−i) be expressed in terms of (Xi,Ui) via the matrices Mi and Ni , i.e.,(

X3−i(t)
U3−i(t)

)
=
(

Xi(t) Xi(t)
Ui(t) Ui(t)

)(
Mi

Ni

)
, t ∈ [α,∞)T, (3.22)

where (Xi,Ui) is the conjoined basis of (S) satisfying the properties in Proposition 3.9
with respect to (Xi,Ui) . If the equality ImX1(α) = ImX2(α) is satisfied, then for
i ∈ {1,2}
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(i) the matrix MT
i Ni is symmetric and N3−i = −NT

i ,

(ii) the matrix Mi is invertible and M3−i = M−1
i ,

(iii) the inclusion ImNi ⊆ ImPi holds.

Moreover, the matrices Mi and Ni do not depend on the choice of (Xi,Ui) with

Ni = W [(Xi,Ui),(X3−i,U3−i)]. (3.23)

The following properties complement the results in Proposition 3.10 with respect
to the associated matrices Si(t) . They are derived in [27, Remark 3.7].

REMARK 3.11. With the notation and the assumptions in Proposition 3.10, we
set

L1 := X†
1 (α)X2(α), L2 := X†

2 (α)X1(α),

and consider the associated matrix Si(t) , which is defined for t ∈ [α,∞)T in (3.8)
through the matrix Xi(t) . Then the following properties hold for i ∈ {1,2} :

LiL3−i = Pi, L3−i = L†
i , Li = PiMi, Ni = Pi Ni, (3.24)

Pi = PImLi , LT
i Ni = MT

i PiNi = MT
i Ni is symmetric, (3.25)

X3−i(t) = Xi(t)[Li +Si(t)Ni], t ∈ [α,∞)T, (3.26)

[Li +Si(t)Ni]† = L3−i +S3−i(t)N3−i, t ∈ [α,∞)T, (3.27)

Im [Li +Si(t)Ni] = ImPi, t ∈ [α,∞)T, (3.28)

S3−i(t) = [Li +Si(t)Ni]†Si(t)L†T
i , t ∈ [α,∞)T. (3.29)

Note that some additional properties are derived in [27, Remark 3.7], such as the in-
vertibility of the matrix Mi +Si(t)Ni on [α,∞)T , which are not needed in this paper.

We finish this subsection by presenting an additional property of the matrices Si(t)
in Remark 3.11, which corrects the discrete time identity in [29, Eq. (2.13)]. This result
will be used in our results, where it plays key role.

PROPOSITION 3.12. With the notation and assumptions in Proposition 3.10 and
Remark 3.11, for i ∈ {1,2} we have

Im[P3−iM3−iSi(t)] = ImS3−i(t), t ∈ [α,∞)T. (3.30)

Proof. Let us fix an index i ∈ {1,2} . We obtain equality (3.30) as a consequence
of formulas (3.24) and (3.29). More precisely, from (3.24) it follows that for t ∈ [α,∞)T

Si(t) = PiSi(t) = LiL
†
i Si(t) = L†

3−iL3−iSi(t) = (P3−iM3−i)†P3−iM3−iSi(t).
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Then (3.29) implies that for t ∈ [α,∞)T we have

Si(t)LT
3−i

(3.29)= [L3−i +S3−i(t)N3−i]†S3−i(t)L†T
3−iL

T
3−i

(3.24)= [L3−i +S3−i(t)N3−i]†S3−i(t)PT
3−i

(3.12)= [L3−i +S3−i(t)N3−i]†S3−i(t).
(3.31)

Hence, due to the symmetry of Si(t) on [α,∞)T for i ∈ {1,2} we have that

P3−iM3−iSi(t) = S3−i(t)[L3−i +S3−i(t)N3−i]†T , t ∈ [α,∞)T.

This shows that the inclusion Im[P3−iM3−iSi(t)]⊆ ImS3−i(t) on [α,∞)T holds. On the
other hand, for t ∈ [α,∞)T we have

L3−i Si(t)[L3−i +S3−i(t)N3−i]T

(3.31)= S3−i(t)[L3−i +S3−i(t)N3−i]†T [L3−i +S3−i(t)N3−i]T .

Notice now that (3.28) implies that

[L3−i +S3−i(t)N3−i][L3−i +S3−i(t)N3−i]† = P3−i, t ∈ [α,∞)T. (3.32)

The latter two equalities and the symmetry of P3−i for i ∈ {1,2} yields that

S3−i(t)
(3.12)
= S3−i(t)P3−i

(3.32)
= S3−i(t)[L3−i +S3−i(t)N3−i]†T [L3−i +S3−i(t)N3−i]T

= P3−i M3−i Si(t)[L3−i +S3−i(t)N3−i]T , t ∈ [α,∞)T.

The latter equality shows that the inclusion ImS3−i(t) ⊆ Im[P3−iM3−iSi(t)] on [α,∞)T

is valid. Hence, the proof of (3.30) is complete. �

3.6. Minimal conjoined bases

In this subsection we present two important properties of minimal conjoined bases,
which we will need for our further investigations. The first one says that such minimal
conjoined bases are characterized by considering the smallest orthogonal projector P
in (3.17). This result is from [14, Lemma 3.17].

PROPOSITION 3.13. Let (X ,U) be a conjoined basis of (S) on [α,∞)T with con-
stant kernel on [α,∞)T and no focal points in (α,∞) and assume that d[α,∞)T = d∞ .
Then (X ,U) is a minimal conjoined basis of (S) on the interval [α,∞)T if and only if
the orthogonal projectors P and PS∞ defined by (2.27) and (3.16) satisfy

P = PS∞. (3.33)

In the following result we describe all minimal conjoined bases of (S) on some
interval [α,∞)T by their initial conditions. It is from [14, Theorem 5.1] and it will be
used in Remark 5.5 and in our future research.
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PROPOSITION 3.14. Let (X ,U) be a minimal conjoined basis of system (S) on
the interval [α,∞)T , let PS∞ and T defined by (3.16) and (3.13), and assume that
d[α,∞)T = d∞ . Then a solution (X̃ ,Ũ) is a minimal conjoined basis on [α,∞)T if and
only if there exist matrices M,N ∈ Rn×n such that

X̃(α) = X(α)M, Ũ(α) = U(α)M +X†T (α)N, (3.34)

M is nonsingular, MT N = NT M, ImN ⊆ ImPS∞, (3.35)

NM−1 +T � 0. (3.36)

In this case the matrix T̃ in (3.13) corresponding to (X̃ ,Ũ) satisfies

T̃ = MT TM +MTN, rank T̃ = rank(NM−1 +T). (3.37)

3.7. Relation being contained

In this subsection we recall a crucial relation being contained for conjoined bases
of system (S) from [27, Section 4]. For this purpose, we also recall the concept of
equivalent solutions (X1,U1) and (X2,U2) of (S) on some interval [α,∞)T , which is
defined by the property that X1(t) = X2(t) on [α,∞)T . This notion leads to the follow-
ing notion, which was introduced in the time scales setting in [27, Definition 4.1]. Let
(X ,U) be a conjoined basis of (S) with constant kernel on [α,∞)T and no focal points
in (α,∞) and let the matrices P and PS∞ be defined by (2.27) and (3.16). Consider
an orthogonal projector P∗ satisfying

ImPS∞ ⊆ ImP∗ ⊆ ImP. (3.38)

We say that a conjoined basis (X∗,U∗) of (S) is contained in (X ,U) on [α,∞)T with
respect to P∗ , or that (X ,U) contains (X∗,U∗) on [α,∞)T with respect to P∗ , if the
solutions (X∗,U∗) and (XP∗,UP∗) are equivalent, that is, if X∗(t) =X(t)P∗ on [α,∞)T .

The next result from [27, Proposition 4.2] describes the properties of a conjoined
basis (X∗,U∗) of (S), which is contained on [α,∞)T in a given conjoined basis (X ,U)
with with constant kernel on [α,∞)T and no focal points in (α,∞) . Such properties of
(X∗,U∗) are essentially inherited from (X ,U) and they will be frequently used in our
analysis.

PROPOSITION 3.15. Let (X ,U) be a conjoined basis of (S) with constant kernel
on [α,∞)T and no focal points in (α,∞) and assume that a conjoined basis (X∗,U∗)
of (S) is contained in (X ,U) on [α,∞)T with respect to an orthogonal projector P∗
satisfying (3.38).

(i) Then (X∗,U∗) has also constant kernel on [α,∞)T and no focal points in (α,∞) .
Moreover, the matrix P∗ is then the associated orthogonal projector defined in
(2.27) for (X∗,U∗) , i.e., P∗ = PImXT∗ (t) = X†∗ (t)X∗(t) on [α,∞)T .

