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EXISTENCE OF SOLUTIONS FOR NONLOCAL ELLIPTIC

SYSTEMS WITH EXPONENTIAL NONLINEARITY
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(Communicated by A. El Hamidi)

Abstract. In this paper, we establish the existence of solutions for a Kirchhoff-type system with
Dirichlet boundary condition and nonlinearities having exponential critical growth. Our ap-
proach is based on the Trudinger-Moser inequality and on a minimax theorem.

1. Introduction

Let Ω be a smooth bounded domain in R2. In this article, we study the existence
of positive solutions to the following nonlinear Kirchhoff type system⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−m
(∫

Ω

∣∣∇u
∣∣2dx

)
Δu = f (u,v) in Ω,

−m
(∫

Ω

∣∣∇v
∣∣2dx

)
Δv = g(u,v) in Ω,

u = v = 0 on ∂Ω,

(1.1)

where the nonlinear terms f and g are allowed to have exponential critical growth, and
m : R+ →R+, is a continuous function that satisfy some conditions which will be stated
later on. By means of the Trudinger-Moser inequality, we shall consider the variational
situation in which ∇F(u,v) =

(
f (u,v),g(u,v)

)
, for some function F : R2 → R of class

C2 , where ∇F stands for the gradient of F in the variables w = (u,v) ∈ R2 .

We make the following assumptions on the function m

(M1) There exist real numbers m0 , m1,m2 > 0 and κ � 1 such that

m0 � m(t) � m1t
κ−1 +m2, for all t � 0.

(M2) M(s)+M(t) � M(s+ t) ∀s,t � 0 where M(t) =
t∫
0

m(x)dx

(M3) m(t)/t is noninreasing for t > 0.
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A typical example of a function satisfying the conditions (M1)–(M3) is given by
m(t) = m0 +bt with b > 0 and for all t � 0. As a consequence of (M3) , a straightfor-
ward computation shows that

M(t)− 1
2
m(t)t is nondecreasing for t � 0. (1.2)

System (1.1) is related to the stationary version of a model established by Kirch-
hoff [12]. More precisely, Kirchhoff proposed the following model

ρ
∂ 2u
∂ t2

−
(P0

h
+

E
2L

L∫
0

∣∣∣∂u
∂x

∣∣∣2dx
)∂ 2u

∂x2 = 0 (1.3)

which extends D’Alembert’s wave equation with free vibrations of elastic strings, where
ρ denotes the mass density, P0 denotes the initial tension, h denotes the area of the
cross section, E denotes the Young modulus of the material, and L denotes the length
of the string.

In the recent years, problems involving Kirchhoff type operators have been studied
in many papers, we refer to [3], [4], [10], [19], [8] in which the authors have used the
variational method and the topological method to get the existence of solutions. In [8],
by a direct variational approach, the autors establish the exietence of a positive ground
state solution for a nonlocal Kirchhoff of the type⎧⎨

⎩
−m
(∫

Ω

∣∣∇u
∣∣2dx

)
Δu = f (x,u) in Ω,

u = 0 on ∂Ω.

Motivated by above and the ideas introduced in [18], in this work, we will study
the existence of nontrivial solutions for problem (1.1).

Let us introduce the precise assumptions under which our problem is studied.

(H0) f ,g are C1 functions such that f (s,t) > 0, g(s,t) > 0 for all s,t > 0, and
f (s, t) = g(s, t) = 0 if s � 0 or t � 0.

(H1) f (s, t) = o
(√

s2 + t2
)μ

and g(s,t) = o
(√

s2 + t2
)μ

as
∣∣(s,t)∣∣→ 0, for some

μ ∈ [0,4) .
(H2) f and g have α0 -exponential critical growth, i.e., there exists α0 > 0 such

lim
s2+t2→+∞

f (s,t)
eα(s2+t2)/2

= lim
s2+t2→+∞

g(s,t)
eα(s2+t2)/2

=
{ 0, ∀α > α0

+∞,∀α < α0
.

(H3) There exists θ > 4 such that

0 < θF(s,t) � f (s,t)s+g(s,t)t, ∀(s,t) ∈ R2 \ {(0,0)}.

(H4) For every ν > 1, there exists a constant K0 such that

F(s,t) � K0
(
s2 + t2

)ν
for all s,t > 0
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(H5)
f
(
s, t
)

s3 �
f
(
s,t
)

s3 and
g
(
s,t
)

t3
�

g
(
s,t
)

t3
for s � s > 0, t � t > 0.

