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Abstract. The authors study a second order operator splitting formula for computing numerical
solutions of singular and nonlinear Kawarada partial differential equation initial-boundary value
problems. Their investigations particularly focus at the global numerical error, algorithmic real-
ization, and stability of the decomposed schemes. Computational experiments are presented to
validate and illustrate their results. The simulation demonstrates the viability and capability of
the new splitting methods for solving nonlinear and singular problems with potential industrial
applications.

1. Introduction

Splitting methods, with popular configurations such as ADI (alternating-direction
implicit) and LOD (local one-dimensional) decompositions [3, 7, 12, 13], have been
playing a significant role in approximations of ordinary and partial differential equa-
tions. The theoretical background of solutions of splitting methods can be traced back
to Baker-Campbell-Hausdorff, Zassenhaus and Trotter formulas [2, 13, 14].

Needless to mention, classical splitting strategies have met a tremendous amount
of new challenges in recent years, especially for newly emerged singular and high-
dimensional models due to increasing simulation demands from biomedical, financial
and energy industrial applications.

This paper is interested in an operator splitting approximations for solving a two-
dimensional nonlinear Kawarada partial differential equation which is frequently used
in solid fuel thermal combustion simulations and oil tanker corrosion preventions [10,
11]. To this end, we let Da = (0,a)× (0,a), where a > 0, be a spacial domain and
∂Da its boundary. We further let Ωa = Da × (t0,T ), Sa = ∂Da × (t0,T ), where T ∈
(t0,∞), t0 � 0. Consider the following semi-linear Kawarada initial-boundary value
problem [6, 8],

ut = uxx +uyy + f (u), (x,y,t) ∈ Ωa, (1.1)

u(x,y,t) = φ(x,y,t), (x,y,t) ∈ Sa, (1.2)

u(x,y,t0) = ψ(x,y), (x,y) ∈ Da, (1.3)
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where 0 � φ ,ψ � 1 and the nonlinear source function, f (u) , is strictly increasing for
0 � u < σ with

f (0) = f0 > 0, lim
u→σ− f (u) = ∞.

In the context of thermal combustion, the function u(x,y,t) represents the temperature
in an idealized combustor, and x and y are coordinates in the perpendicular and parallel
directions to its walls, respectively. The value of σ is often referred to as the fuel
ignition point in combustion, or the critical point for a massive corrosion to occur in a
container [10]. Typical source functions include

f1(u) =
1

σ −u
, f2(u) = exp

{
u

σ −u

}
, 0 � u < σ .

The solution of (1.1)–(1.3) is said to quench if there exists a finite time Tc such
that

sup{ ut(x,y,t) : (x,y) ∈ Da }→ ∞, as t → T−
c . (1.4)

The value of Tc is referred as the quenching time. A necessary condition for this to
occur is

max
{

u(x,y,t) : (x,y) ∈ Da

}
→ σ−, as t → T−

c . (1.5)

A non-quenching solution of (1.1)–(1.3) tends to a steady state solution û(x,y), (x,y)∈
Da as t → ∞. In the circumstance we have 0 � max

{
û(x,y) : (x,y) ∈ Da

}
< σ . We

are not interested in such solutions.
It is known that if f and fu are nonnegative, then there exists a unique a∗ > 0 and

the solution of (1.1)–(1.3) quenches whenever a � a∗ in finite time Ta. Such a Da∗ is
called a critical domain, and Da, a > a∗ are quenching domains [8, 9].

Considerable efforts have been devoted to the theory and computations of the
Kawarada problem (1.1)–(1.3) and beyond in recent years [1, 6, 9, 11]. Once a crit-
ical domain is identified, quenching times corresponding to particular a � a∗ can be
determined together with quenching solutions. The computational tasks turn out to be
challenging due to the strong quenching singularities involved. The singularity will
cause rapid changes in the gradient and temporal derivatives as quenching time is ap-
proached. This demands extremely fine resolution in the spatial and temporal grids.
Temporal and/or spacial mesh adaptation is often necessary for capturing a quench-
ing phenomenon. However, nonconstant mesh adaptations often become difficult in
multi-dimensional settings [4]. Consequently, large amounts of computations need to
be invested which may lead to undesirable numerical errors. Splitting techniques have
been suggested as they offer efficient and effective means of advancing the solution.
This motivates our present discussion.