(ii) If S(t) and S∗(t) are the S-matrices corresponding to the conjoined bases (X ,U)
and (X∗,U∗) on [α,∞)T , then S(t) = S∗(t) on [α,∞)T .
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The next proposition from [27, Theorem 5.1] guarantees the existence of a con-
joined basis of (S) with constant kernel on [α,∞)T and no focal points in (α,∞) , which
has any given rank between the numbers n−d∞ and n . Note that the conjoined bases
with the given rank r are constructed by the above relation being contained.

PROPOSITION 3.16. Assume that there exists a conjoined basis (X∗,U∗) of (S)
with constant kernel on [α,∞)T and no focal points in (α,∞) . Then for any integer
r between n− d∞ and n there exists a conjoined basis (X ,U) of (S), which has con-
stant kernel on [α,∞)T and no focal points in (α,∞) too, such that rankX(t) = r on
[α,∞)T .

As a combination of Propositions 3.16 with Propositions 3.13 and 3.15 we obtain
the existence of a minimal conjoined basis, which is contained in a given conjoined
basis (X ,U) with with constant kernel on [α,∞)T and no focal points in (α,∞) . These
properties are also highlighted in Proposition 3.21 below.

REMARK 3.17. For a given conjoined basis (X ,U) of (S) with with constant ker-
nel on [α,∞)T and no focal points there always exists some minimal conjoined basis
(Xmin,Umin) := (X∗,U∗) of (S) with constant kernel on [α,∞)T and no focal points in
(α,∞) , which is contained in (X ,U) on [α,∞)T . We obtain this conjoined basis by the
choice P∗ := PS∞ according to (3.33).

In the following three results we analyze the equivalence of two solutions and
the relation being contained from the point of view of the initial conditions on the
considered solutions of (S). The next proposition is presented in [27, Proposition 3.10].
It introduces different way how to characterize the relation to be contained or to contain
for conjoined bases of system (S). All the following details serve to make the relations
(3.41) in Remark 3.20 below understandable. The results containing the approach with
the matrices G and H presented below aims to state and prove Theorem 6.1.

PROPOSITION 3.18. Let (X ,U) be a conjoined bases of (S) with constant kernel
on [α,∞)T and no focal points in (α,∞) . Let P and PS∞ be defined in (2.23) and
(3.16). Then two solutions (X1,U1) and (X2,U2) of (S) are equivalent on [α,∞)T if
and only if there exists unique n×n matrices G and H such that

X1(α) = X2(α), U1(α)−U2(α) = X†T (α)G+U(α)H,

ImG ⊆ Im(P−PS∞), ImH ⊆ Im(I−P).

The following theorem is presented in [27, Theorem 4.3]. Before we state it, we
need to introduce the set M (P∗∗,P∗,P) of pairs (G,H) associated with orthogonal
projectors P∗∗ , P∗ , and P , see [27, page 864] for more details. Let P∗∗ , P∗ , P satisfy
the inclusions

ImP∗∗ ⊆ ImP∗ ⊆ ImP.

Then we define the set

M (P∗∗,P∗,P) :=
{
(G,H) ∈ R

n×n×R
n×n, rank(GT ,HT ,P∗) = n,

P∗∗G = 0, PG = G, P∗G = GT P∗, PH = 0
}
. (3.39)
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PROPOSITION 3.19. Let (X ,U) be a conjoined bases of (S) with constant kernel
on [α,∞)T and no focal points in (α,∞) . Let P and PS∞ be defined in (2.23) and
(3.16) and consider an orthogonal projector P∗ satisfying (3.38). Then a conjoined
basis (X∗,U∗) is contained in (X ,U) on [α,∞)T with respect to P∗ if and only if for
some (G,H) ∈ M (PS∞,P∗,P) defined in (3.39), we have

X∗(α) = X(α)P∗, U∗(α) = U(α)P∗ +[X†(α)]T G+U(α)H. (3.40)

REMARK 3.20. As the authors of [27] mention, it follows from Propositions 3.18
and 3.19 that the pair (G,H) in Proposition 3.19 is unique. Thus we may say that
the conjoined basis (X∗,U∗) is contained in (X ,U) on [α,∞)T through the pair of
matrices (G,H) . Notice also that then (G,H) ∈ M (PS∞,P∗,P) , which means that the
pair (G,H) satisfies all the additional properties from (3.39), i.e.,

PS∞G = 0, PG = G, P∗G = GT P∗, PH = 0. (3.41)

We will use this fact later in the proof of Proposition 7.1.

The following proposition is a useful tool when we deal with the images of con-
joined bases with constant kernel, as we do while investigating the genera of conjoined
bases of (S). It guarantees the existence of other conjoined bases, which are either con-
tained in the first one or which contain the first one. The first part is a consequence of
Proposition 3.19 and [27, Remark 4.4], the second part follows from [27, Theorem 4.5].
We will use it in the proof of Theorem 6.1.

PROPOSITION 3.21. Assume that (X ,U) is a conjoined basis of (S) with constant
kernel on [α,∞)T and no focal points in (α,∞) and let R(t) and P be the associated
orthogonal projectors defined in (2.23). Then the following statements hold.

(i) For every orthogonal projector P∗ satisfying condition (3.38) there exists a con-
joined basis (X∗,U∗) of (S) which is contained in (X ,U) such that ImXT∗ (t) = ImP∗
for all t ∈ [α,∞)T .

(ii) For every orthogonal projectors P̃α and R̃α satisfying

ImP ⊆ Im P̃α , ImR(α) ⊆ Im R̃α , rank P̃ = rank R̃α ,

there exists a conjoined basis (X̃ ,Ũ) of (S) with constant kernel on [α,∞)T which
contains (X ,U) and satisfies Im X̃T (t) = Im P̃α on [α,∞)T and Im X̃(α) = Im R̃α .

The following two results reveal that the property to be an antiprincipal solution
of (S) at infinity or a principal solution of (S) at infinity remains preserved under the
relation being contained. It can be found in [14, Theorems 4.6 and 4.7] and in [27,
Proposition 6.5].

PROPOSITION 3.22. Let (X ,U) be an antiprincipal (a principal) solution of (S)
at infinity with respect to the interval [α,∞)T . Then every conjoined basis, which is
contained in (X ,U) on [α,∞)T , is also an antiprincipal (a principal) solution of (S)
at infinity with respect to the interval [α,∞)T .
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PROPOSITION 3.23. Let (X ,U) be an antiprincipal (a principal) solution of (S)
at infinity with respect to the interval [α,∞)T . Then every conjoined basis with constant
kernel on [α,∞)T and no focal points in (α,∞) , which contains (X ,U) on [α,∞)T , is
also an antiprincipal (a principal) solution of (S) at infinity with respect to the interval
[α,∞)T .

In the final result of this subsection we present a characterization of antiprincipal
solutions of (S) at infinity on intervals [α,∞)T , where the left endpoint exceeds a spe-
cific bound given by the minimal principal solution (X̂min,Ûmin) of (S) at infinity. In
particular, following [14, Eq. (6.3)] we define the point

α̂min := inf
{

α ∈ [a,∞)T, (X̂min,Ûmin) has constant kernel on [α,∞)T

and no focal points in (α,∞)
}
,

}
(3.42)

which satisfies, in view of estimate (3.21) and rankX̂min(t) = n− d∞ on [α,∞)T , the
equality

d[α̂min,∞)T = d∞ = d[α,∞)T for every α ∈ [α̂min,∞)T . (3.43)

The following result is proven in [14, Theorem 6.3] for antiprincipal solutions of (S)
at infinity. An obvious modification of its proof yields the same property for principal
solutions of (S) at infinity.

PROPOSITION 3.24. Assume that system (S) is nonoscillatory, let α̂min ∈ [a,∞)T

be the point defined in (3.42). Then a solution (X ,U) of (S) is an antiprincipal (a prin-
cipal) solution at infinity if and only if (X ,U) is a conjoined basis of (S), which contains
some minimal antiprincipal (a principal) solution of (S) at infinity on [α,∞)T for some
α ∈ [α̂min,∞)T .

4. Improved result regarding normalized conjoined basis

In this section we present an additional property of the conjoined basis (X ,U)
from Proposition 3.9, which is normalized with a given conjoined basis (X ,U) with
constant kernel on [α,∞)T and no focal points in (α,∞) . It is a generalization of [14,
Theorem 6.5], where we considered only a minimal conjoined basis (X ,U) on [α,∞)T .
This extended result is new even in the special cases of the purely continuous time and
the purely discrete time, compare with [28, Proposition 1] and [29, Proposition 7.5],
see also [12, Proposition 6.155].