(H6) For all s, t > 0,

3 f (s, t) <
∂ f (s,t)

∂ s
s+

∂g(s,t)
∂ s

t and 3g(s,t) <
∂ f (s,t)

∂ t
s+

∂g(s, t)
∂ t

t.

We observe that condition (H6) implies

f
(
s, t
)
+g
(
s, t
)−4F

(
s,t
)

< f
(
s,t
)
+g
(
s,t
)−4F

(
s,t
)

for s > s > 0 and t > t > 0.
(1.4)

An example of a function satisfying the above assumptions with α0 = 1 is

F(s,t) =

⎧⎨
⎩
(
s4 + t4

)
e(s2+t2)/2 if s > 0, t > 0

0 otherwise.

Now, we are ready to state our main result

THEOREM 1. Under assumption (M1)–(M4) and (H0)–(H5), Problem (1.1) ad-
mits at least one nontrivial solution (u0,v0) ∈ H1

0 (Ω)×H1
0 (Ω).

This work is organised as follows: In Section 2, we present the variational setting
in which our problem will be treated, and some preliminary results. Section 3 is devoted
to show that the energy functional has the mountain pass geometry and in Section 4 we
obtain an estimate for the minimax level associated to our functional. Finally, we prove
our main result in Section 5.

2. Preliminaries

As mentioned in the introduction, the nonlinearities f and g are allowed to have
exponential critical growth which allows to treat the problem by variational methods.
This growth is given by the so-called Trudinger-Moser inequality (see [17], [22]), which
says that if u is a H1

0 (Ω) function then there exists a constant C > 0 such that

sup
‖u‖

H1
0 (Ω)�1

∫
Ω

eαu2
dx � C

∣∣Ω∣∣ if α � 4π . (2.1)

Let H := H1
0 (Ω)×H1

0 (Ω) be the Sobolev space endowed with the norm

‖(u,v)‖H :=
(∥∥u∥∥2

1,2 +
∥∥v∥∥2

1,2

)1/2
where

∥∥u∥∥1,2 =
(∫

Ω
|∇u|2dx

)1/2

and
∥∥u∥∥r denotes the norm in Lr(Ω) , i.e.

∥∥u∥∥r =
(∫

Ω |u|rdx
)1/r

. In this work, we shall
use the following adapted version of Moser-Trudinger inequality for the pair (u,v) [18]:
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LEMMA 1. Let (u,v)∈H , then
∫

Ω eγ
(
u2+v2

)
dx < +∞ for any γ > 0 . Moreover,

there exists a constant C = C(Ω) such that

sup
‖(u,v)‖H =1

∫
Ω

eγ
(
u2+v2

)
dx � C, provided that γ � 4π .

We shall look for solutions of (1.1) by finding critical points of the energy func-
tional E : H → R given by

E(u,v) =
1
2
M
(∫

Ω
|∇u|2dx

)
+

1
2
M
(∫

Ω
|∇v|2dx

)
−
∫

Ω
F(u,v)dx,

where M(t)
t∫

0

m(s)ds. Under our assumptions we have that E is well defined and it is

C1 on H . Indeed, by (H1), (H2) and for ε > 0 there exists δ > 0 such that

f (u,v) � ε
√

u2 + v2 and g(u,v) = ε
√

u2 + v2 always that
∣∣(u,v)

∣∣< δ .

On the other hand, for α > α0, there exist constants C > 0 such that

f (u,v) � Ceα(u2+v2)/2 and g(u,v) � Ceα(u2+v2)/2 for all
∣∣(u,v)

∣∣� δ .

Thus, for all (u,v) ∈H we have

f (u,v) � ε
√

u2 + v2 +Ceα(u2+v2)/2, (2.2)

and
g(u,v) � ε

√
u2 + v2 +Ceα(u2+v2)/2. (2.3)

Hence, using (H3), (2.2) and (2.3), we obtain∣∣F(u,v)
∣∣� ε

(
u2 + v2)+C

√
u2 + v2eα(u2+v2)/2. (2.4)

This inequality together with Lemma 1 yields F(u,v)∈ L1
(
Ω
)

for all (u,v)∈H ,
which implies that E is well defined, for α > α0 . Using standard arguments, we can
see that E ∈C1(H ,R) with

E ′(u,v)(φ ,ψ) = m
(∫

Ω

∣∣∇u
∣∣2dx

)∫
Ω

∇u.∇φ dx+m
(∫

Ω

∣∣∇v
∣∣2dx

)∫
Ω

∇v.∇ψ dx

−
∫

Ω
f (u,v)φ dx−

∫
Ω

g(u,v)ψ dx,

for all (φ ,ψ) ∈ H .

