EXISTENCE OF SOLUTIONS FOR NONLOCAL ELLIPTIC SYSTEMS WITH EXPONENTIAL NONLINEARITY

Brahim Khaldi

(Communicated by A. El Hamidi)

Abstract. In this paper, we establish the existence of solutions for a Kirchhoff-type system with Dirichlet boundary condition and nonlinearities having exponential critical growth. Our approach is based on the Trudinger-Moser inequality and on a minimax theorem.

1. Introduction

Let Ω be a smooth bounded domain in \mathbb{R}^2 . In this article, we study the existence of positive solutions to the following nonlinear Kirchhoff type system

$$\begin{cases} -m(\int_{\Omega} |\nabla u|^2 dx) \Delta u = f(u, v) & \text{in } \Omega, \\ -m(\int_{\Omega} |\nabla v|^2 dx) \Delta v = g(u, v) & \text{in } \Omega, \\ u = v = 0 & \text{on } \partial \Omega, \end{cases}$$
(1.1)

where the nonlinear terms f and g are allowed to have exponential critical growth, and $m : \mathbb{R}^+ \to \mathbb{R}^+$, is a continuous function that satisfy some conditions which will be stated later on. By means of the Trudinger-Moser inequality, we shall consider the variational situation in which $\nabla F(u, v) = (f(u, v), g(u, v))$, for some function $F : \mathbb{R}^2 \to \mathbb{R}$ of class C^2 , where ∇F stands for the gradient of F in the variables $w = (u, v) \in \mathbb{R}^2$.

We make the following assumptions on the function m(M_1) There exist real numbers m_0 , $m_1, m_2 > 0$ and $\kappa \ge 1$ such that

$$m_0 \leq m(t) \leq m_1 t^{\kappa-1} + m_2$$
, for all $t \geq 0$.

$$(M_2) \ M(s) + M(t) \leq M(s+t) \ \forall s, t \ge 0 \text{ where } M(t) = \int_0^t m(x) dx$$

 $(M_3) m(t)/t$ is noninreasing for t > 0.

© CENN, Zagreb Paper DEA-14-29

Mathematics subject classification (2020): 35N05, 35R10, 35A01, 35A15, 35J88. Keywords and phrases: Mountain pass theorem, Kirchhoff problem, Trudinger-Moser inequality.

A typical example of a function satisfying the conditions $(M_1)-(M_3)$ is given by $m(t) = m_0 + bt$ with b > 0 and for all $t \ge 0$. As a consequence of (M_3) , a straightforward computation shows that

$$M(t) - \frac{1}{2}m(t)t$$
 is nondecreasing for $t \ge 0$. (1.2)

System (1.1) is related to the stationary version of a model established by Kirchhoff [12]. More precisely, Kirchhoff proposed the following model

$$\rho \frac{\partial^2 u}{\partial t^2} - \left(\frac{P_0}{h} + \frac{E}{2L} \int_0^L \left|\frac{\partial u}{\partial x}\right|^2 dx\right) \frac{\partial^2 u}{\partial x^2} = 0$$
(1.3)

which extends D'Alembert's wave equation with free vibrations of elastic strings, where ρ denotes the mass density, P_0 denotes the initial tension, *h* denotes the area of the cross section, *E* denotes the Young modulus of the material, and *L* denotes the length of the string.

In the recent years, problems involving Kirchhoff type operators have been studied in many papers, we refer to [3], [4], [10], [19], [8] in which the authors have used the variational method and the topological method to get the existence of solutions. In [8], by a direct variational approach, the autors establish the existence of a positive ground state solution for a nonlocal Kirchhoff of the type

$$\begin{cases} -m(\int_{\Omega} |\nabla u|^2 dx) \Delta u = f(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

Motivated by above and the ideas introduced in [18], in this work, we will study the existence of nontrivial solutions for problem (1.1).

Let us introduce the precise assumptions under which our problem is studied.

- (H₀) f,g are C^1 functions such that f(s,t) > 0, g(s,t) > 0 for all s,t > 0, and f(s,t) = g(s,t) = 0 if $s \leq 0$ or $t \leq 0$.
- (*H*₁) $f(s,t) = o(\sqrt{s^2 + t^2})^{\mu}$ and $g(s,t) = o(\sqrt{s^2 + t^2})^{\mu}$ as $|(s,t)| \to 0$, for some $\mu \in [0,4)$.
- (*H*₂) f and g have α_0 -exponential critical growth, i.e., there exists $\alpha_0 > 0$ such

$$\lim_{s^2+t^2\to+\infty}\frac{f(s,t)}{e^{\alpha(s^2+t^2)/2}} = \lim_{s^2+t^2\to+\infty}\frac{g(s,t)}{e^{\alpha(s^2+t^2)/2}} = \begin{cases} 0, \ \forall \alpha > \alpha_0\\ +\infty, \forall \alpha < \alpha_0 \end{cases}$$

(*H*₃) There exists $\theta > 4$ such that

$$0 < \theta F(s,t) \leqslant f(s,t)s + g(s,t)t, \quad \forall (s,t) \in \mathbb{R}^2 \setminus \{(0,0)\}.$$

 (H_4) For every v > 1, there exists a constant K_0 such that

$$F(s,t) \ge K_0 \left(s^2 + t^2\right)^{\nu}$$
 for all $s, t > 0$

 (H_5)

$$\frac{f\left(\underline{s},\underline{t}\right)}{\underline{s}^{3}} \leqslant \frac{f\left(\overline{s},\overline{t}\right)}{\overline{s}^{3}} \text{ and } \frac{g\left(\underline{s},\underline{t}\right)}{\underline{t}^{3}} \leqslant \frac{g\left(\overline{s},\overline{t}\right)}{\overline{t}^{3}} \text{ for } \overline{s} \geqslant \underline{s} > 0, \ \overline{t} \geqslant \underline{t} > 0.$$

 (H_6) For all s, t > 0,

$$3f(s,t) < \frac{\partial f(s,t)}{\partial s}s + \frac{\partial g(s,t)}{\partial s}t$$
 and $3g(s,t) < \frac{\partial f(s,t)}{\partial t}s + \frac{\partial g(s,t)}{\partial t}t$.