THEOREM 4.1. Assume that system (S) is nonoscillatory and let (X ,U) be a con-
joined basis of (S) with constant kernel on an interval [α,∞)T satisfying d[α,∞)T = d∞
and no focal points in (α,∞) . Then the associated conjoined basis (X ,U) from Propo-
sition 3.9 is an antiprincipal solution of (S) at infinity, and there exists β ∈ [α,∞)T

such that
rankX(t) = 2n−d∞− rankX(t), t ∈ [β ,∞)T. (4.1)
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Proof. Let the conjoined bases (X ,U) and (X ,U) be as in the theorem. Let P ,
S(t) , PS∞ be the matrices in (2.27), (3.8), (3.16) corresponding to (X ,U) . Since (X ,U)
has constant kernel on [α,∞)T and no focal points in (α,∞) , it follows from (3.16)
that ImS(t) ≡ ImPS∞ and hence KerS(t) ≡ KerPS∞ on the interval [β ,∞)T for some
β ∈ [α,∞)T . By Proposition 3.9(v) we then derive that

KerX(t) = ImP∩KerS(t) = ImP∩KerPS∞, t ∈ [β ,∞)T. (4.2)

In particular, the kernel of X(t) is constant on [β ,∞)T , and

rankX(t)
(4.2)
= dim[(Rn \ ImP)∪ (Rn \KerPS∞)]

(3.11)
= n− rankX(t)+n−d∞

for all t ∈ [β ,∞)T . This proves (4.1). Next we will show that (X ,U) has no focal points
in the interval (β ,∞) . Recall from Remark 2.1(v) that the matrix S†(t) is nonincreasing
on the interval [β ,∞)T and that, by Theorem 2.2, we know that

− [Sσ(t)]† SΔ(t)S†(t) = [S†(t)]Δ � 0, t ∈ [β ,∞)T. (4.3)

Moreover, by Proposition 3.9(vii) we obtain for t ∈ [β ,∞)T the equality

S†(t)X†(t) = X
†
(t)X(t)PS∞ X†(t) = X

†
(t)X(t)PX†(t) = X

†
(t)R(t). (4.4)

Then by (3.14) and by (4.4) with (4.3) we deduce that

[X
σ
(t)]†B(t) [X

†
(t)]T

= [X
σ
(t)]†Rσ (t)B(t)R(t) [X

†
(t)]T

(4.4)
= [S†(t)]σ [X†(t)]σ B(t) [X†(t)]T S†(t)

= [S†(t)]σ SΔ(t)S†(t) (4.3)= −[S†(t)]Δ � 0, t ∈ [β ,∞)T, (4.5)

and consequently

X(t) [X
σ
(t)]†B(t) = X(t) [X

σ
(t)]†B(t) [X

†
(t)]T X

T
(t)

(4.5)
� 0, t ∈ [β ,∞)T.

This proves that (X ,U) has no focal points in the interval (β ,∞) . We will show that
(X ,U) is an antiprincipal solution of (S) at infinity with respect to the interval [β ,∞)T .
First we observe that d[β ,∞)T = d∞ , since β � α and we assume that the abnormality
d[α,∞)T = d∞ is maximal. According to (3.8), we define the associated matrix S(t)
by

S(t) :=
∫ t

β
[X

σ
(s)]†B(s)X

T†
(s)Δs, t ∈ [β ,∞)T. (4.6)

Then by using (4.5) and (4.6) we get

S(t) (4.5)= −
∫ t

β
[S†(s)]Δ Δs = S†(β )−S†(t), t ∈ [β ,∞)T. (4.7)

This implies that the limit

lim
t→∞

S(t) (4.7)= lim
t→∞

[S†(β )−S†(t)] = S†(β )−T
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exists. By Proposition 3.8(ii) (applied to (X ,U) := (X ,U)) it then follows that the
conjoined basis (X ,U) is an antiprincipal solution of (S) at infinity. The proof is com-
plete. �

REMARK 4.2. Theorem 4.1 implies that if a conjoined basis (X ,U) is a mini-
mal conjoined basis of a nonoscillatory system (S), then the associated conjoined basis
(X ,U) is a maximal antiprincipal solution of (S) at infinity. This is known in [14,
Theorem 6.5]. On the other hand, if (X ,U) is a maximal conjoined basis of a nonoscil-
latory system (S), then the associated conjoined basis (X ,U) is a minimal antiprincipal
solution of (S) at infinity according to (4.1).

5. Genus of conjoined bases

In this section we will keep focusing on the conjoined bases (X ,U) of (S) with
constant kernel on [α,∞)T . We will show that the behaviour of the image of X(t)
is a key property for a classification of the set of all conjoined bases (X ,U) of (S).
We naturally focus our attention on the associated orthogonal projector R(t) defined in
(2.23). For a possible future generalization, we present two proofs of the following key
result. The first proof follows the idea of the continuous time theory in [23, Lemma 6.1]
and it it based on the uniqueness of solutions of a Riccati type dynamic equation. It also
uses the derivative of the Moore–Penrose pseudoinverse from Theorem 2.2. The second
proof is motivated by the discrete case in [29, Proposition 2.7]. It is based on the unique
solvability of certain shifted linear dynamic systems. These systems correspond to the
backward recurrence difference systems used in the proof of [29, Proposition 2.7].

LEMMA 5.1. Let (X1,U1) and (X2,U2) be two conjoined bases of (S) with con-
stant kernel on [α,∞)T such that there exists t0 ∈ [α,∞)T such that

ImX1(t0) = ImX2(t0). (5.1)

Then we have ImX1(t) = ImX2(t) for all t ∈ [α,∞)T .

Proof. Let R1(t) and R2(t) be the orthogonal projectors onto images ImX1(t)
and ImX2(t) , respectively, defined according to (2.23). Condition (5.1) can be read as
R1(t0) = R2(t0) . We now investigate the delta derivative of the orthogonal projector
R(t) associated to any conjoined basis (X ,U) of (S) with constant kernel on [α,∞)T .
We suppress the argument t in the following computation, while we keep in mind that
we work with t ∈ [α,∞)T . Then we can write with the aid of Theorem 2.2, regarding
the Δ-derivative of the Moore–Penrose pseudoinverse, that

RΔ = XΔX† +Xσ(X†)Δ

(2.12)
= (A X +BU)X† +Xσ [−(X†)σ XΔX† +(X†)σ (X†)σT (XΔ)T (I−XX†)]

(3.6)
= A R+BUX†−RσBUX† +(X†)σT [(Uσ )TB− (Xσ )TD ](I−R).
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Thus, using (3.14) we get that the orthogonal projector R(t) satisfies the equation

RΔ(t)−A (t)R(t)−Rσ(t)[A (t)−D(t)]R(t)−Rσ(t)D(t) = 0, t ∈ [α,∞)T. (5.2)

Equation (5.2) is a symmetric Riccati-type equation. This is uniquely solvable first
order dynamic equation, see [7, page 229]. Then the uniqueness of solution of equation
(5.2) together with (5.1) implies that R1(t) = R2(t) for all t ∈ [α,∞)T , which proves
that the statement of the lemma holds. �

Alternative proof of Lemma 5.1. Consider the initial point t0 ∈ [a,∞)T from con-
dition (5.1). If t ∈ [t0,∞)T , then the result follows directly from Proposition 3.10 and
Remark 3.11. If t ∈ [α,t0)T , then we need to use a different approach. Define the
symmetric Riccati quotients

Qi(t) := Ui(t)X†
i (t)+X†T

i (t)UT
i (t)[I−Ri(t)], i ∈ {1,2}, t ∈ [α,t0]T,

where Ri(t) is the orthogonal projector onto ImXi(t) according to (2.23). It is easy to
verify that, using (2.26) and (3.6), we have

Ui(t)X†
i (t) = Qi(t)Ri(t), t ∈ [α,t0]T, (5.3)

XΔ
i (t) = [−DT (t)+BT (t)Qσ

i (t)]Xσ
i (t), t ∈ [α,ρ(t0)]T. (5.4)

Moreover, the Wronskian N1 := W [(X1,U1),(X2,U2)] is constant on [α,t0]T . Then we
have

[X†
1 (t)]T N1 = [X†

1 (t)]T [XT
1 (t)U2(t)−UT

1 (t)X2(t)]
(5.3)
= R1(t)U2(t)−R1(t)Q1(t)X2(t), t ∈ [α,t0]T, (5.5)

as well as, using B(t) = Rσ
1 (t)B(t) from (3.14), for t ∈ [α,ρ(t0)]T

XΔ
2 (t) (3.6)= −DT (t)Xσ

2 (t)+BT (t)Uσ
2 (t) = −DT (t)Xσ

2 (t)+BT (t)Rσ
1 (t)Uσ

2 (t)
(5.5)
= −DT (t)Xσ

2 (t)+BT (t)[X†
1 (t)σT N1 +Rσ

1 (t)Qσ
1 (t)Xσ

2 (t)]

