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BOUNDARY VALUE PROBLEM FOR HYBRID GENERALIZED
HILFER FRACTIONAL DIFFERENTIAL EQUATIONS

ABDELKRIM SALIM, BASHIR AHMAD ", MOUFFAK BENCHOHRA
AND JAMAL EDDINE LAZREG

(Communicated by C. Goodrich)

Abstract. This manuscript is concerned with the existence of solutions for a class of boundary
value problems for nonlinear fractional hybrid differential equations involving generalized Hilfer
fractional derivative. The main result is based on a fixed point theorem due to Dhage, which is
illustrated with examples.

1. Introduction

Fractional calculus is a branch of classical mathematics, which generalizes the
integer order differentiation and integration of a function to non-integer order. For
its growing interest in theory and its applications, for instance, see [2, 3, 4, 14]. For
some fundamental results in the theory of fractional calculus and fractional differential
equations, one can see [1, 5, 6, 7, 8, 11] and the references therein. Some recent works
on hybrid fractional differential equations can be found in [9, 12, 15, 20, 21, 22, 23].

Benchohra er al. [13] studied the problem:

(“fox) (t)=f (l,x(t), (“fox) (t)) , tel:=[a,T],a>0,
x(T)=c€ER,
where “Dgf is the generalized Hilfer fractional derivative of order ¥ € (0,1) and type

rel0,1].
In [17], Hilal and Kajouni discussed the following hybrid problem:

c u(t) _ e
7. (7 ) = sleu®), 1 €1:=[0.7],
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The aim of the present paper is to investigate a hybrid problem given by

amd.r x(1) _ N u
]DaJr <f(t,x(t))) (P(t, (t))7 IE( ’b}a (1)

o (0 (7225 ) e (9 () e —a @

where O‘fo, O‘J;I ¢ respectively denote the generalized Hilfer derivative operator of
order ® € (0,1) and type r € [0,1], and generalized fractional integral of order 1 —
E,(E=0+r—0r), c1,c2,c3€R, c1 +¢2#0, fe€C([a,b] xR,R\ {0}) and ¢ €
C([a,b] x R,R).

The present paper is organized as follows. In Section 2, some notations are intro-
duced and some preliminaries about generalized Hilfer fractional derivative and related
results are recalled. In Section 3, we first present an auxiliary result and then prove the
existence of solutions for the problem (1)—(2) by applying a fixed point theorem due to
Dhage [16], together with mixed Lipschitz and Carathéodory conditions. Finally, in the
last section, we give two examples.

2. Preliminaries

Let 0 <a < b, J = [a,b]. Introduce the space
Ce o)) = {x: (a,b] —R:t —Ye(t,a)x(t) € C(J,R)}, 0<é<,

o_ 0 l_é
where W¢ (t,a) = (’%) , and

1) ={xec ) eCe o}, neN,
CEal!) = Ceall);

with
||xHC§‘a = sup |LP§ (taa)x(t)’ :
teJ

Denote by X/ (a,b), c € R, 1 < p < oo, the space of the complex-valued Lebesgue
measurable functions f on [a,b] for which || f||x» < co, where the norm is defined by

b dr\?
e = ([ 10 2)" (< p<n cen)

DEFINITION 1. [18] Let & € Ry, ¢ € R and h € X! (a,b). The generalized frac-
tional integral of order ¥ is defined by

t _
(“32.) (1) = / 1Ny (1, T)R(T)dT, 1> a, o> 0,
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_ o )\ O—1
where Wy (1,7) = ﬁ <’%> .

DEFINITION 2. [18] Let ¥ € R+ \N and o > 0. The generalized fractional
derivative of order ¥ is defined by

(“D2h) (1) = 85T R) 1)
no o _
= (tlo‘%) /T"‘*“I’n,@(t,r)h(r)dr, t>a, o0>0,

where n = [0]+ 1 and & = (' "*4)".

We define the spaces

QﬂHZ&EQMMQM%EQﬂw}

and

C: o) ={xeCeal), “Dxe Cral) },

where £ =9 +r—9r,0< ¥, r, E < 1. Since “fox: “J[Z&l*ﬁ) O‘IDSM, it follows
that

s

£ (1) CCLLI) CC o).

o

LEMMA 1. ([16]) Let B be a closed, convex, bounded and nonempty subset of a
Banach algebra (X,||-), andlet & : X — X and 2 : B — X be two operators such
that

1) & is Lipschitzian with Lipschitz constant 1 ;

2) 2 is completely continuous;

3) x=Px2y=x€Bforall y € B,

4) np <1, where B = || 2(B)|| = sup{||2(y)|| : y € B}.