This paper is organized as follows. In Section 2, semi- and fully discretized finite
difference approximations are implemented for solving the Kawarada problem (1.1)–
(1.3) on a uniform spatial grid. The temporal step is variable based on adaptation
procedures via any suitable arc-length monitor function [1, 4, 11]. An analysis is carried
out about properties of the coefficient matrices utilized. In Section 3, rigorous global
error analysis and estimates are conducted for the schemes derived. It is shown that the
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errors are closely related to the commutativity of the coefficient matrices from operator
splitting. The order of accuracy is shown to be consistent with that is anticipated in the
theory. Section 4 is devoted to a study of the numerical stability of the semi-adaptive
operator splitting schemes. Computational realization is completed with an [1/1] Padé
approximation strategy. Section 5 provides a sequence of numerical experiments for
algorithmic validations and illustrations of the quenching phenomena. It can be seen
that our results match existing calculations and theoretical predictions satisfactorily.
Finally, brief acknowledgments and appreciations are given in Section 6.

2. Semi- and fully discretized approximations

Let N ∈ N
+ be sufficiently large and h = a/(N + 1). We define an uniform spa-

tial mesh region Dh = {(xi,y j) | xi = ih,y j = jh, 1 � i, j � N} ⊂ D , with ∂Dh =
{(xi,y j) | xi = ih,y j = jh, i, j ∈ {0,N + 1}} ⊂ ∂D as its boundary. Letting vi, j =
v(xi,y j, t), (xi,y j) ∈ Dh, t > 0, be an approximation of the solution u(xi,y j,t) based
upon standard central finite difference approximations of the derivatives, we obtain the
following semi-discretized system from (1.1) :

v′i, j =
1
h2

(
vi−1, j + vi+1, j + vi, j−1 + vi, j+1−4vi, j

)
+ f (vi, j), 1 � i, j � N.

Denote v = [v1,1,v2,1, . . . ,vN,1,v1,2,v2.2 . . . ,vN,2,v1,3, . . . ,vN,N ]ᵀ ∈ R
N2

. Then the semi-
discretized system can be compressed together with (1.2) , (1.3) to yield a large system

v′ = (A+B)v+g(v), t > t0, (2.1)

v(t0) = ψ , (2.2)

where A ∈ R
N2×N2

is a block diagonal matrix and B ∈ R
N2×N2

is a block tridiagonal
matrix of the forms A = IN ⊗A0, B = A0⊗ IN , where A0 = tridiag(1,−2, 1) ∈ R

N×N ,
IN ∈ R

N×N is the identity matrix, ⊗ stands for the Kronecker product, and g(v), ψ ∈
R

N2
. We notice that A, B do not commute, that is, [A,B] 	= Φ, where [·, ·] is the

conventional Lie bracket and Φ ∈ R
N×N is an empty matrix. It can be readily shown

that the truncation errors of (2.1) , (2.2) are of O(h2) [1, 5, 7].

LEMMA 1. Matrices A, B are
(i) symmetric;
(ii) nonsingular and negative definite;

(iii) there exists a permutation matrix P ∈ R
N2×N2

such that B = PAP−1.

Proof. The first two properties are true for A since eigenvalues of the tridiagonal
and Toeplitz matrix A0 are

λk = −2−2cos

(
kπ

N +1

)
< 0 for k = 1, . . . ,N.
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Now, we look at property 3. To this end, we denote P ∈ R
N2×N2

as a permutation
matrix with rows ei,ei+N ,ei+2N , . . . ,ei+(N−1)N , for i = 1, . . . ,N, where ek is the kth

standard basis vector for R
N2

. We denote

Pi =

⎛
⎜⎜⎜⎜⎜⎝

eᵀ
i+0

eᵀ
i+N

eᵀ
i+2N
...

eᵀ
i+(N−1)N

⎞
⎟⎟⎟⎟⎟⎠

∈ R
N×N2

, i = 1,2, . . . ,N.

We further define

P =

⎛
⎜⎜⎜⎜⎜⎝

Pᵀ
1

Pᵀ
2

Pᵀ
3
...

Pᵀ
N

⎞
⎟⎟⎟⎟⎟⎠

∈ R
N2×N2

.

It follows therefore P−1 = Pᵀ. Furthermore, we may express B by rows, that is,

B =

⎛
⎜⎜⎜⎜⎜⎝

Bᵀ
1

Bᵀ
2

Bᵀ
3
...

Bᵀ
N2

⎞
⎟⎟⎟⎟⎟⎠

∈ R
N2×N2

.

Thus, we have

PB = P

⎛
⎜⎜⎜⎜⎜⎝

Bᵀ
1

Bᵀ
2

Bᵀ
3
...