= [−DT (t)+BT (t)Qσ
1 (t)]Xσ

2 (t)+BT (t)[Xσ
1 (t)]†T N1. (5.6)

Let M1 be the matrix from Proposition 3.10 and define the function

Z(t) := X1(t)[M1 −F(t)N1], t ∈ [α,t0]T, (5.7)

where the function F(t) is defined by

F(t) :=
t0∫

t

Xσ†
1 (s)B(s)[X†

1 (s)]T Δs, t ∈ [α, t0]T. (5.8)

Moreover, since R1(t0) = R2(t0) , as a consequence of (5.1), we can use the results and
the notation from Proposition 3.10 and Remark 3.11 with the point t0 instead of α .
Thus, we derive that the function Z(t) defined in (5.7) satisfies the initial condition

Z(t0) = X1(t0)M1 = X1(t0)P1M1
(3.24)
= X1(t0)L1 = R1(t0)X2(t0) = X2(t0) (5.9)
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and the nonhomogeneous linear dynamic equation

ZΔ(t)− [BT (t)Qσ
1 (t)−DT (t)]Zσ (t) = BT (t)[Xσ

1 (t)]†T N1, t ∈ [α,ρ(t0)]T. (5.10)

Equation (5.10) is true since from (3.10) we know that the matrix [Xσ
1 (t)]†B(t)[X†

1 (t)]T

is symmetric on [α,ρ(t0)]T and

X1(t)X
†
1 (t)BT (t) = R1(t)BT (t) = BT (t), t ∈ [α,ρ(t0)]T. (5.11)

Hence, it follows that

ZΔ(t)
(5.7)
= XΔ

1 (t)[M1 −F(t)N1]σ +X1[M1 −F(t)N1]Δ

(5.4)
= [−DT (t)+BT (t)Qσ

1 (t)]Xσ
1 (t)[M1 −Fσ (t)N1]−X1(t)FΔ(t)N1

(5.7),(5.8)
= [−DT (t)+BT (t)Qσ

1 (t)]Zσ
1 (t)+X1(t)[Xσ

1 (t)]†B(t)[X†
1 (t)]T N1

(3.10)= [−DT (t)+BT (t)Qσ
1 (t)]Zσ

1 (t)+X1(t)X
†
1 (t)BT (t)[Xσ

1 (t)]†T N1

(5.11)= [−DT (t)+BT (t)Qσ
1 (t)]Zσ

1 (t)+BT (t)[Xσ
1 (t)]†T N1, t ∈ [α,ρ(t0)]T.

Equation (5.10) has a unique solution satisfying the initial condition at t0 , which exists
on the whole interval [α,t0]T , with no additional requirement of regressivity of the
coefficients, see e.g. [27, Proposition 2.1]. Since by (5.6) and (5.9) the matrix X2(t)
satisfies the same equation with the same initial condition, it follows that X2(t)= Z(t) =
X1(t)[M1−F(t)N1] on [α,t0]T . This shows that ImX2(t)⊆ ImX1(t) for all t ∈ [α,t0]T .
By interchanging the roles of (X1,U1) and (X2,U2) we find out that also ImX2(t) ⊇
ImX1(t) for all t ∈ [α,t0]T holds. Putting the previous two steps together, we get that
ImX1(t) = ImX2(t) for all t ∈ [α,∞)T , which completes the proof. �

Now we state the key definition of this section. The so-called genus of conjoined
bases of (S) turns out to be an important tool for the investigation of the behaviour
of special conjoined bases of (S), like the principal or antiprincipal solutions of (S) at
infinity.

DEFINITION 5.2. We say that two conjoined bases (X1,U1) and (X2,U2) of (S)
belong to the same genus G , or have the same genus G , if the matrices X1(t) and X2(t)
have eventually the same images, i.e., if there exists a point α ∈ [a,∞)T such that

ImX1(t) = ImX2(t), t ∈ [α,∞)T.

We can see from the Lemma 5.1 that if (X1,U1) and (X2,U2) are two conjoined
bases of (S) with constant kernel on [α,∞)T such that ImX1(t0) = ImX2(t0) for some
point t0 ∈ [α,∞)T , then (X1,U1) and (X2,U2) belong to the same genus. This is sum-
marized in the following statement, which we use for our future reference.

THEOREM 5.3. Assume that (S) is nonoscillarory. Let (X1,U1) and (X2,U2) be
conjoined bases of (S) with constant kernel on [α,∞)T . Then the following statements
are equivalent.
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(i) The conjoined bases (X1,U1) and (X2,U2) belong to the same genus G .

(ii) The equality ImX1(t) = ImX2(t) holds on some subinterval [β ,∞)T of [α,∞)T .

(iii) The equality ImX1(t) = ImX2(t) holds on every subinterval [β ,∞)T of [α,∞)T .

Proof. The statement of this theorem is a direct consequence of Lemma 5.1. �

The relation “to have the same genus” is an equivalence relation on the set of all
conjoined bases of a nonoscillatory system (S). Therefore, there exists a partition of this
set into disjoint classes of all conjoined bases of a nonoscillatory system (S) according
to the equivalence above. Then we naturally interpret each such an equivalence class as
a genus itself.

REMARK 5.4. According to [14, Proposition 3.18] and Lemma 5.1 we get that
all minimal conjoined bases of (S) with constant kernel on [α,∞)T are equivalent in
the sense of Definition 5.2, i.e., they belong to the same genus. We denote this genus
by Gmin and we call it the minimal genus of (S). From the fact that if rankX(t) = n
on the interval [α,∞)T , then X(t) is regular on [α,∞)T , we get that also all maximal
conjoined bases of nonoscillatory system (S) belong to the same genus. We denote it
by Gmax and call it the maximal genus of (S).

Now we focus our attention to the pairs of minimal conjoined bases of (S). Such
conjoined bases are mutually representable in the sense of Proposition 3.10, since they
belong to the same genus Gmin .

REMARK 5.5. From Proposition 3.14 and its proof displayed in [14, Theorem5.1]

it can be seen that any two minimal conjoined bases (X (i)
min,U

(i)
min) for i ∈ {1,2} on

[α,∞)T can be mutually representable in the sense of Proposition 3.10. That is, there

exist constant matrices M(i)
min and N(i)

min such that

(
X (3−i)

min (t)

U (3−i)
min (t)

)
=

⎛
⎝X (i)

min(t) X
(i)
max(t)

U (i)
min(t) U

(i)
max(t)

⎞
⎠(M(i)

min

N(i)
min

)
, t ∈ [α,∞)T,

where (X
(i)
max,U

(i)
max) is the conjoined basis of (S) satisfying the properties in Propo-

sition 3.9 with respect to (X (i)
min,U

(i)
min) . Note that (X

(i)
max,U

(i)
max) is indeed a maximal

antiprincipal solutions of (S) at infinity by Theorem 4.1, and

N(i)
min = W [(X (i)

min,U
(i)
min),(X

(3−i)
min ,U (3−i)

min )]. (5.12)

Notice that the matrices M(i)
min and N(i)

min satisfy the properties (i)–(iii) from Propo-

sition 3.10 with the associated orthogonal projector P(i)
min from (2.23). Moreover, if

d[α,∞)T = d∞ and if we denote by PSi∞ the orthogonal projector from (3.16) associ-

ated with (X (i)
min,U

(i)
min) , then PSi∞ = P(i)

min (see Proposition 3.13).
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We continue our investigation of the mutual representation of conjoined basis by
the following proposition, which deals with the minimal conjoined bases mentioned in
the previous remark. This is an analogy of the discrete case, see [12, Proposition 6.99]
and [23, Lemma 6.9]. Relations (5.13) and (5.14) play a key role in our follow-up
research.