Then the operator equation Px2x = x has a solution in B.

3. Existence of solutions

We consider the following fractional differential equation

o U,r x(t) — a
0% (o) =0 1€ o (“

where 0 < ¥ <1, 0< r<1, >0, with the condition

() (oo

The following theorem deals with an integral representation of the problem (3)—(4).
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THEOREM 1. Ifv(-) € C¢ o (J), and f € C(J x R,R\{0}), then x satisfies (3)~(4)
if and only if it satisfies

[C3 —e (“J;;5+0v(r)) (b)D + (“Jf+v(r)> (z)} .
5)

w(0) = 1(04(0)) ¥ .0)

c1+c

Proof. Assume that x satisfies the equations (3) and (4) and introduce a function
. x(1) ¢
git— (f(t’x(t))> € Cg,a(J)’ such that

t (L 8(D) (1) € Coal),

and

“DE (1) = (82 “3,%e()) (1),
where

1 (82 T, 55(1)) (1) € Coal).

Thus

t (O‘Jiﬁg(r)) (1) €CL o).
Hence B

(“05 “DE. (1) (1) = 8l0) — P (1,0) (T, 6(0)) (a).

Then

(“02. D 8(x)) (1) = (32 “DYe(r)) (1)

(“28v(@) @)

In consequence, we get

x(t)
f(t,x(t))

which implies that

= ¥e(n.a) (“3,55(@) @+ (“T2v(D) (),

(0= fexo) | Fe ) (07 (1205 ) @+ (@) 0] ©

Thus

(95 (7)) @ = (0 (Fegey ) ) 1@+ (2 7"v@) .

Then, by using condition (4), we have

(5 (Fewter) ) @ = a3 et (A w)0- 0
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Substituting (7) into (6), we obtain (5).

Conversely, let x satisfy (5)and g:1 — < f(ig()t))> € Cga(l ). Then we obtain

(D 8(0)(0) = (“D D)) (0. ®)

Since g € Cg (J), it follows by definition of Cg (/) that O‘ID;I’; g€ C¢ (J), and hence
(8) implies that

(“D5. g(2) (1) = (82 21, v(m)) () = (“D (D) (1) €Ce ). ©)
As v(+) € C¢ 4(J), we have
("‘Jij’“‘%) € Ce o). (10)
Moreover, it follows from (9) and (10) that
(“0,- ") ect ().
Consequently, we get
(“28(m) (1) = “1"" (“Df.g(7)) ()
= (1) =Py (1,0) (“1,7 (D)) ()
= (1),
that is, (3) holds. Now, applying O‘J;I ¢ on both sides of (5), we obtain

(056(0) (1) = —— [ (0,757 v@) )]+ (35 ®) 0. an

1+

Inserting = a™ and ¢ = b in (11), we obtain

(”ﬁ (f(j,(;()f))» 0= e e () ®)
+(“1 5w ) (). (13)

From (12) and (13), we find that

a (075 (720 ) )@ e (018 (205 ) ) @ =ea

that is, (4) is satisfied. This completes the proof. [
The following hypotheses will be used in the sequel.
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(A1) @ :JxR— R is continuous on J and

9(x(-) € Gl (), forany x € Cy 4 (J).

(A2) f:JxR— R\ {0} is continuous and there exists function p € C(J,[0,0)) that
[ (1,x) = f(1, )] < p(1)¥e (2,0)[x — X]
forany x,x € R and 7 € (a,b].
(A3) There exists a function A € C(J,[0,°)) such that

lo(t,x)| < A(t)|x| fort € (a,b], and x € R.

(A4) There exists a number R > 0 such that

R> L [£+X*R{r 92| +rr(g) :|<ba_aa>ﬂ‘|,

1—0 [T(&) (1+9) T(0+E) o
e T el rE) 1/0%—a*\"
= lm*”[mw)*rmé)]( z )]“’

where

p* =supp(t), A* =supA(r), f*=sup|f(s,0)]
ted ted teJ

and c c

o= — 2

o+ 0= c1+c
THEOREM 2. Assume that (Al)-(A4) hold. If
We (b,a)l < 1, (14)
then (1)~(2) admits at least one solution in Cg 4(J).
Proof. We define a subset Q of Cg ,,(J) by
Q= {xeCeoll): nleq <R}

Consider the operators .7 : Cg o (J) — C¢ o(J) and .7 : Q — Cg¢ ,(J) defined by

(yx)(t) :f(t’x(t))’ te (a’bL (15)
(7)) =Pe(t,0) (01— 02 ("1, 5 P9 (x.2(D)) (1)) + (T2 (2.x(2)) ) (1),
(16)

t € (a,b] and set
Sx=SxTx.
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Step 1: The operator .’ is a Lipschitz on C¢ (/).
Let x,y € C¢ o(J) and t € (a,b]. Then, by (A2), we have

[(Zx)(1) = (D) (0)) P (t.a)| < Pe(t,a)|f(e,x(0)) = f(2,y(0))],
)

p()¥e(t,a)|x(t) = y(1)llg o

<
<
< p e (b a)llx(t) =y()llg o

which, for each ¢ € (a,b], implies that

|/x = V.o < P*Pe(b,a) [ x(t) = y(1)l¢ o

Step 2: The operator .7 is completely continuous on Q.