Bᵀ
N2

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bᵀ
1

Bᵀ
1+N
...

Bᵀ
1+N(N−1)

Bᵀ
2

Bᵀ
2+N
...

Bᵀ
2+N(N−1)

...
Bᵀ

N
...

Bᵀ
N2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1

C1+N
...

C1+N(N−1)
C2

C2+N
...

C2+N(N−1)
...

CN
...

CN2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
N2×N2

,

where the row vectors Ci = Bᵀ
i , i = 1,2, . . . ,N.
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Note that PT = P. Thus,

PBP−1 =

⎛
⎜⎜⎜⎝

C1 · e1 C1 · e1+N · · · C1 · eN2

C1+N · e1 C1+N · e1+N · · · C1+N · eN2

...
. . .

. . .
CN2 · e1 CN2 · e1+N · · · CN2 · eN2

⎞
⎟⎟⎟⎠ ,

where

Ci · e j =

⎧⎨
⎩

−2 if i = j,
1 if |i− j| = N,
0 otherwise.

Therefore PBP−1 = A, and thus B is symmetric, nonsingular, and negative definite. �

An integration of (2.1) , (2.2) generates the following formal solution:

v = e(t−t0)(A+B)v0 +
∫ t

t0
e(t−ξ )(A+B)g(v(ξ ))dξ

= e(t−t0)(A+P−1AP)v0 +
∫ t

t0
e(t−ξ )(A+P−1AP)g(v(ξ ))dξ , t � t0. (2.3)

Let 0 < τ = t− t0 � 1. An application of the trapezoidal rule for (2.3) leads to

v(t) = eτ(A+P−1AP)ψ +
τ
2

[
g(v(t))+ eτ(A+P−1AP)g(ψ)

]
+O(τ3)

= eτ(A+P−1AP)
(

ψ +
τ
2
g(ψ)

)
+

τ
2
g(v(t))+O(τ3).

Or, we have

v(t)− τ
2
g(v(t)) = eτ(A+P−1AP)

(
ψ +

τ
2
g(ψ)

)
+O(τ3).

Let vk+1 be an approximation of v(tk+1), where tk+1 = tk + τk and τk, k = 0,1,
2, . . . ,K, are variable temporal steps to be determined through a proper adaptation pro-
cedure [1, 4, 11]. Drop the truncation error. Then, (2.3) can be extended to following
second order semi-adaptive implicit finite difference method,

vk+1 = eτk(A+P−1AP)
(
vk +

τk

2
g(vk)

)
+

τk

2
g(vk+1), k = 0,1,2, . . . ,K. (2.4)

Note that the size of A and B involved in (2.4) is large if N 
 1 is large. However,
the matrices are sparse and therefore, to decompose the matrix exponential operator
properly becomes an effective and a sensitive approach to reduce the computational
complexity and cost involved.
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3. Operator splitting and errors incurred

Let us consider a second order sequential operator splitting, that is, the Strang’s
splitting [3],

eτk(A+P−1AP) = e(τk/2)AeτkP
−1APe(τk/2)A +E(τk), 0 < τk � 1. (3.1)

We first show the following lemma.

LEMMA 2. For any A ∈ R
N2×N2

, we have
[
A,eτkP

−1AP
]

=
∫ τ

0
e(τ−ξ )P−1AP [

A,P−1AP
]
eξP−1APdξ ,

[
P−1AP,e(τ/2)A

]
=

1
2

∫ τ

0
e((τ−ξ )/2)A [

P−1AP,A
]
e(ξ/2)Adξ , τ � 0.

Proof. Apparently, we only need to show the first identity. To this end, we set

D(τ) =
[
A,eτP−1AP

]
, τ � 0. Clearly, D(0) = Φ. It follows that,

D′(τ) =
(
AeτP−1AP

)′ −
(
eτP−1APA

)′
= AeτP−1APP−1AP−P−1APeτP−1APA

= P−1APAeτP−1AP −P−1APeτP−1APA+AeτP−1APP−1AP−P−1APAeτP−1AP

= P−1AP
(
AeτP−1AP − eτP−1APA

)
+

(
AP−1AP−P−1APA

)
eτP−1AP

= P−1AP
[
A,eτP−1AP

]
+

[
A,P−1AP

]
eτP−1AP

= P−1APD(τ)+
[
A,P−1AP

]
eτP−1AP.