We observe that condition (H_6) implies

$$f(\underline{s},\underline{t}) + g(\underline{s},\underline{t}) - 4F(\underline{s},\underline{t}) < f(\overline{s},\overline{t}) + g(\overline{s},\overline{t}) - 4F(\overline{s},\overline{t}) \text{ for } \overline{s} > \underline{s} > 0 \text{ and } \overline{t} > \underline{t} > 0.$$
(1.4)

An example of a function satisfying the above assumptions with $\alpha_0 = 1$ is

$$F(s,t) = \begin{cases} (s^4 + t^4)e^{(s^2 + t^2)/2} & \text{if } s > 0, t > 0\\ 0 & \text{otherwise.} \end{cases}$$

Now, we are ready to state our main result

THEOREM 1. Under assumption $(M_1)-(M_4)$ and $(H_0)-(H_5)$, Problem (1.1) admits at least one nontrivial solution $(u_0, v_0) \in H_0^1(\Omega) \times H_0^1(\Omega)$.

This work is organised as follows: In Section 2, we present the variational setting in which our problem will be treated, and some preliminary results. Section 3 is devoted to show that the energy functional has the mountain pass geometry and in Section 4 we obtain an estimate for the minimax level associated to our functional. Finally, we prove our main result in Section 5.

2. Preliminaries

As mentioned in the introduction, the nonlinearities f and g are allowed to have exponential critical growth which allows to treat the problem by variational methods. This growth is given by the so-called Trudinger-Moser inequality (see [17], [22]), which says that if u is a $H_0^1(\Omega)$ function then there exists a constant C > 0 such that

$$\sup_{\|u\|_{H_0^1(\Omega)} \leqslant 1} \int_{\Omega} e^{\alpha u^2} dx \leqslant C |\Omega| \quad \text{if } \alpha \leqslant 4\pi.$$
(2.1)

Let $\mathscr{H} := H_0^1(\Omega) \times H_0^1(\Omega)$ be the Sobolev space endowed with the norm

$$||(u,v)||_{\mathscr{H}} := \left(||u||_{1,2}^2 + ||v||_{1,2}^2 \right)^{1/2} \text{ where } ||u||_{1,2} = \left(\int_{\Omega} |\nabla u|^2 dx \right)^{1/2}$$

and $||u||_r$ denotes the norm in $L^r(\Omega)$, i.e. $||u||_r = (\int_{\Omega} |u|^r dx)^{1/r}$. In this work, we shall use the following adapted version of Moser-Trudinger inequality for the pair (u, v) [18]:

LEMMA 1. Let $(u, v) \in \mathscr{H}$, then $\int_{\Omega} e^{\gamma (u^2 + v^2)} dx < +\infty$ for any $\gamma > 0$. Moreover, there exists a constant $C = C(\Omega)$ such that

$$\sup_{\|(u,v)\|_{\mathscr{H}}=1}\int_{\Omega}e^{\gamma\left(u^{2}+v^{2}\right)}dx \leq C, \text{ provided that } \gamma \leq 4\pi.$$

We shall look for solutions of (1.1) by finding critical points of the energy functional $E: \mathscr{H} \to \mathbb{R}$ given by

$$E(u,v) = \frac{1}{2}M\left(\int_{\Omega} |\nabla u|^2 dx\right) + \frac{1}{2}M\left(\int_{\Omega} |\nabla v|^2 dx\right) - \int_{\Omega} F(u,v) dx,$$

where $M(t) \int_{0}^{0} m(s) ds$. Under our assumptions we have that *E* is well defined and it is

 C^1 on \mathscr{H} . Indeed, by (H_1) , (H_2) and for $\varepsilon > 0$ there exists $\delta > 0$ such that

$$f(u,v) \leq \varepsilon \sqrt{u^2 + v^2}$$
 and $g(u,v) = \varepsilon \sqrt{u^2 + v^2}$ always that $|(u,v)| < \delta$.

On the other hand, for $\alpha > \alpha_0$, there exist constants C > 0 such that

$$f(u,v) \leq Ce^{\alpha(u^2+v^2)/2}$$
 and $g(u,v) \leq Ce^{\alpha(u^2+v^2)/2}$ for all $|(u,v)| \geq \delta$.

Thus, for all $(u, v) \in \mathscr{H}$ we have

$$f(u,v) \leq \varepsilon \sqrt{u^2 + v^2} + C e^{\alpha (u^2 + v^2)/2}, \qquad (2.2)$$

and

$$g(u,v) \leq \varepsilon \sqrt{u^2 + v^2} + C e^{\alpha (u^2 + v^2)/2}.$$
 (2.3)

Hence, using (H_3) , (2.2) and (2.3), we obtain

$$|F(u,v)| \leq \varepsilon (u^2 + v^2) + C\sqrt{u^2 + v^2} e^{\alpha (u^2 + v^2)/2}.$$
 (2.4)

This inequality together with Lemma 1 yields $F(u,v) \in L^1(\Omega)$ for all $(u,v) \in \mathcal{H}$, which implies that *E* is well defined, for $\alpha > \alpha_0$. Using standard arguments, we can see that $E \in C^1(\mathcal{H}, \mathbb{R})$ with

$$E'(u,v)(\phi,\psi) = m\left(\int_{\Omega} |\nabla u|^2 dx\right) \int_{\Omega} \nabla u \cdot \nabla \phi \, dx + m\left(\int_{\Omega} |\nabla v|^2 dx\right) \int_{\Omega} \nabla v \cdot \nabla \psi \, dx$$
$$- \int_{\Omega} f(u,v)\phi \, dx - \int_{\Omega} g(u,v)\psi \, dx,$$

for all $(\phi, \psi) \in \mathscr{H}$.

Also, to prove our main result, we use the following version of Lion's higher integrability lemma [18]:

LEMMA 2. Let (u_n, v_n) be a sequence in \mathscr{H} such that $||(u_n, v_n)||_{\mathscr{H}} = 1$, for all $n \in \mathbb{N}^*$ and $u_n \rightharpoonup u$, $v_n \rightharpoonup v$ in $H_0^1(\Omega)$ for some $(u, v) \neq (0, 0)$.