PROPOSITION 5.6. Let (X1,U1) and (X2,U2) be conjoined bases of (S) with con-
stant kernel on [α,∞)T and no focal points in (α,∞) and let P1 , P2 and PS1∞ , PS2∞ be
the corresponding orthogonal projectors from (2.23) and (3.16) associated with con-

joined bases (X1,U1) and (X2,U2) , respectively. Moreover, let (X (1)
min,U

(1)
min) be a min-

imal conjoined basis of (S), which is contained in (X1,U1) on [α,∞)T with respect

to PS1∞ , and (X (2)
min,U

(2)
min) be a minimal conjoined basis of (S), which is contained in

(X1,U1) on [α,∞)T with respect to PS2∞ . Suppose that (X1,U1) and (X2,U2) are mu-
tually representable as in Proposition 3.10 on [α,∞)T through the matrices M1 , N1 ,

M2 , N2 , i.e., (3.22) holds. If M(1)
min , M(2)

min , N(1)
min , N(2)

min are the corresponding matrices
from Remark 5.5, then for i ∈ {1,2} we have

PiMiPS3−i∞ =PSi∞M(i)
min, (5.13)

N(i)
min(M

(i)
min)

−1 =PSi∞Ni(Mi)−1PSi∞. (5.14)

Proof. The proof follows the same way as the proof of [12, Proposition 6.99].
The proof uses Proposition 3.19, namely equation (3.40), which provides the mutual

characterization between (X1,U1) and (X (1)
min,U

(1)
min) as well as between (X2,U2) and

(X (2)
min,U

(2)
min) . Further, it uses Remark 5.4 and the relations in (5.12), and the properties

of Remark 3.20. All the arguments remain the same as in the discrete case in the proof
of [12, Proposition 6.99]. Therefore, the full details of the proof are omitted. �

6. Antiprincipal and principal solutions at infinity in any genus

The following theorem guarantees that in every genus G of (S) there exists an an-
tiprincipal solution of (S) in infinity belonging to G . It is a generalization and unifica-
tion of the corresponding statements in the continuous case in [24, Theorem 5.12] and
the discrete case in [29, Theorem 5.5].

THEOREM 6.1. Assume that system (S) is nonoscillatory. Let G be a genus of
a conjoined bases of (S). Then there exists an antiprincipal solution of (S) at infinity
belonging to the genus G .

Proof. Given that (S) is nonoscillarory, let (XG ,UG ) be a conjoined basis belong-
ing to a given genus G . Denote by PSG ∞ its associated orthogonal projector from (3.16),
and by RG (t) the R-projector from (2.23). Let α ∈ [a,∞)T be such that d[α,∞)T = d∞ .
Our aim is to show that there exists an antiprincipal solution (X̃ ,Ũ) of (S) at infinity
such that

ImXG (α) = Im X̃(α). (6.1)
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Then according to Lemma 5.1 both (X̃ ,Ũ) and (XG ,UG ) will belong to the same genus
G . According to Remark 3.6, there exists a minimal antiprincipal solution (Xmin,Umin)
of (S) at infinity, denote by Rmin(t) its R-projector from (2.23). Let (X∗,U∗) be a con-
joined basis of (S), which is contained in (XG ,UG ) on [α,∞)T with respect to the
orthogonal projector P∗ from (3.38), which we choose as

P∗ := PSG ∞. (6.2)

This choice is possible. Denote by PS∗∞ the orthogonal projector associated with
(X∗,U∗) from (3.16). From Proposition 3.15 together with Proposition 3.13, we get

P∗ = PImXT∗ (t)
(6.2)
= PSG ∞

(3.33)
= PS∗∞, t ∈ [α,∞)T.

The latter equality guarantees that (X∗,U∗) is a minimal conjoined basis of system
(S) contained in (XG ,UG ) on [α,∞)T . Thus both (X∗,U∗) and (Xmin,Umin) belong
to the same genus Gmin and since (X∗,U∗) is contained in (XG ,UG ) we get for the
associated orthogonal projectors defined according to (2.23) that Rmin(α) = R∗(α) and
ImR∗(α) ⊆ ImRG (α) . Put now R̃α := RG (α) . Then from Proposition 3.21(ii) we get
that there exists a conjoined basis (X̃ ,Ũ) of (S) with constant kernel on [α,∞)T which
contains (Xmin,Umin) on [α,∞)T and

Im X̃(α) = ImRG (α) = ImXG (α).

This completes the proof of (6.1). Finally, the results in Lemma 5.1 and Proposi-
tion 3.23 reveal that (X̃ ,Ũ) is an antiprincipal solution of (S) at infinity which belongs
to the genus G . �

The following theorem guarantees, similarly to the previous result, that in every
genus G of (S) there exists a principal solution of (S) at infinity belonging to G . It is
a generalization and unification of the corresponding statements in the continuous case
in [23, Theorem 7.12] and the discrete case in [29, Theorem 5.5].

THEOREM 6.2. Assume that (S) is nonoscillatory. Let G be a genus of a con-
joined bases of (S). Then there exists a principal solution of (S) at infinity belonging
to the genus G .

Proof. The proof of the theorem follows the same idea as the proof of Theo-
rem 6.1, where we replace the minimal antiprincipal solution (Xmin,Umin) of (S) at
infinity by the minimal principal solution (X̂min,Ûmin) of (S) at infinity on the interval
[α,∞)T with the property that d[α,∞)T = d∞ , while considering Remark 3.6. �

7. Shift of interval in relation being contained

In this section we present additional results about the relation being contained,
which we defined in Subsection 3.7. They are related to the possibility of shifting
the left endpoint of the interval, on which this relation is considered. The first three
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statements (Propositions 7.1 and 7.2) are of technical nature. Proving these results in
full details is, however, necessary in order to validate their frequent applications in the
subsequent theory.

The first proposition shows that the initial point of the interval [α,∞)T can be
shifted both to right and to the left, while the property of being contained for the con-
joined bases from the definition remains valid on the new extended or shortened inter-
val. This result turns out to be useful when we deal with the genera of conjoined bases
of system (S). It is a unification and extension of the continuous case in [23, Theo-
rem 6.7] and the discrete case in [29, Proposition 2.11], see also [12, Proposition 6.93].

PROPOSITION 7.1. Let (X ,U) and (X∗,U∗) be two conjoined bases of (S) with
constant kernel on [α,∞)T and no focal points in (α,∞) . Then the following statements
hold.

(i) If (X ,U) contains the conjoined basis (X∗,U∗) on the interval [α,∞)T , then (X ,U)
contains the conjoined basis (X∗,U∗) on the interval [β ,∞)T for all β ∈ [α,∞)T .

(ii) Assume that d[α,∞)T = d∞ . If (X ,U) contains the conjoined basis (X∗,U∗) on
the interval [β ,∞)T for some β ∈ [α,∞)T , then (X ,U) contains the conjoined basis
(X∗,U∗) on the interval [α,∞)T .

Proof. Fix β ∈ [α,∞)T . Denote by S(t) and S∗(t) the S -matrices defined in (3.8)
corresponding to conjoined bases (X ,U) and (X∗,U∗) on [α,∞)T , respectively, and
denote by Sβ (t) and S∗β (t) the S -matrices defined in (3.8) corresponding to conjoined
bases (X ,U) and (X∗,U∗) on [β ,∞)T , respectively. Then we have

Sβ (t) = S(t)−S(β ), S∗β (t) = S∗(t)−S∗(β ), t ∈ [β ,∞)T,

which implies that

0 � Sβ (t) � S(t), 0 � S∗β (t) � S∗(t), t ∈ [β ,∞)T. (7.1)

Let PS∞ and PSβ ∞ be the orthogonal projectors associated with a conjoined basis (X ,U)
on [α,∞)T and on [β ,∞)T from (3.16), respectively, and PS∗∞ and PS∗β ∞ be the or-
thogonal projectors associated with (X∗,U∗) on [α,∞)T and on [β ,∞)T from (3.16),
respectively. Then the set of inequalities in (7.1) can be read as

ImPSβ ∞ ⊆ ImPS∞ and ImPS∗β ∞ ⊆ ImPS∗∞. (7.2)

First we are going to prove part (i). Let P∗ be an orthogonal projector from (2.23)
associated with (X∗,U∗) . Since (X ,U) contains (X∗,U∗) on [α,∞)T , then we get
that the defining property in (3.38) holds and (X∗,U∗) and (XP∗,UP∗) are equivalent
solutions on [α,∞)T . Then from (3.38) together with (7.2) we get that ImPSβ ∞ ⊆
ImP∗ ⊆ ImP . It means that (X ,U) contains (X∗,U∗) also on [β ,∞)T , which completes
the proof of the part (i).