Solving the initial value problem

D′ −P−1APD =
[
A,P−1AP

]
eτP−1AP, D(0) = Φ,

gives

D(τ) =
∫ τ

0
e(τ−ξ )P−1AP [

A,P−1AP
]
eξP−1APdξ , τ � 0,

which confirms our result. �
This lemma offers a direct connection between the commutativity between the ma-

trix exponentials and matrices, and the commutativity between the matrices involved.
We further consider

E(τk) = eτk(A+P−1AP)− e(τk/2)AeτkP
−1APe(τk/2)A

= eτk(A+P−1AP)
[
I− e−τk(A+P−1AP)e(τk/2)AeτkP

−1APe(τk/2)A
]

= eτk(A+P−1AP) [I−F(τk)] , 0 < τk � 1,

where F(τk) = e−τk(A+P−1AP)e(τk/2)AeτkP
−1APe(τk/2)A.
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THEOREM 1. We have

E(τk) =
1
2

∫ τk

0
e(τk−ξ )(A+P−1AP)

∫ ξ

0
e(ξ−ζ )((1/2)A+P−1AP)

×
[
1
2
A+P−1AP,

∫ ζ

0
e(ζ−η)P−1AP [

A,P−1AP
]
eηP−1APe(ζ/2)Adη

]
e(ξ/2)Adζdξ .

Proof. Consider the function

F(τ) = e−τ(A+P−1AP)e(τ/2)AeτP−1APe(τ/2)A, τ > 0. (3.2)

A differentiation of the above leads to

F ′(τ) = −(A+P−1AP)e−τ(A+P−1AP)e(τ/2)AeτP−1APe(τ/2)A

+
1
2
e−τ(A+P−1AP)Ae(τ/2)AeτP−1APe(τ/2)A

+e−τ(A+P−1AP)e(τ/2)AP−1APeτP−1APe(τ/2)A

+
1
2
e−τ(A+P−1AP)e(τ/2)AeτP−1APAe(τ/2)A

= e−τ(A+P−1AP)G(τ)e(τ/2)A, τ > 0,

where

G(τ) = −(A+P−1AP)e(τ/2)AeτP−1AP +
1
2
Ae(τ/2)AeτP−1AP

+e(τ/2)AP−1APeτP−1AP +
1
2
e(τ/2)AeτP−1APA

= −Ae(τ/2)AeτP−1AP −P−1APe(τ/2)AeτP−1AP +
1
2
Ae(τ/2)AeτP−1AP

+e(τ/2)AP−1APeτP−1AP +
1
2
e(τ/2)AeτP−1APA

=
1
2
e(τ/2)AeτP−1APA− 1

2
Ae(τ/2)AeτP−1AP

+e(τ/2)AeτP−1APP−1AP−P−1APe(τ/2)AeτP−1AP

=
1
2

[
e(τ/2)AeτP−1AP,A

]
+

[
e(τ/2)AeτP−1AP,P−1AP

]

=
[
e(τ/2)AeτP−1AP,

1
2
A+P−1AP

]
, τ > 0.

Note that F(0) = I. Thus, an integration gives the equality

F(τ) = I +
∫ τ

0
e−ξ (A+P−1AP)

[
e(ξ/2)AeξP−1AP,

1
2
A+P−1AP

]
e(ξ/2)Adξ , τ � 0. (3.3)
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We wish to explore further the Lie bracket

H(ξ ) =
[
e(ξ/2)AeξP−1AP,

1
2
A+P−1AP

]

= e(ξ/2)AeξP−1AP
(

1
2
A+P−1AP

)
−

(
1
2
A+P−1AP

)
e(ξ/2)AeξP−1AP, ξ > 0,

with H(0) = Φ. It follows that

H ′(ξ ) =
(

1
2
Ae(ξ/2)AeξP−1AP + e(ξ/2)AeξP−1APP−1AP

)(
1
2
A+P−1AP

)

−
(

1
2
A+P−1AP

)(
1
2
Ae(ξ/2)AeξP−1AP + e(ξ/2)AeξP−1APP−1AP

)

= −
(

1
2
A+P−1AP

)
H(ξ )+

(
1
2
A+P−1AP

)
H(ξ )

+
1
2
Ae(ξ/2)AeξP−1AP

(
1
2
A+P−1AP

)
+ e(ξ/2)AeξP−1APP−1AP

(
1
2
A+P−1AP

)

−
(

1
2
A+P−1AP

)
1
2
Ae(ξ/2)AeξP−1AP−

(
1
2
A+P−1AP

)
e(ξ/2)AeξP−1APP−1AP

= −
(

1
2
A+P−1AP

)
H(ξ )−

(
1
2
A+P−1AP

)[
eξP−1AP,

1
2
A

]
e(ξ/2)A

+
[
1
2
A,eξP−1AP

]
e(ξ/2)A

(
1
2
A+P−1AP

)
, ξ > 0.