Then, for
$$4\pi , $\sup_{n \ge 1} \int_{\Omega} e^{p\left(u_n^2 + v_n^2\right)} dx < \infty$.$$

3. The Mountain Pass Geometry

In this section, we prove that the functional E has the Mountain Pass Geometry. This fact is proved in the next lemmas:

LEMMA 3. Assume (M_1) and $(H_0)-(H_3)$, then there exist positive constants τ and ρ such that

$$E(u,v) \ge \tau, \forall (u,v) \in \mathscr{H} : ||(u,v)||_{\mathscr{H}} = \rho.$$

Proof. Just as we have obtained (2.4), we deduce that

$$\left|F(u,v)\right| \leq \varepsilon \left(u^2 + v^2\right) + C\left(u^q + v^q\right) e^{\alpha (u^2 + v^2)/2}$$

for all $(u,v) \in \mathscr{H}$ and q > 2. Using Hölder's inequality and the Sobolev embedding, we have

$$\begin{split} \int_{\Omega} |F(u,v)| dx &\leq \varepsilon \left(\|u\|_{2}^{2} + \|v\|_{2}^{2} \right) + C \left(\int_{\Omega} \left(|u|^{q} + |v|^{q} \right)^{2} \right)^{1/2} \left(\int_{\Omega} e^{\alpha (u^{2} + v^{2})} dx \right)^{1/2} \\ &\leq \varepsilon C \|(u,v)\|_{\mathscr{H}}^{2} + C \left(\|u\|_{1,2}^{q} + \|v\|_{1,2}^{q} \right) \\ & \times \left(\int_{\Omega} e^{\alpha \|(u,v)\|_{\mathscr{H}}^{2} \left(\left(\frac{u}{\|(u,v)\|_{\mathscr{H}}} \right)^{2} + \left(\frac{v}{\|(u,v)\|_{\mathscr{H}}} \right)^{2} \right)} dx \right)^{1/2}. \end{split}$$

Now, for $||(u,v)||_{\mathscr{H}} = \rho$ such that $\rho^2 \leq \pi/\alpha$ and by the Moser-Trudinger inequality, we obtain

$$\int_{\Omega} |F(u,v)| dx \leq \varepsilon C ||(u,v)||_{\mathscr{H}}^2 + C \Big(||u||_{1,2}^q + ||v||_{1,2}^q \Big)$$
$$\leq \varepsilon C ||(u,v)||_{\mathscr{H}}^2 + 2C ||(u,v)||_{\mathscr{H}}^q.$$

Therfore, using (M_1) , we get

$$E(u,v) \ge \left(\frac{m_0}{2} - \varepsilon C\right) \|(u,v)\|_{\mathscr{H}}^2 - 2C\|(u,v)\|_{\mathscr{H}}^q.$$

Consequently

$$E(u,v) \ge \left(\frac{m_0}{2} - \varepsilon C\right) \rho^2 - 2C\rho^q.$$

Now, we may fix $\varepsilon > 0$ such that $\frac{m_0}{2} - \varepsilon C > 0$. Thus, for $\rho > 0$ sufficiently small there exists $\tau := \left(\frac{m_0}{2} - \varepsilon C\right)\rho^2 - 2C\rho^q > 0$ such that

$$E(u,v) \ge \tau, \ \forall (u,v) \in \mathscr{H} \text{ with } \|(u,v)\|_{\mathscr{H}} = \rho$$

The proof of Lemma is complete. \Box

LEMMA 4. Assume (M_1) and (H_4) . Then, there exists $(e_1, e_2) \in \mathscr{H}$ such that $E(e_1, e_2) < 0$ and $||(e_1, e_2)|| > \rho$.

Proof. Using (M_1) and (H_4) , we obtain

$$E(u,v) \leq \frac{m_1}{2\kappa} \left(\left(\int_{\Omega} |\nabla u|^2 dx \right)^{\kappa} + \left(\int_{\Omega} |\nabla v|^2 dx \right)^{\kappa} \right) + m_2 \left(\int_{\Omega} |\nabla u|^2 dx + \int_{\Omega} |\nabla v|^2 dx \right)$$
$$- K_0 \int_{\Omega} \left(u^2 + v^2 \right)^{\nu} dx.$$
$$\leq \frac{m_1}{\kappa} \| (u,v) \|_{\mathscr{H}}^{2\kappa} + m_2 \| (u,v) \|_{\mathscr{H}}^2 - K_0 \int_{\Omega} \left(u^2 + v^2 \right)^{\nu} dx.$$

Let $(u_0, v_0) \in \mathscr{H}$ with $u_0, v_0 > 0$ in Ω and $||(u_0, v_0)||_{\mathscr{H}} = 1$. Thus, we have

$$E(tu_0, tv_0) \leq \frac{m_1}{\kappa} t^{2\kappa} + m_2 t^2 - t^{2\nu} K_0 \int_{\Omega} \left(u_0^2 + v_0^2 \right)^{\nu} dx,$$

for all t > 0, which yields $E(tu,tv) \to -\infty$ as $t \to +\infty$, provided $v > \kappa$. Setting $(e_1, e_2) = (\overline{t}u_0, \overline{t}v_0)$ with $\overline{t} > 0$ large enough, the proof is complete. \Box

4. On the mini-max level

In view of Lemmas 3 and 4, we may apply a version of the Mountain Pass theorem without Palais-Smale condition to obtain a sequence $(u_n, v_n) \in \mathcal{H}$ such that

$$E(u_n, v_n) \rightarrow \rho_0$$
 and $E'(u_n, v_n) \rightarrow 0$,

where

$$\rho_0 = \inf_{\gamma \in \Gamma_t \in [0,1]} \max E(\gamma(t)), \tag{4.1}$$

with

$$\Gamma = \big\{ \gamma \in C\big(\big[0,1\big], \mathscr{H} \big) : \gamma\big(0\big) = (0,0), \ \gamma\big(1\big) = (e_1,e_2) \big\}.$$

Let *d* be the inner radius of Ω , that is, it is the radius of the largest open ball contained in Ω . So $B_d(x_0) \subset \Omega$. We may assume that $x_0 = 0$. In order to get more information about the minimax level, it was crucial in our argument to consider the following concentrating functions $\psi_n(x) = \tilde{\psi}_n(x/d)$, $n \in \mathbb{N}$ where

$$\tilde{\psi}_n(x) = \frac{1}{2\sqrt{\pi}} \begin{cases} (\log n)^{1/2} & \text{for } 0 \le |x| \le 1/n \\ \frac{\log(1/|x|)}{(\log n)^{1/2}} & \text{for } 1/n \le |x| \le 1 \\ 0 & \text{for } |x| \ge 1. \end{cases}$$

Then, ψ_n has support in $B_d(0)$ and (ψ_n, ψ_n) is such that $\|(\psi_n, \psi_n)\|_{\mathscr{H}} = 1 \ \forall n \in \mathbb{N}$. We can now prove the following upper bounded for ρ_0 . LEMMA 5. With ρ_0 defined as in (4.1), we have $\rho_0 < \frac{1}{2}M(4\pi/\alpha_0)$.