Now we will prove part (ii) with the aid of part (i) we have already proved. Assume
that d[α,∞)T = d∞ , thus d[β ,∞)T = d∞ , too. Combining (3.20) and (7.2), which we
get that

PSβ ∞ = PS∞ and PS∗β ∞ = PS∗∞. (7.3)
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Suppose that (X ,U) contains (X∗,U∗) on the interval [β ,∞)T and let (X∗∗,U∗∗) be
another conjoined basis of (S) with constant kernel on [α,∞)T and no focal points in
(α,∞) such that (X ,U) contains (X∗∗,U∗∗) on [α,∞)T with respect to the orthogonal
projector P∗ . Note that this choice can be done due to Proposition 3.21. It is possible
to show that then (X∗,U∗) and (X∗∗,U∗∗) are equivalent on [α,∞)T in the sense of the
comment at the beginning of Subsection 3.7, which will imply the desired result. We
will show the mentioned relation in the following way. Considering part (i) we see that
the conjoined basis (X ,U) contains (X∗∗,U∗∗) with respect to P∗ also on the interval
[β ,∞)T . This implies that

X∗(t) = X∗∗(t) for all t ∈ [β ,∞)T. (7.4)

But due to Theorem 5.3 the above equality implies that

ImX∗(t) = ImX∗∗(t) for all t ∈ [α,∞)T. (7.5)

Hence, the conjoined bases (X∗,U∗) and (X∗∗,U∗∗) and mutually representable on
[α,∞)T in the sense of Proposition 3.10, specifically(

X∗∗(t)
U∗∗(t)

)
=
(

X∗(t) X∗(t)
U∗(t) U∗(t)

)(
M∗
N∗

)
, t ∈ [α,∞)T, (7.6)

where (X∗,U∗) is the conjoined basis of (S) from Proposition 3.9 associated with
(X∗,U∗) . We stress that we know that M∗ is a constant invertible matrix and N∗ is
the Wronskian of (X∗,U∗) and (X∗∗,U∗∗) , see formula (3.23), i.e.,

N∗ := W [(X∗,U∗),(X∗∗,U∗∗)].

Using (7.6) we obtain

X∗∗(t) = X∗(t)M∗ +X∗(t)P∗N∗, t ∈ [α,∞)T. (7.7)

Since we already know that the solution (X∗,U∗) and (X∗∗,U∗∗) are equivalent on
[α,∞)T , we can use Proposition 3.18 to derive the additional result about the matrix
N∗ , which we will use later. If we put t := β in (7.5), then we get that X∗(β ) = X∗∗(β ) ,
i.e., ImX∗(β ) = ImX∗∗(β ) . Then from Proposition 3.18 we get that there exist unique
n×n matrices G and H such that

U∗(β )−U∗∗(β ) = [X†
∗ (β )]T G+U∗(β )H and ImG ⊆ Im(P∗ −PS∗β ∞). (7.8)

Now from the symmetry of UT∗ (β )X∗(β ) and from (3.41) it follows

N∗ = XT
∗ (β )U∗∗(β )−UT

∗ (β )X∗∗(β ) = XT
∗ (β )[U∗∗(β )−U∗(β )]

(7.8)
= P∗G+XT

∗ (β )U∗(β )
(3.41)
= G+UT

∗ (β )X∗(β )P∗H
(3.41)
= G.

From the latter equality and from the second equality in (7.8) it now follows that the
inclusion ImN∗ ⊆ Im(P∗ −PS∗β ∞) holds. When we consider (7.3) we see that the inclu-

sion
ImN∗ ⊆ Im(P∗ −PS∗∞) (7.9)
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also holds and it can be read as N∗ = (P∗ −PS∗∞)N∗ . Now we return to (7.7) and by
using G = P∗G from (3.41), the equality N∗ = G , and by (7.9) we receive that P∗N∗ =
N∗ , which implies that PS∗∞N∗ = 0. Finally, considering also Proposition 3.9(iv) we
get

X∗∗(t) = X∗(t)M∗ +X∗(t)P∗N∗ = X∗(t)M∗ +X∗(t)S∗(t)N∗
(3.18)
= X∗(t)[M∗ +S∗(t)PS∗∞N∗]

(7.9)
= X∗(t)M∗, t ∈ [α,∞)T.

But we already know that (7.4) holds, so that we have X∗(t) = X∗(t)M∗ for t ∈ [β ,∞)T .
Using this while considering d[α,∞)T = d∞ we get P∗ = P∗M∗ , and combining the
above equality with X∗∗(t) = X∗(t)M∗ on [α,∞)T we get X∗∗(t) = X∗(t) for all t ∈
[α,∞)T . Therefore, we proved that (X∗,U∗) and (X∗∗,U∗∗) are equivalent on [α,∞)T ,
which immediately implies that the conjoined basis (X∗,U∗) is contained in (X ,U) on
[α,∞)T . The proof is complete. �

The second proposition is similar to the previous one, but reveals slightly more.
Notice that it differs in the assumptions on the interval, where the conjoined basis
(X∗,U∗) has constant kernel and no focal points. It is a unification and extension of the
continuous case in [23, Theorem 6.8] and the discrete case in [29, Proposition 2.12],
see also [12, Proposition 6.93].

PROPOSITION 7.2. Let (X∗,U∗) be a conjoined basis of system (S) with constant
kernel on [α,∞)T and no focal points in (α,∞) such that d[α,∞)T = d∞ . Then the
following statements hold for every initial point β ∈ [α,∞)T .

(i) If (X∗∗,U∗∗) is a conjoined basis of system (S) with constant kernel on [β ,∞)T and
no focal points in (β ,∞) and it is contained in (X∗,U∗) on the interval [β ,∞)T , then
(X∗∗,U∗∗) has constant kernel on [α,∞)T and no focal points in (α,∞) , too.

(ii) If (X ,U) is a conjoined basis of system (S) with constant kernel on [β ,∞)T and no
focal points in (β ,∞) and it contains (X∗,U∗) on the interval [β ,∞)T , then (X ,U) has
constant kernel on [α,∞)T and no focal points in (α,∞) , too.

Proof. Fix the number β ∈ [α,∞)T . Denote by P∗∗ and P∗ the orthogonal projec-
tors from (2.23) associated with conjoined bases (X∗∗,U∗∗) and (X∗,U∗) on [β ,∞)T ,
respectively. Let S∗(t) and S∗β (t) be the S -matrices defined in (3.8) corresponding to
(X∗,U∗) on [α,∞)T and [β ,∞)T , respectively. Then since (X∗∗,U∗∗) is contained in
(X∗,U∗) on [β ,∞)T , we have

X∗∗(t) = X∗(t)P∗∗ for all t ∈ [β ,∞)T, (7.10)

and according to (3.38) the following holds

ImPS∗β ∞ ⊆ ImP∗∗ ⊆ ImP∗. (7.11)

Our aim is to show that (7.10) holds also on [α,∞)T . But in the same way as in the first
part of the proof of Proposition 7.1 we get that PS∗β ∞ = PS∗∞, and hence (7.11) implies
that

ImPS∗∞ ⊆ ImP∗∗ ⊆ ImP∗. (7.12)
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Consider the solution (X̃ ,Ũ) := (X∗∗,U∗∗)− (X∗,U∗)P∗∗ on [a,∞)T . Then the columns
of Ũ belong to the space Λ[α,∞)T , if we use the notation from Section 3. Now, since
d[α,∞)T = d∞ , we get that also d[β ,∞)T = d∞ and thus we have that Λ[α,∞)T =
Λ[β ,∞)T . This implies that the columns of Ũ belong to the space Λ[β ,∞)T and hence,

X∗∗(t) = X∗(t)P∗∗ for all t ∈ [β ,∞)T. (7.13)

Conditions (7.13) and (7.12) imply that (X∗,U∗) contains (X∗∗,U∗∗) on [α,∞)T with
respect to the orthogonal projector P∗∗ . This together with Proposition 3.15 proves part
(i).

For the proof of part (ii) note that, as well as above, it is possible to show that

X∗(t) = X(t)P∗ for all t ∈ [α,∞)T. (7.14)

Denote by S(t) and Sβ (t) the S -matrices defined in (3.8) corresponding to a conjoined
basis (X ,U) on the intervals [α,∞)T and [β ,∞)T , respectively. Since a conjoined basis
(X ,U) contains (X∗,U∗) on [β ,∞)T , d[α,∞)T = d∞ , and (X∗,U∗) is a conjoined basis
of (S) with constant kernel on [α,∞)T and no focal points in (α,∞) , then we have

PS∗β ∞ = PSβ ∞ = PS∞ . (7.15)

Suppose now that (X ,U) contains (X∗,U∗) on the interval [β ,∞)T through the pair of
matrices (G,H)∈M (PS∞,P∗,P) defined in (3.39). Then according to Proposition 3.19
we have

U∗(β ) = U(β )P∗+[X†(β )]T G+U(β )H.