Recall (2.3) . We obtain immediately the former solution

H(ξ ) = −1
2

∫ τ

0
e(τ−ξ )((1/2)A+P−1AP)

{(
1
2
A+P−1AP

)[
eξP−1AP,A

]
e(ξ/2)A

+
[
A,eξP−1AP

]
e(ξ/2)A

(
1
2
A+P−1AP

)}
dξ

= −1
2

∫ τ

0
e(τ−ξ )((1/2)A+P−1AP)

[
1
2
A+P−1AP,

[
eξP−1AP,A

]
e(ξ/2)A

]
dξ , τ � 0.

Utilizing the above for (3.2) , we obtain that

F(τ) = I− 1
2

∫ τ

0
e−ξ (A+P−1AP)

∫ ξ

0
e(ξ−ζ )((1/2)A+P−1AP)

×
[
1
2
A+P−1AP,

[
eξP−1AP,A

]
e(ζ/2)A

]
e(ξ/2)Adζdξ , τ � 0.
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Subsequently,

E(τk) = eτk(A+P−1AP) (I−F(τk))

=
1
2
eτk(A+P−1AP)

∫ τk

0
e−ξ (A+P−1AP)

∫ ξ

0
e(ξ−ζ )((1/2)A+P−1AP)

×
[
1
2
A+P−1AP,

[
A,eζP−1AP

]
e(ζ/2)A

]
e(ξ/2)Adζdξ .

In view of Lemma 2, the above ensures our result. �

COROLLARY 1. We have

‖E(τk)‖2 �
∥∥∥∥1

2
A+P−1AP

∥∥∥∥
2

∥∥[
A,P−1AP

]∥∥
2 τ3

k , 0 < τk � 1.

Proof. We note that the matrices eκA, eκP−1AP and eκ(A+P−1AP) are symmetric as
far as κ � 0, since A and P−1AP are symmetric. Furthermore, we have

∥∥eκA
∥∥

2 ,
∥∥∥eκP−1AP

∥∥∥
2
,

∥∥∥eκ(A+P−1AP)
∥∥∥

2
� 1

for κ � 0 since A and P−1AP are negative definite.
It follows from Theorem 1 that

‖E(τk)‖2 =
1
2

∥∥∥∥
∫ τk

0
e(τk−ξ )(A+P−1AP)

∫ ξ

0
e(ξ−ζ )((1/2)A+P−1AP)

×
[
1
2
A+P−1AP,

∫ ζ

0
e(ζ−η)P−1AP [

A,P−1AP
]
eηP−1APe(ζ/2)Adη

]
e(ξ/2)Adζdξ

∥∥∥∥
2

� 1
2

∫ τk

0

∥∥∥e(τk−ξ )(A+P−1AP)
∥∥∥

∫ ξ

0

∥∥∥e(ξ−ζ )((1/2)A+P−1AP)
∥∥∥

×
∥∥∥∥
[
1
2
A+P−1AP,

∫ ζ

0
e(ζ−η)P−1AP [

A,P−1AP
]
eηP−1APe(ζ/2)Adη

]∥∥∥∥
2

∥∥∥e(ξ/2)A
∥∥∥

2
dζdξ

� 1
2

∫ τk

0

∫ ξ

0

∥∥∥∥
[
1
2
A+P−1AP,

∫ ζ

0
e(ζ−η)P−1AP [

A,P−1AP
]
eηP−1APe(ζ/2)Adη

]∥∥∥∥
2
dζdξ

� 1
2

∫ τk

0

∫ ξ

0

(
2

∥∥∥∥1
2
A+P−1AP

∥∥∥∥
2

∥∥∥∥
∫ ζ

0
e(ζ−η)P−1AP [

A,P−1AP
]
eηP−1APdη

∥∥∥∥
2

)
dζdξ

�
∥∥∥∥1

2
A+P−1AP

∥∥∥∥
2

∫ τk

0

∫ ξ

0

∫ ζ

0

∥∥∥e(ζ−η)P−1AP
∥∥∥

2

∥∥[
A,P−1AP

]∥∥
2

∥∥∥eηP−1AP
∥∥∥

2
dηdζdξ

�
∥∥∥∥1

2
A+P−1AP

∥∥∥∥
2

∥∥[
A,P−1AP

]∥∥
2 τkτkτk.