Also, to prove our main result, we use the following version of Lion’s higher
integrability lemma [18]:

LEMMA 2. Let (un,vn) be a sequence in H such that ‖(un,vn)‖H = 1, for all
n ∈ N∗ and un ⇀ u, vn ⇀ v in H1

0 (Ω) for some (u,v) 	= (0,0).

Then, for 4π < p < 4π
(
1−‖(u,v)‖2

H

)−1
, sup

n�1

∫
Ω ep

(
u2
n+v2

n

)
dx < ∞.
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3. The Mountain Pass Geometry

In this section, we prove that the functional E has the Mountain Pass Geometry.
This fact is proved in the next lemmas:

LEMMA 3. Assume (M1) and (H0)–(H3) , then there exist positive constants τ
and ρ such that

E(u,v) � τ, ∀(u,v) ∈ H : ‖(u,v)‖H = ρ .

Proof. Just as we have obtained (2.4), we deduce that∣∣F(u,v)
∣∣� ε

(
u2 + v2)+C

(
uq + vq)eα(u2+v2)/2,

for all (u,v) ∈H and q > 2. Using Hölder’s inequality and the Sobolev embedding,
we have
∫

Ω

∣∣F(u,v)
∣∣dx � ε

(∥∥u∥∥2
2 +
∥∥v∥∥2

2

)
+C

(∫
Ω

(
|u|q + |v|q

)2
)1/2(∫

Ω
eα(u2+v2)dx

)1/2

� εC‖(u,v)‖2
H +C

(
‖u‖q

1,2 +‖v‖q
1,2

)

×
(∫

Ω
e

α‖(u,v)‖2
H

((
u

‖(u,v)‖H

)2
+
(

v
‖(u,v)‖H

)2)
dx

)1/2

.

Now, for ‖(u,v)‖H = ρ such that ρ2 � π/α and by the Moser-Trudinger inequality,
we obtain ∫

Ω

∣∣F(u,v)
∣∣dx � εC‖(u,v)‖2

H +C
(
‖u‖q

1,2 +‖v‖q
1,2

)
� εC‖(u,v)‖2

H +2C‖(u,v)‖q
H .

Therfore, using
(
M1
)
, we get

E(u,v) �
(m0

2
− εC

)
‖(u,v)‖2

H −2C‖(u,v)‖q
H .

Consequently

E(u,v) �
(m0

2
− εC

)
ρ2−2Cρq.

Now, we may fix ε > 0 such that m0
2 −εC > 0. Thus, for ρ > 0 sufficiently small there

exists τ :=
(

m0
2 − εC

)
ρ2−2Cρq > 0 such that

E(u,v) � τ, ∀(u,v) ∈ H with ‖(u,v)‖H = ρ .

The proof of Lemma is complete. �

LEMMA 4. Assume
(
M1
)

and (H4). Then, there exists
(
e1,e2

) ∈H such that

E(e1,e2) < 0 and
∥∥(e1,e2

)∥∥> ρ .
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Proof. Using
(
M1
)

and (H4), we obtain

E(u,v) � m1

2κ
((∫

Ω
|∇u|2dx

)κ +
(∫

Ω
|∇v|2dx

)κ)+m2
(∫

Ω
|∇u|2dx+

∫
Ω
|∇v|2dx

)
−K0

∫
Ω

(
u2 + v2)ν

dx.

� m1

κ
‖(u,v)‖2κ

H +m2‖(u,v)‖2
H −K0

∫
Ω

(
u2 + v2)ν

dx.