We firstly show that the operator .7 is continuous on Q. Let {x,} be sequence in
Q such that x, — x in Q. Let x,y € C¢ (/). Then, for each ¢ € (a,b], we have

(T30 = (TN ¥elra)| < 125 (D5 loEm (1) - plrx(@)]) 0

e (t,a) (T2 1o(7.5(2) — (x.2(D)]) (1)

Since x, — x and @ is a continuous function on J, therefore, ¢(7,x,(7)) — @(7,x(7))
as n — oo for each t € (a,b]. So, by Lebesgue’s dominated convergence theorem, we
have

|7 xn = Tx||c,,, — 0asn— oo

Hence .7 is continuous. Let x € Q. Then

|‘P5 (t,a (ﬁx)(t)’

91, 16| fop1- .
< ﬁ%ﬁ@( 15 (e x(D)]) (6) + Pe(r,0) (T2 lo(z.x(D)]) ()

01 ot
< ppy A Il (1021 (05 (5.0)) ()49 (0 T(E) (I P (1.0)) ()
< ‘?%|)+)L*R[¢2‘{’1+19(b @)+ We(1,a)T(E) ¥y 2 (1.a)]

[ [ r) b —a®\?
s (é)”R[ (1+19)+F(19+§)]< o ) '
Thus

ol o Il TE) (6% —a%\?
||%llcgﬁa\r<$>+“[ (1+0)+F(19+€)K a ) |
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Next we prove that the operator .7 € equicontinuous. We take x € Q and a < g <
& < b. Then

|‘P5(£ ,a)(Tx) (& )—‘Pg(sz,a)(ﬂx)(ez)}
< [Peler,a) (3 o(r.x(2)) (1) — We(e2.0) (“I2 0(2.x(0))) ()
< [ ¥eer,0)Poer,7) — Pelera) Po (e, 0l | % ple. (7)) dn
+¥e(e2.a) (T2 lo(.2(0)]) (e2)
< RA'T(E) / T W (81,a) Py (€1,7) — e (£2,0) o (82, 7)| Pz (1,0)d7,
FRAT(E)Ye (€2,0) gz (€2,€1).
Then we have

|‘P5 (e1,a)(Tx)(e1) — Pe (&2,0)(Tx)(&)]
< RA'T(E) / T, (e1,0) Py (61, T) — W (£2,0) o (62, 1) (T, a)dT,
+RAT(E)Ye (£2,a) ¥y ¢ (£2,€1).
Since
|We(e1,a)(Tx)(e1) — Ye(&2,a)(Tx)(&2)| = 0 as & — &,

therefore, .7 Q is equicontinuous on J. Hence, by the Arzela-Ascoli Theorem, 7 is
completely continuous on Q.

Step 3: Now we verify the third hypothesis of Lemma 1. Let x € C57a(J) and
y € Q be arbitrary such that x = .%x7y. Then, for ¢ € (a,b], we have

|We (,a)x(t)]
= }‘Pé(na (SxTy)(1)|
= Ye(r,a) (LX) O[[(Ty)(@)|

_ [% T ré') (3525 (. y(2)1) (6) + We(o.0) (“T2 o3 (D)) <r>}

X | (6,x(1))]
< (If(,x(2) = f(2,0)| +[£(z,0)])

|61 6| rE) ](b*—a*\’
Xlr@)*“[ruw)*rm&J( a ”

DR s+ | (ba_aaﬂ'

< (P, + 1)
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Thus

|: [ ‘1¢42r‘19 1;9-&-5 } (ba;a"‘)ﬁ]

Idleg . = — P [+ 2R [+ s ] ()]

I(

_|_

<R

This shows that the third hypothesis of Lemma 1 is satisfied.

Step 4: Now we show that p*¥¢ (b,a)L < 1, where

L=7Q)llc,, =sup{ll Zylc,, -y €Q}.