In the same way as in the proof of Proposition 7.1 it is possible to show that the matrix
G is the Wronskian of (X ,U) and (X∗,U∗) , which we shorten as

W := W [(X ,U),(X∗,U∗)]

in this proof. Denote by P the orthogonal projector associated with (X ,U) on [β ,∞)T

defined in (2.23). Then according to (3.39) together with (7.15) we have

PS∗∞W = PS∗β ∞W = 0, PW = W, P∗W = WT P∗. (7.16)

We will show that

Im[P−S∗(t)W ] = ImP = Im[P−S∗(t)WT ]T on [α,∞)T. (7.17)

Notice that S∗(t) = PS∗(t) on [α,∞)T by (3.38), and then it follows that

Im[P−S∗(t)W ] = Im
(
P [P−S∗(t)W ]

)⊆ ImP on [α,∞)T. (7.18)

On the other hand, if v ∈ Ker[P−S∗(t)WT ] on [α,∞)T , then

[P−S∗(t)WT ]v = 0. (7.19)



Differ. Equ. Appl. 14, No. 1 (2022), 99–136. 129

We can write v = v1 + v2 , where v1 ∈ KerP and v2 ∈ ImP . Then using WT P = WT

from (7.16) we get

v2 = P(v1 + v2) = Pv
(7.19)
= S∗(t)WT Pv1 = S∗(t)WT v2, t ∈ [α,∞)T.

Hence v2 ∈ ImS∗(t) ⊆ ImPS∗∞ , i.e., v2 = PS∗∞v2 . But since PS∗∞W = 0 by (7.16), we
get

v2 = S∗(t)WT v2 = S∗(t)WT PS∗∞v2 = 0, t ∈ [α,∞)T.

Therefore, v = v1 ∈ KerP holds, and we showed that

Ker[P−S∗(t)WT ] ⊆ KerP, t ∈ [α,∞)T. (7.20)

By taking the orthogonal complements in (7.20) we have

ImP ⊆ Im[P−S∗(t)WT ]T . (7.21)

Inclusions (7.18) and (7.21) show that rank[P−S∗(t)WT ] � rankP for t ∈ [α,∞)T . At
the same time

rankP � rank[P−S∗(t)WT ]T = rank[P−S∗(t)WT ], t ∈ [α,∞)T.

Therefore, this implies that

rank[P−S∗(t)WT ] = rankP = rank[P−S∗(t)WT ]T , t ∈ [α,∞)T

which together with (7.18) and (7.21) yields the result in (7.17). Note also that (7.17)
implies that the matrices

[P−S∗(t)WT ][P−S∗(t)WT ]† and [P−S∗(t)WT ]†[P−S∗(t)WT ]

are for t ∈ [α,∞)T orthogonal projectors onto ImP , i.e., for t ∈ [α,∞)T we have

P = [P−S∗(t)WT ][P−S∗(t)WT ]†, P = [P−S∗(t)WT ]†[P−S∗(t)WT ]. (7.22)

Let Q∗(t) be the symmetric matrix defined by

Q∗(t) := U∗(t)X†
∗ (t)+X†T

∗ (t)UT
∗ (t)[I−R∗(t)], t ∈ [a,∞)T,

where R∗(t) is the orthogonal projector associated with (X∗,U∗) on [α,∞)T defined in
(2.23). Then, in the same way as we received (5.3), we have

U∗(t)P∗ = Q∗(t)X∗(t), t ∈ [α,∞)T. (7.23)

We also have

XΔ(t) = A (t)X(t)+B(t)U(t) = A (t)X(t)+B(t)R∗(t)U(t), t ∈ [α,∞)T. (7.24)

But since using (7.23) we have

R∗(t)Q∗(t)X(t)−R∗(t)U(t) = [X†
∗ (t)]TWT . (7.25)



130 I. DŘÍMALOVÁ

Then from (7.24), considering also that P∗(t) = P∗ is constant on [α,∞)T , we get

XΔ(t) = [A (t)+B(t)Q∗(t)]X(t)−B(t)X†T
∗ (t)WT , t ∈ [α,∞)T, (7.26)

and using (3.6) we also get

XΔ
∗ (t) = [−DT (t)+BT (t)Qσ

∗ (t)]Xσ
∗ (t), t ∈ [α,∞)T. (7.27)

Moreover, using BT (t) = BT (t)Rσ∗ (t) and the fact that Wronskian W is constant on
[a,∞)T together with (7.25) we get that (X ,U) solves the nonhomogeneous version of
(7.27), i.e.,

XΔ(t) = [−DT (t)+BT (t)Qσ
∗ (t)]Xσ (t)−BT (t)[Xσ

∗ (t)]†TWT , t ∈ [α,∞)T. (7.28)

Let Φ(t) and Ψ(t) be the solutions of the associated homogeneous equations

ΦΔ(t) = [A (t)+B(t)Q∗(t)]Φ(t), t ∈ [α,∞)T, (7.29)

ΨΔ(t) = [−DT (t)+BT (t)Qσ
∗ (t)]Ψσ (t), t ∈ [α,ρ(β )]T, (7.30)

such that Φ(α) = X(α) and Ψ(β ) = X(β )[P− S∗(β )WT ]† . Note that in the spirit of
[27, Proposition 2.1] we do not need the regressivity of the matrix A (t)+B(t)Q∗(t)
in (7.29), since the solution Φ(t) is constructed in the forward time. Further, we also
do not need the regressivity of the matrix −DT (t)+BT (t)Qσ∗ (t) in (7.30), since the
solution Ψ(t) is constructed in the backward time. Note that since Φ(α)P∗ = X(α)P∗ =
X∗(α) , we obtain by the uniqueness of solution of (7.29) that

X∗(t) = Φ(t)P∗, t ∈ [α,∞)T. (7.31)

In a similar way, the function

F(t) := Φ(t)[P−S∗(t)WT ], t ∈ [α,∞)T, (7.32)

satisfies the equality

F(α) = Φ(α)[P−S∗(α)WT ] = Φ(α)P = X(α)P = X(α),

while using (7.29), (7.32), and (7.31) we have the following equality:

FΔ(t)= ΦΔ(t)[P−S∗(t)WT ]+ Φσ(t)[P−S∗(t)WT ]Δ

(7.29)= [A (t)+B(t)Q∗(t)]Φ(t)[P−S∗(t)WT ]−Φσ(t)SΔ
∗ (t)W

T

(7.32)= [A (t)+B(t)Q∗(t)]F(t)−Φσ (t)[Xσ
∗ (t)]†B(t)X†

∗ (t)WT

(7.31)
= [A (t)+B(t)Q∗(t)]F(t)−Rσ

∗ (t)B(t)X†
∗ (t)WT

= [A (t)+B(t)Q∗(t)]F(t)−B(t)X†
∗ (t)WT , t ∈ [α,∞)T.
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Therefore, the function F(t) satisfies equation (7.26) with F(α) = X(α) . By the
uniqueness of solution of (7.26) we get

X(t) = F(t) = Φ(t)[P−S∗(t)WT ], t ∈ [α,∞)T. (7.33)

Now the functions Ψ(t) and Ψ(t)P , as well as the function Ψ(t)P∗ and X∗(t) , satisfy
the linear dynamic equation in (7.30) with the initial conditions

Ψ(β )P = X(β )[P−S∗(β )WT ]†P (7.22)= X(β )[P−S∗(β )WT ]† = Ψ(β ).

And similarly by considering (7.33) and (7.31), we also get the second initial condition

Ψ(β )P∗ = Φ(β )[P−S∗(β )WT ][P−S∗(β )WT ]†P∗ = Φ(β )PP∗ = X∗(β ).

Then by the uniqueness of (7.30) we get

Ψ(t)P = Ψ(t), Ψ(t)P∗ = X∗(t), t ∈ [α,β ]T. (7.34)

Consider the function

G(t) := Ψ(t)[P−S∗(t)WT ], t ∈ [α,β ]T. (7.35)

Then by using (7.30) and (7.22) we obtain

G(β ) = Ψ(β )[P−S∗(β )WT ]
(7.30),(7.22)

= X(β )P = X(β ),

and further

G(t)= Ψ(t)[P−S∗(t)WT ]σ + Ψ(t)[P−S∗(t)WT ]Δ

(7.30)
= [−DT (t)+BT (t)Qσ

∗ (t)]Ψσ (t)[P−Sσ
∗ (t)WT ]−Ψ(t)[SΔ

∗(t)]
TWT

(7.35)
= [−DT (t)+BT (t)Qσ

∗ (t)]Gσ (t)−Ψ(t)X†
∗ (t)BT (t)[Xσ

∗ (t)]†TWT

(7.34)= [−DT (t)+BT (t)Qσ
∗ (t)]Gσ (t)−BT (t)[Xσ

∗ (t)]†TWT , t ∈ [α,ρ(β )]T.

Thus, the function G(t) solves equation (7.28) on [α,ρ(β )]T with the initial condition
G(β ) = X(β ) . The uniqueness of solutions of equation (7.28) yields that

X(t) = G(t) = Ψ(t)[P−S∗(t)WT ], t ∈ [α,β ]T. (7.36)

Now we prove that

KerΨ(t) = KerP, Ψ†(t)Ψ(t) = P, t ∈ [α,β ]T. (7.37)

We will prove that space KerΨ(t) is nonincreasing on [α,β ]T by applying the back-
ward version of the time scale induction principle to the statement

A(t) := KerΨ(t) is nonincreasing on [t,β ]T,
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see [7, Remark 1.8] for the method. Applying the principle we have to check the fol-
lowing.