Proof. Suppose $\rho_0 \ge \frac{1}{2}M(4\pi/\alpha_0)$ and we derive a contradiction. As *E* possesses the mountain pass geometry, for each *n* there exist t_n , $s_n > 0$ such that

$$E(t_n\psi_n, s_n\psi_n) = \sup_{t, s>0} E(t\psi_n, s\psi_n) \ge \frac{1}{2}M(4\pi/\alpha_0), \ \forall n \in \mathbb{N}.$$

From this inequality and using that $F(u,v) \ge 0$ for all $(u,v) \in \mathbb{R}^2_+$, we obtain

$$\frac{1}{2}(M(t_n \|\psi_n\|_{1,2}^2) + M(s_n \|\psi_n\|_{1,2}^2)) \ge \frac{1}{2}M(4\pi/\alpha_0).$$

Using (M_2) and since M is an increasing bijection, we have

$$t_n + s_n \geqslant 4\pi/\alpha_0. \tag{4.2}$$

On the other hand, (t_n, s_n) is a critical point of $E(t\psi_n, s\psi_n)$, so

$$E'(t\psi_n,s\psi_n)|_{(t,s)=(t_n,s_n)}=0$$

and therefore

$$m\left(\frac{t_n^2}{2}\right)t_n^2 + m\left(\frac{s_n^2}{2}\right)s_n^2 = \int_{\Omega} \left(f(t_n\psi_n, s_n\psi_n)t_n\psi_n + g(t_n\psi_n, s_n\psi_n)s_n\psi_n\right)dx.$$

Now, using that $t_n \psi_n \to \infty$, $s_n \psi_n \to \infty$ on $\{|x| \leq \delta/n\}$ and (H2), we obtain

$$\begin{split} m(\frac{t_n^2}{2})t_n^2 + m(\frac{s_n^2}{2})s_n^2 &\ge \int_{\Omega \cap \left\{|x| \le d/n\right\}} e^{\alpha_0 \left(\frac{t_n^2 + s_n^2}{2}\right)\psi_n^2}(t_n + s_n)\psi_n dx \\ &= \frac{\sqrt{\pi}d^2}{2n^2} e^{\alpha_0 \left(\frac{t_n^2 + s_n^2}{4\pi}\right)\frac{\log n}{4\pi}}(t_n + s_n)(\log n)^{1/2} \\ &= \frac{\sqrt{\pi}d^2}{2} e^{\left(\frac{\alpha_0(t_n^2 + s_n^2)}{8\pi} - 2\right)\log n}(t_n + s_n)(\log n)^{1/2}, \end{split}$$

and from (M_1) , we can conclude that

$$\frac{m_1}{2^{\kappa-1}} \left(t_n^2 + s_n^2 \right)^{\kappa} \ge \frac{\sqrt{\pi} d^2}{2} e^{\left(\frac{\alpha_0(t_n^2 + s_n^2)}{8\pi} - 2\right) \log n} (t_n + s_n) (\log n)^{1/2}.$$
(4.3)

Note that, we can see

$$\frac{\frac{m_1}{2^{\kappa-1}} \left(t_n^2 + s_n^2\right)^{\kappa}}{e^{\left(\frac{\alpha_0(t_n^2 + s_n^2)}{8\pi} - 2\right)\log n} (t_n + s_n)(\log n)^{1/2}} \to 0 \text{ if } t_n^2 + s_n^2 \to +\infty.$$

It follows from this and (4.3), we infer that

$$t_n^2 + s_n^2 \to 16\pi/\alpha_0.$$
 (4.4)

Moreover, using (4.3) again, we obtain

$$\frac{m_1}{2^{\kappa-1}} (t_n^2 + s_n^2)^{\kappa} \ge \frac{\sqrt{\pi}d^2}{2} (t_n + s_n) (\log n)^{1/2}$$

This in turn implies that $t_n^2 + s_n^2 \to \infty$ as $n \to \infty$, which contradicts (4.4).

5. Proof of main result

First, we consider the Nehari manifold associated to the problem (1.1) as

$$\mathcal{N} = \left\{ (u, v) \in \mathscr{H} \setminus \left\{ (0, 0) \right\} : \left\langle E'(u, v), (u, v) \right\rangle = 0 \right\}$$

and the number $A := \inf_{(u,v) \in \mathcal{N}} E(u,v).$

LEMMA 6. Assume that the conditions (H_0) , (H_5) and (M_3) hold. Then $\rho_0 \leq A$.

Proof. Given $(u, v) \in N$, let us define

$$h(t) := E(tu, tv) = \frac{1}{2}M\left(t^2 \|u\|_{1,2}^2\right) + \frac{1}{2}M\left(t^2 \|v\|_{1,2}^2\right) - \int_{\Omega} F(tu, tv)dx, \quad \forall t > 0.$$

The function h is differentiable and

$$\begin{aligned} h'(t) &= \left\langle E'(tu,tv), (u,v) \right\rangle \\ &= m \left(t^2 \|u\|_{1,2}^2 \right) t \|u\|_{1,2}^2 + m \left(t^2 \|v\|_{1,2}^2 \right) t \|v\|_{1,2}^2 - \int_{\Omega} f(tu,tv) u dx - \int_{\Omega} g(tu,tv) v dx, \\ \forall t > 0. \end{aligned}$$

Since $\langle E'(u,v),(u,v)\rangle = 0$, for all $(u,v) \in \mathcal{N}$, we get

$$\begin{aligned} h'(t) &= t^3 \|u\|_{1,2}^3 \left(\frac{m\left(t^2 \|u\|_{1,2}^2\right)}{t^2 \|u\|_{1,2}^2} - \frac{m\left(\|u\|_{1,2}^2\right)}{\|u\|_{1,2}^2} \right) \\ &+ t^3 \|v\|_{1,2}^3 \left(\frac{m\left(t^2 \|v\|_{1,2}^2\right)}{t^2 \|v\|_{1,2}^2} - \frac{m\left(\|v\|_{1,2}^2\right)}{\|v\|_{1,2}^2} \right) \\ &+ t^3 \int_{\Omega} \left(\frac{f(u,v)}{u^3} - \frac{f(tu,tv)}{t^3 u^3} \right) u^4 dx + t^3 \int_{\Omega} \left(\frac{g(u,v)}{v^3} - \frac{g(tu,tv)}{t^3 v^3} \right) v^4 dx. \end{aligned}$$