Let (u0,v0) ∈ H with u0,v0 > 0 in Ω and ‖(u0,v0)‖H = 1. Thus, we have

E(tu0,tv0) � m1

κ
t2κ +m2t

2− t2νK0

∫
Ω

(
u2

0 + v2
0

)ν
dx,

for all t > 0, which yields E(tu,tv) → −∞ as t → +∞ , provided ν > κ . Setting
(e1,e2) = (tu0,tv0) with t > 0 large enough, the proof is complete. �

4. On the mini-max level

In view of Lemmas 3 and 4, we may apply a version of the Mountain Pass theorem
without Palais-Smale condition to obtain a sequence (un,vn) ∈ H such that

E(un,vn) → ρ0 and E ′(un,vn) → 0,

where

ρ0 = inf
γ∈Γ

max
t∈
[
0,1
]E(γ(t)

)
, (4.1)

with

Γ =
{

γ ∈C
([

0,1
]
,H

)
: γ
(
0
)

= (0,0), γ
(
1
)

= (e1,e2)
}
.

Let d be the inner radius of Ω, that is, it is the radius of the largest open ball
contained in Ω. So Bd

(
x0
) ⊂ Ω. We may assume that x0 = 0. In order to get more

information about the minimax level, it was crucial in our argument to consider the
following concentrating functions ψn(x) = ψ̃n(x/d), n ∈ N where

ψ̃n(x) =
1

2
√

π

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(logn)1/2 for 0 � |x| � 1/n

log(1/|x|)
(logn)1/2 for 1/n � |x| � 1

0 for |x| � 1.

Then, ψn has support in Bd(0) and (ψn,ψn) is such that ‖(ψn,ψn)‖H = 1 ∀n ∈ N.
We can now prove the following upper bounded for ρ0.
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LEMMA 5. With ρ0 defined as in (4.1), we have ρ0 < 1
2M
(
4π/α0

)
.

Proof. Suppose ρ0 � 1
2M
(
4π/α0

)
and we derive a contradiction. As E possesses

the mountain pass geometry, for each n there exist tn, sn > 0 such that

E(tnψn,snψn) = sup
t, s>0

E(tψn,sψn) � 1
2
M
(
4π/α0

)
, ∀n ∈ N.

From this inequality and using that F(u,v) � 0 for all (u,v) ∈ R2
+, we obtain

1
2

(
M
(
tn
∥∥ψn

∥∥2
1,2

)
+M

(
sn
∥∥ψn

∥∥2
1,2

))
� 1

2
M
(
4π/α0

)
.

Using
(
M2
)

and since M is an increasing bijection, we have

tn + sn � 4π/α0. (4.2)

On the other hand, (tn,sn) is a critical point of E(tψn,sψn), so

E ′(tψn,sψn)|(t,s)=(tn,sn)
= 0

and therefore

m
( t2n

2

)
t2n +m

(s2
n

2

)
s2
n =

∫
Ω

(
f (tnψn,snψn)tnψn +g(tnψn,snψn)snψn

)
dx.

Now, using that tnψn → ∞, snψn → ∞ on
{|x| � δ/n

}
and (H2), we obtain

m
( t2n

2

)
t2n +m

(s2
n

2

)
s2
n �

∫
Ω∩
{
|x|�d/n

} eα0

(
t2n+s2n

2

)
ψ2

n (tn + sn)ψndx

=
√

πd2

2n2 eα0

(
t2n+s2n

2

)
logn
4π (tn + sn)(logn)1/2

=
√

πd2

2
e
( α0(t2n+s2n)

8π −2
)

logn(tn + sn)(logn)1/2,

and from
(
M1
)
, we can conclude that

m1

2κ−1

(
t2n + s2

n

)κ �
√

πd2

2
e
( α0(t2n+s2n)

8π −2
)

logn(tn + sn)(logn)1/2. (4.3)

Note that, we can see
m1

2κ−1

(
t2n + s2

n

)κ

e
( α0(t2n+s2n)

8π −2
)

logn(tn + sn)(logn)1/2

→ 0 if t2n + s2
n → +∞.

It follows from this and (4.3), we infer that

t2n + s2
n → 16π/α0. (4.4)

Moreover, using (4.3) again, we obtain

m1

2κ−1

(
t2n + s2

n

)κ �
√

πd2

2
(tn + sn)(logn)1/2

This in turn implies that t2n + s2
n → ∞ as n → ∞ , which contradicts (4.4). �
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5. Proof of main result

First, we consider the Nehari manifold asssociated to the problem (1.1) as

N =
{
(u,v) ∈ H �

{
(0,0)

}
:
〈
E ′(u,v),(u,v)

〉
= 0
}

and the number A := inf
(u,v)∈N

E(u,v).