This completes our proof. �
Needless to say, the result stated in Corollary 1 demonstrates that the absolute

error of Strang’s splitting can be dominated by the distance between A and B = P−1AP
in the sense of commutative levels.
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4. Splitting algorithm and realization

Recalling (2.4) and (3.1) , we obtain that

vk+1 =
(
e(τk/2)AeτkP

−1APe(τk/2)A +E(τk)
)(

vk +
τk

2
g(vk)

)
+

τk

2
g(vk+1)

= e(τk/2)AeτkP
−1APe(τk/2)A

(
vk +

τk

2
g(vk)

)
+

τk

2
g(vk+1)+ Ê(τk), (4.1)

k = 0,1,2, . . . ,K,

where
Ê(τk) = E(τk)

(
vk +

τk

2
g(vk)

)
= O(τ3

k ).

Dropping the truncation error Ê, we acquire an essential splitting algorithm for
solving (1.1)–(1.3) , namely,

wk+1 = e(τk/2)AeτkP
−1APe(τk/2)A

(
wk +

τk

2
g(wk)

)
+

τk

2
g(wk+1), k = 0,1,2, . . . ,K,

or

wk+1− τk

2
g(wk+1) = e(τk/2)AeτkP

−1APe(τk/2)A
(
wk +

τk

2
g(wk)

)
, k = 0,1,2, . . . ,K,

(4.2)
where w� is a third order approximation of v�, � = 0,1,2, . . . ,K.

THEOREM 2. Let J� be the Jacobian matrix corresponding to the vector function

g(w�) and I− τ�

2
J�+1 be invertible for sufficiently small τ�, � = 0,1,2, . . . ,K. If

∥∥∥∥
(
I− τ�

2
J�+1

)−1
∥∥∥∥

2

∥∥∥I +
τ�

2
J�

∥∥∥
2
� 1, � = 0,1,2, . . . ,K.

then the nonlinear implicit scheme (4.2) is asymptotically stable in the von Neumann
sense.

Proof. We consider perturbed equations

w̃k+1− τk

2
g(w̃k+1) = e(τk/2)AeτkP

−1APe(τk/2)A
(
w̃k +

τk

2
g(w̃k)

)
, k = 0,1,2, . . . ,K.

A subtraction between the above and (4.2) yields

εk+1 − τk

2
(g(wk+1)−g(w̃k+1)) = e(τk/2)AeτkP

−1APe(τk/2)A
[
εk +

τk

2
(g(wk)−g(w̃k))

]
,

k = 0,1,2, . . . ,K,

where ε� = w� − w̃�, � = 0,1,2, . . . ,K. It follows that

εk+1 − τk

2
Jk+1εk+1 ≈ e(τk/2)AeτkP

−1APe(τk/2)A
[
εk +

τk

2
Jkεk

]
, k = 0,1,2, . . . ,K,
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where J� is the Jacobian matrices. Considering that the perturbation ε is sufficiently
small, we may assume an asymptotic formula [6, 14],(

I− τk

2
Jk+1

)
εk+1 = e(τk/2)AeτkP

−1APe(τk/2)A
(
I +

τk

2
Jk

)
εk, k = 0,1,2, . . . ,K,

which is equivalent to

εk+1 =
(
I− τk

2
Jk+1

)−1
e(τk/2)AeτkP

−1APe(τk/2)A
(
I +

τk

2
Jk

)
εk, k = 0,1,2, . . . ,K,

if I− τk

2
Jk+1 is invertible when 0 < τk � 1 is sufficiently small.

Now, we have

‖εk+1‖2 =
∥∥∥∥
(
I− τk

2
Jk+1

)−1
e(τk/2)AeτkP

−1APe(τk/2)A
(
I +

τk

2
Jk

)
εk

∥∥∥∥
2

�
∥∥∥∥
(
I− τk

2
Jk+1

)−1
e(τk/2)AeτkP

−1APe(τk/2)A
(
I +

τk

2
Jk

)∥∥∥∥
2
‖εk‖2

�
∥∥∥∥
(
I− τk

2
Jk+1

)−1
∥∥∥∥

2

∥∥∥I +
τk

2
Jk

∥∥∥
2
‖εk‖2 � ‖εk‖2 .

Therefore, the splitting algorithm (4.2) is asymptotically stable in the von Neumann
sense [7]. �

COROLLARY 2. Let matrices e(τk/2)AeτkP
−1APe(τk/2)A, I+

τk

2
Jk, 0 � τk � 1, com-

mute. If ∥∥∥∥
(
I− τk

2
Jk+1

)−1 (
I +

τk

2
Jk

)∥∥∥∥
2
� 1, k = 0,1,2, . . . ,K,

then the nonlinear implicit scheme (4.2) is asymptotically stable in the von Neumann
sense.