Then h'(1) = 0 and from (M_3) and (H_5) , we conclude that $h'(t) \ge 0$ for 0 < t < 1 and $h'(t) \le 0$ for 0 < t < 1. Hence

$$E(u,v) = \max_{t \ge 0} E(tu,tv).$$

Now, defining $\gamma: [0,1] \to \mathscr{H}, \ \gamma(t) = (te_1, te_2)$, we have $\gamma \in \Gamma$ and therfore

$$\rho_0 \leqslant \max_{t \in [0,1]} E(\gamma(t)) \leqslant \max_{t \geqslant 0} E(tu, tv) = E(u, v),$$

which implies $\rho_0 \leq A$. \Box

Next, we prove that E satisfies Palais-Smale condition.

PROPOSITION 1. Assume $(M_1)-(M_4)$ and $(H_0)-(H_5)$. Then the functional E satisfies Palais-Smale condition for all $\rho_0 < \frac{1}{2}M(4\pi/\alpha_0)$.

In order to prove this proposition, we shall use the following result of convergence, whose proof can be found in [18].

LEMMA 7. Let $\{(u_n, v_n)\} \subset \mathscr{H}$ be a Palais-Smale sequence. Then, $\exists (u_0, v_0)$ such that, up to a subsequence, $u_n \rightharpoonup u_0$ and $v_n \rightharpoonup v_0$ in $H_0^1(\Omega)$, and

$$\lim_{n \to \infty} \int_{\Omega} f(u_n, v_n) = \int_{\Omega} f(u_0, v_0) dx,$$
$$\lim_{n \to \infty} \int_{\Omega} g(u_n, v_n) dx = \int_{\Omega} g(u_0, v_0) dx.$$

Proof of proposition 1. Let (u_n, v_n) be a sequence in \mathcal{H} verifying

$$E(u_n, v_n) \rightarrow \rho_0$$
 and $E'(u_n, v_n) \rightarrow 0$,

which implies

$$\frac{1}{2}M\left(\int_{\Omega}|\nabla u_{n}|^{2}dx\right) + \frac{1}{2}M\left(\int_{\Omega}|\nabla v_{n}|^{2}dx\right) - \int_{\Omega}F(u_{n},v_{n})dx \to \rho_{0}$$
(5.1)

$$m\left(\int_{\Omega} |\nabla u_n|^2 dx\right) \int_{\Omega} |\nabla u_n|^2 dx + m\left(\int_{\Omega} |\nabla v_n|^2 dx\right) \int_{\Omega} |\nabla v_n|^2 dx$$

$$-\int_{\Omega} f(u_n, v_n) u_n dx - \int_{\Omega} g(u_n, v_n) v_n dx \leqslant \varepsilon_n \|(u_n, v_n)\|_{\mathscr{H}},$$
(5.2)

where $\varepsilon_n \to 0$. It follows from (5.1) and (5.2) using (H_3) , (M_1) and (M_3) we obtain

$$C + \|(u_n, v_n)\|_{\mathscr{H}} \ge E(u_n, v_n) - \frac{1}{\theta} |E'(u_n, v_n)(u_n, v_n)| \\\ge \left(\frac{\theta - 4}{4\theta}\right) \|(u_n, v_n)\|_{\mathscr{H}}^2.$$

Hence (u_n, v_n) is bounded in \mathcal{H} . Now we take a subsequence denoted again by (u_n, v_n) such that, for some $(u_0, v_0) \in \mathcal{H}$, we have

$$(u_n, v_n) \rightarrow (u_0, v_0) \text{ in } \mathscr{H}$$

$$u_n \rightarrow u_0 \text{ and } v_n \rightarrow v_0 \text{ in } L^q(\Omega), \ \forall q \ge 1.$$

$$u_n(x) \rightarrow u_0(x) \text{ and } v_n(x) \rightarrow v_0(x) \text{ a.e. in } \Omega.$$
(5.3)

Now, we can apply Lemma 7 to conclude that

$$\int_{\Omega} f(u_n, v_n) dx \longrightarrow \int_{\Omega} f(u_0, v_0) dx \text{ and } \int_{\Omega} g(u_n, v_n) dx \longrightarrow \int_{\Omega} g(u_0, v_0) dx, \quad (5.4)$$

and therefore using (H_3) , (5.2) and generalized Lebesgue dominated convergence theorem, we obtain

$$\int_{\Omega} F(u_n, v_n) dx \longrightarrow \int_{\Omega} F(u_0, v_0) dx.$$
(5.5)

At this point, we affirm that $(u_0, v_0) \neq (0, 0)$. We suppose that $(u_0, v_0) = (0, 0)$ and we derive a contradiction. Since $(u_0, v_0) = (0, 0)$, we have $\int_{\Omega} F(u_n, v_n) dx \longrightarrow 0$ and so

$$\frac{1}{2}M\Big(\int_{\Omega}|\nabla u_n|^2dx\Big)+\frac{1}{2}M\Big(\int_{\Omega}|\nabla v_n|^2dx\Big)\to\rho< M\big(4\pi/\alpha_0\big),$$

and therfore $\frac{\|(u_n,v_n)\|_{\mathscr{H}}^2}{2} < 4\pi/\alpha_0$. Thus, there exist $N \in \mathbb{N}$ and $\gamma > 0$ such that

$$\frac{\alpha_0}{2} \|(u_n, v_n)\|_{\mathscr{H}}^2 < \gamma < 4\pi \text{ for all } n \ge N.$$