LEMMA 6. Assume that the conditions (H0) , (H5) and (M3) hold. Then ρ0 � A.

Proof. Given (u,v) ∈ N, let us define

h(t) := E(tu, tv) =
1
2
M
(
t2‖u‖2

1,2

)
+

1
2
M
(
t2 ‖v‖2

1,2

)
−
∫

Ω
F(tu,tv)dx, ∀t > 0.

The function h is differentiable and

h′(t) =
〈
E ′(tu, tv),(u,v)

〉
= m

(
t2
∥∥u∥∥2

1,2

)
t
∥∥u∥∥2

1,2 +m
(
t2
∥∥v∥∥2

1,2

)
t
∥∥v∥∥2

1,2−
∫

Ω
f (tu, tv)udx−

∫
Ω

g(tu,tv)vdx,

∀t > 0.

Since
〈
E ′(u,v),(u,v)

〉
= 0, for all (u,v) ∈ N , we get

h′(t) = t3
∥∥u∥∥3

1,2

⎛
⎝m

(
t2
∥∥u∥∥2

1,2

)
t2
∥∥u∥∥2

1,2

−
m
(∥∥u∥∥2

1,2

)
∥∥u∥∥2

1,2

⎞
⎠

+t3
∥∥v∥∥3

1,2

⎛
⎝m

(
t2
∥∥v∥∥2

1,2

)
t2
∥∥v∥∥2

1,2

−
m
(∥∥v∥∥2

1,2

)
∥∥v∥∥2

1,2

⎞
⎠

+t3
∫

Ω

(
f (u,v)

u3 − f (tu,tv)
t3u3

)
u4dx+ t3

∫
Ω

(
g(u,v)

v3 − g(tu,tv)
t3v3

)
v4dx.

Then h′
(
1
)

= 0 and from
(
M3
)

and (H5), we conclude that h′(t) � 0 for 0 < t < 1
and h′(t) � 0 for 0 < t < 1. Hence

E(u,v) = max
t�0

E(tu,tv).

Now, defining γ :
[
0,1
]→ H , γ(t) =

(
te1,te2

)
, we have γ ∈ Γ and therfore

ρ0 � max
t∈[0,1]

E(γ(t)) � max
t�0

E(tu,tv) = E(u,v),

which implies ρ0 � A. �
Next, we prove that E satisfies Palais-Smale condition.
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PROPOSITION 1. Assume (M1)–(M4) and (H0)–(H5) . Then the functional E
satisfies Palais-Smale condition for all ρ0 < 1

2M
(
4π/α0

)
.

In order to prove this proposition, we shall use the following result of convergence,
whose proof can be found in [18].

LEMMA 7. Let {(un,vn)} ⊂ H be a Palais-Smale sequence. Then, ∃ (u0,v0)
such that, up to a subsequence, un ⇀ u0 and vn ⇀ v0 in H1

0 (Ω) , and

lim
n→∞

∫
Ω

f (un,vn) =
∫

Ω
f (u0,v0)dx,

lim
n→∞

∫
Ω

g(un,vn)dx =
∫

Ω
g(u0,v0)dx.

Proof of proposition 1. Let (un,vn) be a sequence in H verifying

E(un,vn) → ρ0 and E ′(un,vn) → 0,

which implies

1
2
M
(∫

Ω
|∇un|2dx

)
+

1
2
M
(∫

Ω
|∇vn|2dx

)
−
∫

Ω
F(un,vn)dx → ρ0 (5.1)

m
(∫

Ω

∣∣∇un
∣∣2dx

)∫
Ω
|∇un|2 dx+m

(∫
Ω

∣∣∇vn
∣∣2dx

)∫
Ω
|∇vn|2 dx

−
∫

Ω
f (un,vn)un dx−

∫
Ω

g(un,vn)vn dx � εn‖(un,vn)‖H , (5.2)

where εn → 0. It follows from (5.1) and (5.2) using (H3),
(
M1
)

and
(
M3
)

we obtain

C+‖(un,vn)‖H � E(un,vn)− 1
θ
∣∣E ′(un,vn)(un,vn)

∣∣
�
(θ −4

4θ

)
‖(un,vn)‖2

H .