Proof. The result is straightforward and can be seen from

‖εk+1‖2 =
∥∥∥∥
(
I− τk

2
Jk+1

)−1
e(τk/2)AeτkP

−1APe(τk/2)A
(
I +

τk

2
Jk

)
εk

∥∥∥∥
2

�
∥∥∥∥
(
I− τk

2
Jk+1

)−1 (
I +

τk

2
Jk

)
e(τk/2)AeτkP

−1APe(τk/2)A
∥∥∥∥

2
‖εk‖2

�
∥∥∥∥
(
I− τk

2
Jk+1

)−1 (
I +

τk

2
Jk

)∥∥∥∥
2
‖εk‖2 � ‖εk‖2 . �

In realistic computations, often we may assume that Jk+1 = σkJk, k = 0,1,2, . . . ,K,
where the parameters σk, 0 < σk < 1, are either given by a particular computational
procedure or determined stochastically. Furthermore, we may assume that∥∥∥∥

(
I− τ

2
Jk

)−1 (
I +

τ
2
Jk

)∥∥∥∥
2
� M0

∥∥eτJk
∥∥

2 � M1, (4.3)
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where 0 < τ � 1, and M0 and M1 are positive constants. In this circumstance, we
have the following result.

COROLLARY 3. Let matrices e(τk/2)AeτkP
−1APe(τk/2)A, I+

τk

2
Jk, 0 � τk � 1, com-

mute, (4.3) be true, and ∥∥∥∥
(
I +

τ
2
Jk

)(
I +

τ
2
Jk

)−1
∥∥∥∥

2
� M2,

where 0 < τ � 1 and M is a positive constant. If M1M2 � 1, then the nonlinear
implicit scheme (4.2) is asymptotically stable in the von Neumann sense.

Proof. We have

‖εk+1‖2 �
∥∥∥∥
(
I− τk

2
Jk+1

)−1 (
I +

τk

2
Jk

)
e(τk/2)AeτkP

−1APe(τk/2)A
∥∥∥∥

2
‖εk‖2

�
∥∥∥∥
(
I− τk

2
Jk+1

)−1 (
I +

τk

2
Jk

)∥∥∥∥
2
‖εk‖2

=
∥∥∥∥
(
I− τkσk

2
Jk

)−1 (
I +

τkσk

2
Jk

)(
I +

τkσk

2
Jk

)−1 (
I +

τk

2
Jk

)∥∥∥∥
2
‖εk‖2

�
∥∥∥∥
(
I− τkσk

2
Jk

)−1 (
I +

τkσk

2
Jk

)∥∥∥∥
2

∥∥∥∥
(
I +

τkσk

2
Jk

)−1 (
I +

τk

2
Jk

)∥∥∥∥
2
‖εk‖2

� M1M2 ‖εk‖2 � ‖εk‖2 .

Therefore the corollary is clear. �
To utilize scheme (4.2) in practical computations, we may avoid evaluations of

the matrix exponential functions by an introduction of proper Padé approximants. For
preserving our second order approximation to the Kawarada problem, we may consider
[1/1] Padé formulas. They lead to the following implicit split Crank-Nicolson method:

wk+1 − τk

2
g(wk+1) = E

(
A,

τk

2

)
E

(
P−1AP,τk

)
E

(
A,

τk

2

)

×
(
wk +

τk

2
g(wk)

)
, k = 0,1,2, . . . ,K, (4.4)

where

E
(
A,

τk

2

)
=

(
I +

τk

4
A
)(

I− τk

4
A
)−1

,

E
(
P−1AP,τk

)
=

(
I +

τk

2
P−1AP

)(
I− τk

2
P−1AP

)−1
.

REMARK 1. The implicit split Crank-Nicolsonmethod (4.4) is different from any
traditional Peachman-Rachford splitting methods [7, 13].