Now, choose p > 1 close to 1 and $\alpha > \alpha_0$ close to α_0 so that we still have

$$p\frac{\alpha}{2}\|(u_n,v_n)\|_{\mathscr{H}}^2 < \gamma < 4\pi.$$

From this and by using (2.2), (2.3), Hölder inequality, lemma 1 and (5.3) we get

$$\begin{split} & \left| \int_{\Omega} f(u_{n},v_{n})u_{n} \, dx + \int_{\Omega} g(u_{n},v_{n})v_{n} \, dx \right| \\ & \leq C_{1} \left(\int_{\Omega} |u_{n}|^{2} dx + \int_{\Omega} |v_{n}|^{2} dx \right) + C_{2} \left(\int_{\Omega} \left(|u_{n}| + |v_{n}| \right) e^{\frac{\alpha}{2}(u_{n}^{2} + v_{n}^{2})} dx \right) \\ & \leq C_{1} \left(\left\| u_{n} \right\|_{2}^{2} + \left\| v_{n} \right\|_{2}^{2} \right) + C_{3} \left(\int_{\Omega} \left(|u_{n}| + |v_{n}| \right)^{p/(p-1)} \right)^{(p-1)/p} \left(\int_{\Omega} e^{p\frac{\alpha}{2}(u_{n}^{2} + v_{n}^{2})} dx \right)^{1/p} \\ & \leq C_{1} \left(\left\| u_{n} \right\|_{2}^{2} + \left\| v_{n} \right\|_{2}^{2} \right) + C_{4} \left(\left\| u_{n} \right\|_{p/(p-1)} + \left\| v_{n} \right\|_{p/(p-1)} \right) \\ & \times \left(\int_{\Omega} e^{p\frac{\alpha}{2} \| (u_{n},v_{n}) \|_{\mathscr{H}}^{2} \left(\left(\frac{u_{n}}{\| (u_{n},v_{n}) \|_{\mathscr{H}}} \right)^{2} + \left(\frac{v_{n}}{\| (u_{n},v_{n}) \|_{\mathscr{H}}} \right)^{2} \right) dx \right)^{1/p} \\ & \leq C_{1} \left(\left\| u_{n} \right\|_{2}^{2} + \left\| v_{n} \right\|_{2}^{2} \right) + C_{5} \left(\left\| u_{n} \right\|_{p/(p-1)} + \left\| v_{n} \right\|_{p/(p-1)} \right) \underset{n \to \infty}{\to} 0. \end{split}$$

Since

$$E'(u_n, v_n)(u_n, v_n) = m\Big(\|u_n\|_{1,2} \Big) \|u_n\|_{1,2} + m\Big(\|v_n\|_{1,2} \Big) \|v_n\|_{1,2} \\ - \int_{\Omega} f(u_n, v_n) u_n \, dx - \int_{\Omega} g(u_n, v_n) v_n \, dx$$

and $E'(u_n, v_n)(u_n, v_n) \rightarrow 0$ it follows that

$$m\Big(\|u_n\|_{1,2}\Big)\|u_n\|_{1,2}+m\Big(\|v_n\|_{1,2}\Big)\|v_n\|_{1,2}\to 0.$$

Hence, by (M_1) we have $||(u_n, v_n)||_{\mathscr{H}}^2 \to 0$ and therfore $E(u_n, v_n) \to 0$, what is absurd and thus we must $(u_0, v_0) \neq (0, 0)$. Next, we will make some assertions.

Assertion 1. $E(u_0, v_0) \ge 0$

First, we claim that

$$m(\|u_0\|_{1,2}^2)\|u_0\|_{1,2}^2 + m(\|v_0\|_{1,2}^2)\|v_0\|_{1,2}^2 \ge \int_{\Omega} f(u_0, v_0)u_0 dx + \int_{\Omega} g(u_0, v_0)v_0 dx.$$
(5.6)

Suppose by contradiction that

$$m(\|u_0\|_{1,2}^2)\|u_0\|_{1,2}^2 + m(\|v_0\|_{1,2}^2)\|v_0\|_{1,2}^2 < \int_{\Omega} f(u_0,v_0)u_0dx + \int_{\Omega} g(u_0,v_0)v_0dx,$$

that is

$$E'(u_0, v_0)(u_0, v_0) < 0.$$

Now, using (M_1) , (H_1) and Sobolev imbedding, we can see that

$$E'(tu_0, tv_0)(u_0, v_0) > 0$$
 for t sufficiently small.

Thus, there exists $\tau \in (0,1)$ such that $E'(\tau u_0, \tau v_0)(u_0, v_0) = 0$, which implies that $(\tau u_0, \tau v_0) \in \mathcal{N}$. Then, according to (1.2), (H_6) , semicontinuity of norm and Fatou lemma we obtain

$$\begin{split} \rho_0 &\leqslant A \leqslant E(\tau u_0, \tau v_0) = E(\tau u_0, \tau v_0) - \frac{1}{4} E'(\tau u_0, \tau v_0)(\tau u_0, \tau v_0) \\ &= \frac{1}{2} M \Big(\|\tau u_0\|_{1,2}^2 \Big) - \frac{1}{4} m \Big(\|\tau u_0\|_{1,2}^2 \Big) \|\tau u_0\|_{1,2}^2 \\ &\quad + \frac{1}{2} M \Big(\|\tau v_0\|_{1,2}^2 \Big) - \frac{1}{4} m \Big(\|\tau v_0\|_{1,2}^2 \Big) \|\tau v_0\|_{1,2}^2 \\ &\quad + \frac{1}{4} \int_{\Omega} \Big(f(\tau u_0, \tau v_0) \tau u_0 + g(\tau u_0, \tau v_0) \tau v_0 - 4F(\tau u_0, \tau v_0) \Big) dx \\ &< \frac{1}{2} M \Big(\|u_0\|_{1,2}^2 \Big) - \frac{1}{4} m \Big(\|u_0\|_{1,2}^2 \Big) \|u_0\|_{1,2}^2 + \frac{1}{2} M \Big(\|v_0\|_{1,2}^2 \Big) \\ &\quad - \frac{1}{4} m \Big(\|v_0\|_{1,2}^2 \Big) \|v_0\|_{1,2}^2 \\ &\quad + \frac{1}{4} \int_{\Omega} \Big(f(u_0, v_0) u_0 + g(u_0, v_0) v_0 - 4F(u_0, v_0) \Big) dx \\ &\leqslant \liminf_{n \to \infty} \Big[\frac{1}{2} M \Big(\|u_n\|_{1,2}^2 \Big) - \frac{1}{4} m \Big(\|u_n\|_{1,2}^2 \Big) \|u_n\|_{1,2}^2 \Big] \\ &\quad + \liminf_{n \to \infty} \Big[\frac{1}{2} M \Big(\|v_n\|_{1,2}^2 \Big) - \frac{1}{4} m \Big(\|v_n\|_{1,2}^2 \Big) \|v_n\|_{1,2}^2 \Big] \\ &\quad + \liminf_{n \to \infty} \Big[\frac{1}{4} \int_{\Omega} \Big(f(u_n, v_n) u_n + g(u_n, v_n) v_n - 4F(u_n, v_n) \Big) dx \Big] \\ &\leqslant \lim_{n \to \infty} \Big[E(u_n, v_n) - \frac{1}{4} E'(u_n, v_n) (u_n, v_n) \Big] = \rho_0, \end{split}$$

which is absurd.