Hence (un,vn) is bounded in H . Now we take a subsequence denoted again by
(un,vn) such that, for some (u0,v0) ∈H , we have

(un,vn) ⇀ (u0,v0) in H

un → u0 and vn → v0 in Lq(Ω), ∀q � 1. (5.3)

un
(
x
)→ u0

(
x
)

and vn
(
x
)→ v0

(
x
)

a.e. in Ω.

Now, we can apply Lemma 7 to conclude that∫
Ω

f (un,vn)dx −→
∫

Ω
f (u0,v0)dx and

∫
Ω

g(un,vn)dx −→
∫

Ω
g(u0,v0)dx, (5.4)
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and therefore using (H3), (5.2) and generalized Lebesgue dominated convergence the-
orem, we obtain ∫

Ω
F(un,vn)dx −→

∫
Ω

F(u0,v0)dx. (5.5)

At this point, we affirm that (u0,v0) 	=(0,0). We suppose that (u0,v0) =(0,0) and
we derive a contradiction. Since (u0,v0) =(0,0) , we have

∫
Ω F(un,vn)dx −→ 0 and

so
1
2
M
(∫

Ω
|∇un|2dx

)
+

1
2
M
(∫

Ω
|∇vn|2dx

)
→ ρ < M

(
4π/α0

)
,

and therfore
‖(un,vn)‖2

H
2 < 4π/α0. Thus,there exist N ∈ N and γ > 0 such that

α0

2
‖(un,vn)‖2

H < γ < 4π for all n � N.

Now, choose p > 1 close to 1 and α > α0 close to α0 so that we still have

p
α
2
‖(un,vn)‖2

H < γ < 4π .

From this and by using (2.2), (2.3), Hölder inequality, lemma 1 and (5.3) we get

∣∣∫
Ω

f (un,vn)un dx+
∫

Ω
g(un,vn)vn dx

∣∣
� C1

(∫
Ω
|un|2dx+

∫
Ω
|vn|2dx

)
+C2

(∫
Ω

(∣∣un
∣∣+ |vn|

)
e

α
2 (u2

n+v2
n)dx

)

� C1

(∥∥un
∥∥2

2 +
∥∥vn
∥∥2

2

)
+C3

(∫
Ω

(
|un|+ |vn|

)p/(p−1)
)(p−1)/p(∫

Ω
ep α

2 (u2
n+v2

n)dx

)1/p

� C1

(∥∥un
∥∥2

2 +
∥∥vn
∥∥2

2

)
+C4

(∥∥un
∥∥

p/(p−1) +
∥∥vn
∥∥

p/(p−1)

)

×
(∫

Ω
e

p α
2 ‖(un,vn)‖2

H

((
un

‖(un,vn)‖H

)2
+
(

vn
‖(un,vn)‖H

)2)
dx

)1/p

� C1

(∥∥un
∥∥2

2 +
∥∥vn
∥∥2

2

)
+C5

(∥∥un
∥∥

p/(p−1) +
∥∥vn
∥∥

p/(p−1)

)
→

n→∞
0.

Since

E ′(un,vn)(un,vn) = m
(∥∥un

∥∥
1,2

)∥∥un
∥∥

1,2 +m
(∥∥vn

∥∥
1,2

)∥∥vn
∥∥

1,2

−
∫

Ω
f (un,vn)un dx−

∫
Ω

g(un,vn)vn dx

and E ′(un,vn)(un,vn) → 0 it follows that

m
(
‖un‖1,2

)
‖un‖1,2 +m

(
‖vn‖1,2

)
‖vn‖1,2 → 0.

Hence, by (M1) we have ‖(un,vn)‖2
H → 0 and therfore E(un,vn) → 0, what is absurd

and thus we must (u0,v0) 	=(0,0) . Next, we will make some assertions.
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Assertion 1. E(u0,v0) � 0

First, we claim that

m
(∥∥u0

∥∥2
1,2

)∥∥u0
∥∥2

1,2+m
(∥∥v0

∥∥2
1,2

)∥∥v0
∥∥2

1,2 �
∫

Ω
f (u0,v0)u0dx+

∫
Ω

g(u0,v0)v0dx. (5.6)

Suppose by contradiction that

m
(∥∥u0

∥∥2
1,2

)∥∥u0
∥∥2

1,2 +m
(∥∥v0

∥∥2
1,2

)∥∥v0
∥∥2

1,2 <
∫

Ω
f (u0,v0)u0dx+

∫
Ω

g(u0,v0)v0dx,

that is
E ′(u0,v0)(u0,v0) < 0.