REMARK 2. The nonlinear implicit scheme (4.4) can be treated conveniently via
either an application of iterative procedures, or a suitable linearization (for instance, see
[1, 2, 3, 5, 12] and references therein).
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5. Numerical experiments and concluding remarks

As an illustration of the theoretical discussions, we consider the following two-
dimensional testing Kawarada reaction-diffusion initial-boundary value problem:

a2ut = uxx +uyy +
a2

(1−u)θ , a,θ > 0, (x,y,t) ∈ D1,

u(x,y, t) = 0, (x,y,t) ∈ S1,

u(x,y,0) = α sin2(πx)sin2(πy), (x,y) ∈ D1,

where 0 < α � 1 is a constant. Herewith we only consider the case of θ = 1 since
discussions with θ 	= 1 are similar [7, 9]. The implicit split Crank-Nicolson realization
(4.4) is employed. Nonuniformly adjusted and exponentially graded temporal grids are
used as quenching time is approached [1, 4].

To achieve a sufficient resolution, we set the spatial grid graininess to be h =
aN−2, N � 100 [5]. This leads to O

(
N2) internal mesh points in the two-dimensional

spatial domain. In this circumstance, all coefficient matrices would be of O
(
N2 ×N2)

in size. However, the computational tasks utilizing (4.4) are significantly simpler and
more straightforward due to the split of A and B = P−1AP, as compared with most non-
splitting schemes. A fixed Courant number κ = τ/h2 = 1/10 is observed throughout
experiments.

To show the amazing dynamics of a quenching solution, and to demonstrate the
accuracy and stability of the splitting method developed, we adopt a =

√
4.75 which is

slightly greater than the well-known critical domain parameter a∗ ≈
√

4.49576 [7].

Figure 1: Numerical solution u(x,y,t) (LEFT) and ut(x,y,t) (RIGHT) at t = 10τ ≈
6.83013455 × 10−5, respectively. Functions u and ut are positive with their maximal values
being approximately 0.10003070 and 1.11395428, respectively.

The numerical solution u and its temporal derivative ut are shown at time steps
M = 10,1000,10000,65000,66700,66721,66722,66723, respectively. Among them,
the first five pairs of figures showing a steady growth of the solution profile. It can be
observed that the solution u increases monotonically. Its maximal value increases from
0.10493003 to 0.98076123. The corresponding temporal derivative peak grows much
faster from 1.11395428 to 47.71582321.
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Figure 2: Numerical solution u(x,y,t) (LEFT) and ut(x,y,t) (RIGHT) at t = 1000τ ≈
0.00683013, respectively. Functions u and ut are positive with their maximal values being
approximately 0.10493003 and 1.11808111, respectively.

Figure 3: Numerical solution u(x,y,t) (LEFT) and ut(x,y,t) (RIGHT) at t = 10000τ ≈
0.06830134, respectively. Functions u and ut are positive with their maximal values being
approximately 0.15986359 and 1.15740322, respectively.

Figure 4: Numerical solution u(x,y,t) (LEFT) and ut(x,y,t) (RIGHT) at t = 65000τ ≈
0.44395874, respectively. Functions u and ut are positive with their maximal values being
approximately 0.85280375 and 6.21388153, respectively.
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Figure 5: Numerical solution u(x,y,t) (LEFT) and ut(x,y,t) (RIGHT) at t = 66700τ ≈
0.45556997, respectively. Functions u and ut are positive with their maximal values being
approximately 0.98076123 and 47.71582321, respectively.

Figure 6: Numerical solution u(x,y,t) (LEFT) and ut(x,y,t) (RIGHT) at t = 66721τ ≈
0.45571340, respectively. Functions u and ut are positive with their maximal values being
approximately 0.98980046 and 88.59740079, respectively.

Figure 7: Numerical solution u(x,y,t) (LEFT) and ut(x,y,t) (RIGHT) at t = 66722τ ≈
0.45572023, respectively. Functions u and ut are positive with their maximal values being
approximately 0.99044426 and 94.25843114, respectively.



262 Q. SHENG AND N. GARCIA-MONTOYA

Figure 8: Numerical solution u(x,y,t) (LEFT) and ut(x,y,t) (RIGHT) at t = 66723τ ≈
0.45572706, respectively. Functions u and ut are positive with their maximal values being
approximately 0.99394420 and 1.45010945×105 , respectively.

The final three figures are taken immediately before the quench of u. It can be
observed that the increments of ut are tremendous as compared that of u. The derivative
blows up in the last step of calculations with a maximal reaches 1.45010945×105.

The shape changes, in particularly the derivative function ut , are fascinating. We
may observe that while the temperature field function u grows steadily, the derivative
function is relatively violent. In a combustion process, the later represents the rate of
changes of the temperature field. It is accelerated initially at the center of the domain,
and then extended to the entire combustion chamber in the end. The split algorithm
shows a satisfactory numerical stability throughout the 66,723 temporal step excursions
for solving the nonlinear partial differential equation.
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