Next, we claim that $E(u_0, v_0) \ge 0$. By (5.6), (1.2) and (1.4) one has

$$\begin{split} E(u_0, v_0) &\geq \frac{1}{2} M\Big(\big\| u_0 \big\|_{1,2}^2 \Big) - \frac{1}{4} m\Big(\big\| u_0 \big\|_{1,2}^2 \Big) \big\| u_0 \big\|_{1,2}^2 + \frac{1}{2} M\Big(\big\| v_0 \big\|_{1,2}^2 \Big) \\ &- \frac{1}{4} m\Big(\big\| v_0 \big\|_{1,2}^2 \Big) \big\| v_0 \big\|_{1,2}^2 \\ &+ \frac{1}{4} \int_{\Omega} \Big(f(u_0, v_0) u_0 + g(u_0, v_0) v_0 - 4F(u_0, v_0) \Big) dx \\ &\geq 0. \end{split}$$

This completes the proof of assertion 1.

Assertion 2. $(u_n, v_n) \rightarrow (u_0, v_0)$ in \mathcal{H} .

As (u_n, v_n) is bounded, up to a subsequence, $||(u_n, v_n)||_{\mathscr{H}} \rightarrow r > 0$, with

$$r^2 = r_1^2 + r_2^2$$
, $||u_n||_{1,2} \to r_1$ and $||v_n||_{1,2} \to r_2$.

By using (5.5) and semicontinuity of norm, we have

$$E(u_0, v_0) \leqslant \rho_0. \tag{5.7}$$

In this case we claim that $E(u_0, v_0) = \rho_0$. So it remains to prove (5.7), assume by contradiction that $E(u_0, v_0) < \rho_0$. Then, $||u_0||_{1,2} < r/2$ and $||v_0||_{1,2} < r/2$. Let

$$U_n = \frac{2u_n}{\|(u_n, v_n)\|_{\mathscr{H}}}, \quad V_n = \frac{2v_n}{\|(u_n, v_n)\|_{\mathscr{H}}}, \quad U_0 = \frac{2u_0}{r} \text{ and } V_0 = \frac{2v_0}{r}.$$

We have

$$\begin{aligned} U_n &\rightharpoonup U_0 \ \text{ in } H_0^1(\Omega) \ \text{ and } \ V_n &\rightharpoonup V_0 \ \text{ in } H_0^1(\Omega) \\ & \left\| U_0 \right\|_{1,2} < 1 \ \text{ and } \ \left\| V_0 \right\|_{1,2} < 1. \end{aligned}$$

Thus, by lemma 2

$$\sup_{n\in\mathbb{N}}\int_{\Omega}e^{p\left(U_{n}^{2}+V_{n}^{2}\right)}dx<\infty, \quad \forall p<\frac{4\pi}{1-\left\|U_{0}\right\|_{1,2}^{2}-\left\|V_{0}\right\|_{1,2}^{2}}.$$
(5.8)

On the other hand,

$$2\rho_0 - 2E(u_0, v_0) = M(r_1^2) + M(r_2^2) - (M(||u_0||_{1,2}^2) + M(||v_0||_{1,2}^2)).$$
(5.9)

Using this equality, lemma 5 and the fact that $E(u_0, v_0) \ge 0$, we get

$$M(r_1^2) + M(r_2^2) < M\left(\frac{4\pi}{\alpha_0}\right) + M(||u_0||_{1,2}^2) + M(||v_0||_{1,2}^2).$$

From (M_1) and (M_2) it follows that

$$M(r_1^2) < M\left(\frac{4\pi}{\alpha_0} + \|u_0\|_{1,2}^2 + \|v_0\|_{1,2}^2\right),$$

and

$$M(r_2^2) < M\left(\frac{4\pi}{\alpha_0} + \|u_0\|_{1,2}^2 + \|v_0\|_{1,2}^2\right),$$

which implies that

$$r_1^2 < \frac{4\pi}{\alpha_0} + \left\| u_0 \right\|_{1,2}^2 + \left\| v_0 \right\|_{1,2}^2 \text{ and } r_2^2 < \frac{4\pi}{\alpha_0} + \left\| u_0 \right\|_{1,2}^2 + \left\| v_0 \right\|_{1,2}^2, \tag{5.10}$$

and therfore

$$r_1^2 + r_2^2 = r^2 < \frac{8\pi}{\alpha_0} + 2\left(\left\|u_0\right\|_{1,2}^2 + \left\|v_0\right\|_{1,2}^2\right).$$
(5.11)

Now, we observe that

$$r^{2} = \frac{r^{2} - 2(\|u_{0}\|_{1,2}^{2} + \|v_{0}\|_{1,2}^{2})}{1 - \|U_{0}\|_{1,2}^{2} - \|V_{0}\|_{1,2}^{2}},$$

and from (5.11), it follows that

$$\frac{r^2}{2} < \frac{4\pi}{\alpha_0} \left(1 - \left\|U_0\right\|_{1,2}^2 - \left\|V_0\right\|_{1,2}^2\right)^{-1}.$$

Then, we can choose $p > 4\pi$ such that $\alpha_0 \frac{\|(u_n, v_n)\|_{\mathscr{H}}^2}{2} for$ *n*sufficiently large. Now, taking <math>q > 1 close to 1 and $\alpha > \alpha_0$ close to α_0 such that

$$q\alpha \frac{\|(u_n, v_n)\|_{\mathscr{H}}^2}{2} \leq p < 4\pi \left(1 - \|U_0\|_{1,2}^2 - \|V_0\|_{1,2}^2\right)^{-1}, \text{ for } n \text{ large enough}$$

and invoking (5.8), for some C > 0, we concluded that

$$\int_{\Omega} e^{q\alpha \left(\frac{u_n^2 + v_n^2}{2}\right)} dx = \int_{\Omega} e^{q\alpha \frac{\|(u_n, v_n)\|_{\mathscr{H}}^2}{4} \left(U_n^2 + V_n^2\right)} dx$$
$$\leqslant \int_{\Omega} e^{p \left(U_n^2 + V_n^2\right)} dx \leqslant C.$$
(5.12)