Now, using
(
M1
)
, (H1) and Sobolev imbedding, we can see that

E ′(tu0,tv0)(u0,v0) > 0 for t sufficiently small.

Thus,there exists τ ∈ (0,1
)

such that E ′(τu0,τv0)(u0,v0) = 0, which implies that
(τu0,τv0) ∈N . Then, according to (1.2),

(
H6
)
, semicontinuity of norm and Fatou

lemma we obtain

ρ0 � A � E(τu0,τv0) = E(τu0,τv0)−1
4
E ′(τu0,τv0)(τu0,τv0)

=
1
2
M
(∥∥τu0

∥∥2
1,2

)
− 1

4
m
(∥∥τu0

∥∥2
1,2

)∥∥τu0
∥∥2

1,2

+
1
2
M
(∥∥τv0

∥∥2
1,2

)
− 1

4
m
(∥∥τv0

∥∥2
1,2

)∥∥τv0
∥∥2

1,2

+
1
4

∫
Ω

(
f (τu0,τv0)τu0 +g(τu0,τv0)τv0−4F(τu0,τv0)

)
dx

<
1
2
M
(∥∥u0

∥∥2
1,2

)
− 1

4
m
(∥∥u0

∥∥2
1,2

)∥∥u0
∥∥2

1,2 +
1
2
M
(∥∥v0

∥∥2
1,2

)
−1

4
m
(∥∥v0

∥∥2
1,2

)∥∥v0
∥∥2

1,2

+
1
4

∫
Ω

(
f (u0,v0)u0 +g(u0,v0)v0−4F(u0,v0)

)
dx

� liminf
n→∞

[1
2
M
(∥∥un

∥∥2
1,2

)
− 1

4
m
(∥∥un

∥∥2
1,2

)∥∥un
∥∥2

1,2

]
+liminf

n→∞

[1
2
M
(∥∥vn

∥∥2
1,2

)
− 1

4
m
(∥∥vn

∥∥2
1,2

)∥∥vn
∥∥2

1,2

]
+liminf

n→∞

[1
4

∫
Ω

(
f (un,vn)un +g(un,vn)vn −4F(un,vn)

)
dx
]

� lim
n→∞

[
E(un,vn)−1

4
E ′(un,vn)(un,vn)

]
= ρ0,

which is absurd.
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Next, we claim that E(u0,v0) � 0. By (5.6), (1.2) and (1.4) one has

E(u0,v0) � 1
2
M
(∥∥u0

∥∥2
1,2

)
− 1

4
m
(∥∥u0

∥∥2
1,2

)∥∥u0
∥∥2

1,2 +
1
2
M
(∥∥v0

∥∥2
1,2

)
−1

4
m
(∥∥v0

∥∥2
1,2

)∥∥v0
∥∥2

1,2

+
1
4

∫
Ω

(
f (u0,v0)u0 +g(u0,v0)v0−4F(u0,v0)

)
dx

� 0.

This completes the proof of assertion 1.

Assertion 2. (un,vn) → (u0,v0) in H .

As (un,vn) is bounded, up to a subsequence, ‖(un,vn)‖H → r > 0, with

r2 = r2
1 + r2

2,
∥∥un
∥∥

1,2 → r1 and
∥∥vn
∥∥

1,2 → r2.

By using (5.5) and semicontinuity of norm, we have

E(u0,v0) � ρ0. (5.7)

In this case we claim that E(u0,v0) = ρ0. So it remains to prove (5.7), assume by
contradiction that E(u0,v0) < ρ0. Then,

∥∥u0
∥∥

1,2 < r/2 and
∥∥v0
∥∥

1,2 < r/2. Let

Un =
2un

‖(un,vn)‖H
, Vn =

2vn

‖(un,vn)‖H
, U0 =

2u0

r
and V0 =

2v0

r
.

We have

Un ⇀ U0 in H1
0

(
Ω
)

and Vn ⇀ V0 in H1
0

(
Ω
)

∥∥U0
∥∥

1,2 < 1 and
∥∥V0
∥∥

1,2 < 1.