Since

L< —|¢ | + AR

| 2l _T() Kba_“a)ﬁ
r¢) r(l+9) T(0+&) a '
we have that p*We(b,a)L < ¥e(b,a) < 1, that is, the last hypothesis of Lemma 1

is satisfied. Thus the operator equation 3x = “x.7x = x has at least one solution
x* € Cg o, which is a fixed point of the operator 3.

Step 5: For a fixed point x* € C¢ ,,(J), we show that

g:t—>7x 0) ect

Fe @) < Cal?):

Since x* is a fixed point of operator 3 in C¢ ,(J), we have

S (1) = £(1.5" (0) [ a) (01— 02 (“T 0 (2.6 (1)) (8)
(a2 o(ra (@) ()],

Applying O‘Dg to both sides, we get
O(Dg — OCID)'E o
« (f(t,x*(t))) (“D%: “Toeo (e (0) )
= (‘D V(. (1) ().
Thus "‘ID;g € Ce o(J). Clearly g € Cg o(J). As f € C(J xR — R\{0}), we have

g€ Cg (/). In view of the foregoing arguments, Lemma 1 implies that (1)—~(2) has at
least one solution in C¢ (/). This completes the proof. [J
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4. Examples
EXAMPLE 1. Consider the terminal problem

LD%O x(t) ) _ (Vi— \/—)%x(t) | e 1ol
e <f(t’X(t))> 105e~+7(1+ |cos(r)| (v — v/e) * [x(1)]) oree (e.]
(17)

(Aot o

where J = [e, 7], a=e, b= 7 and

Vi—y/e
527t

[N

ft,x(1)) =

(Isin(t)[x(r) +tan~" (1) + 7), 1€J, x€Cy 1 (J).

l\JI'—
l\JI'—

Set 1

o(t,x) = (Vi—ve)'x , t€J, xXER.

10567 (14 |cos(0)] (v — v/2)* ]

We have

D=

Cr(lf‘ﬁ)(‘]) _ C(l)
2

[ (J):{u:(e,n]aR:\/i(\/;—\/E) uEC(J,R)},

D=

with £ =9 = %, o= %, r = 0. Clearly, the continuous function ¢ € C0 (J). Hence

=
-

the condition (A1) is satisfied.
Further, we have

0.9) 0,0 < WYL, g

which shows that condition (A2) is satisfied with

(Vi- Vo) [sin®)] 1
52\/§€E_t

pt) =
Let x € R. Then we have

(Vi—+e) x| \f) ||
105¢—1+7

and so the condition (A3) is satisfied with

1
 (Vi—y/e)? L 1
Al = o5 a4 A< g5

Also, the condition (A4) and the condition (14) of Theorem 2 are satisfied as
28392021 — 5460 <R (1 1 ) 5460/m(2+m)~!
I - 1
104V2(y/T— /) (2+ ) 104v2m /) (Vr—+/e)?

Thus the problem (17) — (18) has at least one solution in C; 1 (J).

lo(t,x)| < =7t €J,

2655~ ~ 5330.

1
2

l\J\
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EXAMPLE 2. Consider the initial value problem:

0 (X0 _ ¢ ?Vi—Tin(t)x(r)

D1+ (f(t,x(t))) n 333(1+HXHC%1) , for each ZG(I,ZL (19)
g (X0 +y
( " (f(hx(f))))(l )=1, (20)

where J =[1,2], a=1, b=2 and

Vi—TI|tan (1) |x(¢) N In(|cos(t)| + /1)

flt,x(t)) = T AT , tel, xeC%J(J).
o i Tn()x(0)
et — 1In(t)x(t
t,x(t)) = ,teld, xeCy,(J).
(P( ()) 333(1+||x“cll) é,l( )
1,
We have

Cgi;zs)(]) =) ()= {u: (1,2] = R: (Vt— l)uec(J’R)}7

with & =0 = 2, oa=1, r=0. Clearly, ¢ € C? ( ). Hence the condition (A1) is
satisfied. Observe that

_ Vi —1ftan™ (1)| L)
|f(t7x)_f(t7x)‘\ 111671+3 ‘ _x‘
which implies that condition (A2) is satisfied with
[tan” ! (1)] .
= — d = —.
)= Tiems ™ P =335,
Let x € R. Then we have
¢ 2V —TIn(r)|x|
t < J
o (z,%)] 333 S LE,
and so the condition (A3) is satisfied with
=2t —1In(t In(2
A= Y-l g a2 @)
333 333

As in the last example, the condition (A4) and the condition (14) of Theorem 2 hold for
a proper value of R. Thus the problem (19) —(20) has at least one solution in C I J).

Acknowledgement. The authors thank the reviewer for his/her useful comments
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