Hence, using Hölder inequality, (5.12) and (5.3) we reach

$$\left|\int_{\Omega} f(u_n,v_n)(u_n-u_0) dx\right| \to 0 \text{ as } n \to \infty,$$

and

$$\left|\int_{\Omega}g(u_n,v_n)(v_n-v_0)\,dx\right|\to 0 \text{ as } n\to\infty.$$

Since $E'(u_n, v_n)((u_n - u_0), 0) = o(1)$, we get

$$m(||u_n||_{1,2}^2)||u_n||_{1,2}^2 - m(||u_n||_{1,2}^2) \int_{\Omega} \nabla u_n \nabla u_0 \, dx \to m(r_1^2)r_1^2 - m(r_1^2)||u_0||_{1,2}^2 = 0.$$

It follows that

 $||u_0||_{1,2} = r_1.$

Similarly, we obtain

 $||v_0||_{1,2} = r_2,$

which implies that $||(u_n, v_n)||_{\mathscr{H}} \to ||(u_0, v_0)||_{\mathscr{H}}$ and so $(u_n, v_n) \to (u_0, v_0)$ in \mathscr{H} . In view of the continuity of *E*, we must have $E(u_0, v_0) = \rho_0$ what is an absurde. Thus, the proof of Proposition 1 is complete. \Box

Finalizing the proof of Theorem 1. It follows from the hypotheses in Theorem 1 that *E* satisfies Palais-Smale condition for all $\rho_0 < \frac{1}{2}M(4\pi/\alpha_0)$, see proposition 1. To finish the proof of theorem 1, we use lemmas 2 and 3 and apply the Mountain pass Theorem. \Box

Acknowledgement. We would like to thank the referees for their important remarks and comments which allow us to correct and improve this paper.

REFERENCES

- ADIMURTHI, Existence of Positive Solutions of the Semilinear Dirichlet Problem with Critical Growth for the n-Laplacian, Ann. Della. Scuola. Norm. Sup. di Pisa, Serie 4, tome 17, 3 (1990), 393–413.
- [2] A. AMBROSETTI, H. BREZIS AND G. CERAMI, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122, 2 (1994), 519–543.
- [3] N. T. CHUNG, Multiplicity results for a class of p(x)-Kirchhoff type equations with combined nonlinearities, E. J. Qualit. Theory Diff. Equ., 42, (2012), 1–13.
- [4] N. T. CHUNG, An existence result for a class of Kirchhoff type systems via sub and supersolutions method, Appl. Math. Lett., 35 (2014), 95–101.
- [5] J. L. CHERN, Z. Y. CHEN AND C. S. LIN, Uniqueness of Topological Solutions and the Structure of Solutions for the Chern-Simons System with Two Higgs Particles, Commun. Math. Phys., 296, (2010), 323–351.
- [6] D. G. DE FIGUEIREDO, O. H. MIYAGAKI AND B. RUF, *Elliptic equations in ℝ² with nonlinearities in the critical growth range*, Calc. Var. Partial Differential Equations, 3, 2 (1995) 139–153.
- [7] D. G. DE FIGUEIREDO, J. M. DO Ó, AND B. RUF, Critical and subcritical elliptic systems in dimension two, Indiana Univ. Math. J., 53, 4 (2004), 1037–1054.
- [8] G. M. FIGUEIREDO AND U. B. SEVERO, Ground state solution for a Kirchhoff problem with exponential critical growth, Milan J. Math., 84 (2015), 23–39.
- [9] N. GHOUSSOUB AND D. PREISS, A general mountain pass principle for locating and classifying critical points, Anal. Non Lineaire, 6, 5 (1989), 321–330.
- [10] X. HAN AND G. DAI, On the sub-supersolution method for p(x)-Kirchhoff type equations, J. Inequal. Appl., 283 (2012) 1–11.
- [11] B. JOAO MARCOS DO O, Semiliear Dirichlet problems for the N-Laplacian in \mathbb{R}^N with nonlinearities in critical growth range, Differential and Integral equations, **9**, 5 (1996), 967–979.
- [12] G. KIRCHHOFF, Mechanik, Teubner, Leipzig, Germany 1883.
- [13] Y. LI, P. LIU, AND Y. YANG, Moser-Trudinger inequalities of vector bundle over a compact Riemannian manifold of dimension 2, Calc. Var., 28, (2006), 59–83.
- [14] C. S. LIN, A. C. PONCE, AND Y. YANG, A system of elliptic equations arising in Chern-Simons field theory, J. Fun. Anal., 247 2 (2007), 289-350.
- [15] C. S. LIN, AND J. V. PRAJAPAT, Vortex Condensates for Relativistic Abelian Chern-Simons Model with Two Higgs Scalar Fields and Two Gauge Fields on a Torus, Commun. Math. Phys., 288, (2009), 311–347.

430

- [16] C. S. LIN, AND S. YAN, Bubbling Solutions for Relativistic Abelian Chern-Simons Model on a Torus, Commun. Math. Phys., 297, 3 (2010), 733–758.
- [17] J. MOSER, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. Jour., 20, 11 (1971), 1077–1092.
- [18] N. MEGREZ, K. SREENADH, B. KHALDI, Multiplicity of positive solutions for a gradient system with an exponential nonlinearity, EJDE, 236 (2012), 1–16.
- [19] O. H. MIYAGAKI AND R. S. RODRIGUES, On positive solutions for a class of singular quasilinear elliptic systems, J. Math. Anal. Appl., 334 2 (2007), 818–833.
- [20] S. PRASHANTH AND K. SREENADH, Multiplicity results in a ball for p-Laplace equation with positive nonlinearity, Advances in Differential Equations, 7, 7(2002), 877–896.
- [21] S. PRASHANTH AND K. SREENADH, Existence of multiple positive solutions for N-Laplacian in a bounded domaine in \mathbb{R}^N , Advanced Nonlinear Studies, **5**, 1 (2005), 13–21.
- [22] N. S. TRUDINGER, On embedding into Orlicz spaces and some applications, Journal of Math. Mech., 17, 5 (1967), 473–484.

(Received April 5, 2021)

Brahim Khaldi Department of mathematics and informatic University center of Naama O. Box 66, Naama 45000, Algeria e-mail: khaldibra@yahoo.fr

Differential Equations & Applications www.ele-math.com dea@ele-math.com