Thus, by lemma 2

sup
n∈N

∫
Ω

ep
(
U2

n +V2
n

)
dx < ∞, ∀p <

4π
1−∥∥U0

∥∥2
1,2−

∥∥V0
∥∥2

1,2

. (5.8)

On the other hand,

2ρ0−2E(u0,v0) = M
(
r2
1

)
+M

(
r2
2

)− (M(∥∥u0
∥∥2

1,2

)
+M

(∥∥v0
∥∥2

1,2

))
. (5.9)

Using this equality, lemma 5 and the fact that E(u0,v0) � 0, we get

M
(
r2
1

)
+M

(
r2
2

)
< M

(4π
α0

)
+M

(∥∥u0
∥∥2

1,2

)
+M

(∥∥v0
∥∥2

1,2

)
.

From
(
M1
)

and
(
M2
)

it follows that

M
(
r2
1

)
< M

(
4π
α0

+
∥∥u0
∥∥2

1,2 +
∥∥v0
∥∥2

1,2

)
,
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and

M
(
r2
2

)
< M

(
4π
α0

+
∥∥u0
∥∥2

1,2 +
∥∥v0
∥∥2

1,2

)
,

which implies that

r2
1 <

4π
α0

+
∥∥u0
∥∥2

1,2 +
∥∥v0
∥∥2

1,2 and r2
2 <

4π
α0

+
∥∥u0
∥∥2

1,2 +
∥∥v0
∥∥2

1,2, (5.10)

and therfore

r2
1 + r2

2 = r2 <
8π
α0

+2
(∥∥u0

∥∥2
1,2 +

∥∥v0
∥∥2

1,2

)
. (5.11)

Now, we observe that

r2 =
r2 −2

(∥∥u0
∥∥2

1,2 +
∥∥v0
∥∥2

1,2

)
1−∥∥U0

∥∥2
1,2 −

∥∥V0
∥∥2

1,2

,

and from (5.11), it follows that

r2

2
<

4π
α0

(
1−∥∥U0

∥∥2
1,2−

∥∥V0
∥∥2

1,2

)−1
.

Then, we can choose p > 4π such that α0
‖(un,vn)‖2

H
2 < p < 4π

(
1−∥∥U0

∥∥2
1,2−

∥∥V0
∥∥2

1,2

)−1

for n sufficiently large. Now, taking q > 1 close to 1 and α > α0 close to α0 such
that

qα
‖(un,vn)‖2

H

2
� p < 4π

(
1−∥∥U0

∥∥2
1,2−

∥∥V0
∥∥2

1,2

)−1
, for n large enough

and invoking (5.8), for some C > 0, we concluded that

∫
Ω

eqα
(

u2
n+v2n

2

)
dx =

∫
Ω

eqα
‖(un,vn)‖2H

4

(
U2

n +V2
n

)
dx

�
∫
Ω

ep
(
U2

n +V2
n

)
dx � C. (5.12)

Hence, using Hölder inequality, (5.12) and (5.3) we reach

∣∣∫
Ω

f (un,vn)
(
un−u0

)
dx
∣∣→ 0 as n → ∞,

and ∣∣∫
Ω

g(un,vn)
(
vn− v0

)
dx
∣∣→ 0 as n → ∞.

Since E ′(un,vn)(
(
un−u0

)
,0) = o

(
1
)
, we get

m
(∥∥un

∥∥2
1,2

)∥∥un
∥∥2

1,2−m
(∥∥un

∥∥2
1,2

)∫
Ω

∇un∇u0 dx → m
(
r2
1

)
r2
1 −m

(
r2
1

)∥∥u0
∥∥2

1,2 = 0.
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It follows that ∥∥u0
∥∥

1,2 = r1.

Similarly, we obtain ∥∥v0
∥∥

1,2 = r2,

which implies that ‖(un,vn)‖H → ‖(u0,v0)‖H and so (un,vn) → (u0,v0) in H . In
view of the continuity of E, we must have E(u0,v0) = ρ0 what is an absurde. Thus,
the proof of Proposition 1 is complete. �

Finalizing the proof of Theorem 1. It follows from the hypotheses in Theorem 1
that E satisfies Palais-Smale condition for all ρ0 < 1

2M
(
4π/α0

)
, see proposition 1.

To finish the proof of theorem 1, we use lemmas 2 and 3 and apply the Mountain pass
Theorem. �
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