The initial condition. If t = β , then the statement A(β ) holds automatically.
The jump condition. Let t ∈ (α,β ]T be left-scattered and assume that A(t) holds.
From (7.30) and (2.1) we get Ψσ (t)−Ψ(t) = μ(t)[−DT (t)+BT (t)Qσ∗ (t)]Ψσ (t) for
t ∈ [α,ρ(β )]T , thus from here we get

Ψ(t) =
(
I + μ(t)

[
DT (t)+BT (t)Qσ

∗ (t)
])

Ψσ (t), t ∈ [α,ρ(β )]T.

This implies that KerΨ(t) ⊆ KerΨ(ρ(β )) holds, i.e., the statement A(ρ(β )) is valid.
The closure condition. Let t ∈ [α,β )T be right-dense and assume that statement

A(τ) holds for all τ ∈ (t,β ]T . Then this implies that KerΨ(τ) is nonincreasing on
(t,β ]T . Since Ψ(t) is continuous on [α,β ]T , we get KerΨ(τ) ⊆ KerΨ(t) for all
τ ∈ (t,β ]T , it proves that A(t) holds.

The continuation condition. Let t ∈ (α,β ]T be left-dense and assume that A(t)
holds. Our aim is to find some s ∈ [α,t)T such that A(s) holds. The fact that the
point t is left-dense guarantees that there exists a point s ∈ [α,t)T such that the ma-
trix I + μ(τ)[DT (τ)+BT (τ)Qσ∗ (τ)] is invertible for τ ∈ [s,t)T . This implies by [27,
Proposition 2.1] that the fundamental matrix Ω(τ) of the homogeneous system

ΩΔ(τ) = [BT (τ)Qσ
∗ (τ)−DT (τ)]Ωσ , τ ∈ [s,ρ(t)]T = [s,t]T, Ω(t) = I,

is invertible on [s, t]T . Consequently, Ψ(τ) = Ω(τ)Ψ(t) for all τ ∈ [s,t]T . This implies
that KerΨ(t) ⊆ KerΨ(τ) , where τ ∈ [s,t]T . But at the same time

rankΨ(τ) = rank[Ω(τ)Ψ(t)] = rankΨ(t), t ∈ [s,t]T,

since the matrix Ω(t) is invertible on the interval [s,t]T . This proves that KerΨ(t) =
KerΨ(τ) holds on τ ∈ [s,t]T , i.e., the statement A(s) holds.

Putting the previous four steps together we see that the statement A(t) holds for
all t ∈ [α,β ]T . Using this result, we have the inclusion

KerΨ(t) ⊆ KerΨ(α)
(7.34)
= Ker[Ψ(α)P]

(7.36)
= KerX(α) = KerP, t ∈ [α,β ]T.

On the other hand, (7.34) implies that KerP ⊆ KerΨ(t) for t ∈ [α,β ]T . Therefore, we
obtain that KerΨ(t) = KerP holds on [α,β ]T . Then also

ImP = (KerP)⊥ = [KerΨ(t)]⊥ = ImΨT (t), t ∈ [α,∞)T.

This equality implies that

Ψ†(t)Ψ(t) = PImΨT (t) = PImP = P, t ∈ [α,β ]T. (7.38)

Finally, we prove that the conjoined basis (X ,U) has constant kernel on [α,β ]T and
no focal points in (α,β ] . We have

KerX(t)
(7.36)
= Ker

(
Ψ(t)[P−S∗(t)WT ]

)
(7.38)
= Ker

(
P[P−S∗(t)WT ]

)
(3.12)
=
(
Im[P−S∗(t)WT ]T

)⊥ (7.17)
= (ImP)⊥ = KerP, t ∈ [α,β ]T.
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Therefore, equation (7.37) holds, so that the kernel of (X ,U) is constant on [α,β ]T . In
addition, since for t ∈ [α,β ]T we have that

X†
∗ (t) = PP∗X†

∗ (t) = X†(t)X(t)P∗X†
∗ (t) (7.14)= X†(t)R∗(t), t ∈ [α,β ]T, (7.39)

and P∗ = X†∗ (t)X∗(t) = [Xσ∗ (t)]†Xσ∗ (t) for t ∈ [α,β ]T . It follows, since (X∗,U∗) has no
focal points in (α,∞) , that

0 � X∗(t)[Xσ
∗ (t)]†B(t) (7.14)= X(t)P∗[Xσ

∗ (t)]†B(t) = X(t)[Xσ
∗ (t)]†B(t)

(7.39)= X(t)[Xσ (t)]†Rσ
∗ (t)B(t) = X(t)[Xσ (t)]†B(t), t ∈ [α,ρ(β )]T.

Hence, (X ,U) has no focal points in (α,β ] . Consequently, the conjoined basis (X∗,U∗)
is contained in (X ,U) also on [α,∞)T . The proof is complete. �

The next theorem is in some sense the extension of [27, Proposition 6.4], which
shows that the definition of a principal solution is independent of the point α , when it
is moved to the right. We show that it can be also moved to the left until it reaches α̂min

defined in (3.42).

THEOREM 7.3. Assume that system (S) is nonoscillatory, let α̂min ∈ [a,∞)T be
defined in (3.42). Then if (X̂ ,Û) is a principal solution of system (S) at infinity with
respect to the interval [α,∞)T for some α ∈ [α̂min,∞)T , then it is a principal solution
of (S) at infinity with respect to the interval [β ,∞)T for all β ∈ (α̂min,∞)T .

Proof. Note that d[α̂min,∞)T = d∞ . Let α ∈ [α̂min,∞)T be as in the theorem. Ac-
cording to Proposition 3.7 we can be sure that the solution (X̂ ,Û) from the theorem
contains some minimal principal solution (X̂min,Ûmin) on [α,∞)T , which is uniquely
determined up to the right nonsingular multiple, see [27, Theorem 6.9]. But then, ac-
cording to Proposition 7.1, (X̂ ,Û) contains (X̂min,Ûmin) also on the interval [β ,∞)T

for all β ∈ (α̂min,∞)T . And then by Proposition 3.22 we get that (X̂ ,Û) is really
a principal solution of (S) at infinity with respect to the interval [β ,∞)T for all β ∈
(α̂min,∞)T . �

One may wish we could state an analogy of Theorem 7.3 also for the antiprincipal
solutions of (S) at infinity, but it is not possible due to [14, Theorem 6.4] and the fact
that the minimal antiprincipal solution of (S) at infinity is not uniquely determined.

8. Conclusions

In this paper we developed the theory of genera of conjoined bases for symplectic
dynamic systems on time scales and utilized it for obtaining new results about princi-
pal and and antiprincipal solutions at infinity. Main goal of the article is to provide all
preparatory results we need for our future research, which is already done and ready
to submit as Part II of this paper. In our investigations we did not use any controlla-
bility (normality) assumption, which leads in natural way to using the Moore–Penrose
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pseudoinverse in the situations, where the considered matrices are not invertible. In
particular, as a new result we derived the Δ-derivative of the Moore–Penrose pseudoin-
verse of a matrix with constant kernel on a given time scale interval.

The article opens a door for future research. In the continuation of this article we
would investigate the limit properties of principal and antiprincipal solutions of (S) at
infinity. In this approach, we would use many of the results contained in this article,
which is also the reason why we call it Part I and Part II of the same topic instead of
publishing it as two totally separate articles.

In two theorems in our following research, which will be covered in Part II, we
will provide classifications of all principal and antiprincipal solutions of (S) at infinity
in the genus G in terms of some known principal solution of (S) at infinity belonging
to the same genus G . The main tools to prove these theorems are Propositions 3.10
and 5.6, namely it is the mutual representation of some special conjoined bases and the
relation to be contained and its properties related to the inheritance of the property to
be a principal or antiprincipal solution at infinity. It seems to be possible to use those
tools for deriving the classifications of all principal and antiprincipal solutions of (S) at
infinity in the genus G in terms of some known antiprincipal solution of (S) at infinity
belonging to the same genus G . We leave this topic, letting this kind of classification
as an open problem. Note that it is an open problem even in the continuous case and
also in the discrete case.

A next natural step could be the investigation of an ordering in the set of equiv-
alences given by the relation to belong to the same genus. Once we know that there
exists some minimal genus Gmin and the maximal genus Gmax , it seems to be a good
idea to investigate what happens in between. In the continuous case the ordering on the
set of all genera of conjoined bases is described in [26, Theorem 4.8]. Such the result
would be new even in the discrete case.
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