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EXISTENCE OF SOLUTIONS FOR NONLOCAL ELLIPTIC
SYSTEMS WITH EXPONENTIAL NONLINEARITY

BRAHIM KHALDI

(Communicated by A. El Hamidi)

Abstract. In this paper, we establish the existence of solutions for a Kirchhoff-type system with
Dirichlet boundary condition and nonlinearities having exponential critical growth. Our ap-
proach is based on the Trudinger-Moser inequality and on a minimax theorem.

1. Introduction

Let Q be a smooth bounded domain in R2. In this article, we study the existence
of positive solutions to the following nonlinear Kirchhoff type system

—m(/|Vu}2dx)Au = f(u,v) inQ,
Q

—m(/|Vv|2dx)Av=g(u,v) inQ, (1.1)
Q

u=v=_0 on dQ,

where the nonlinear terms f and g are allowed to have exponential critical growth, and
m:RT — R™, is a continuous function that satisfy some conditions which will be stated
later on. By means of the Trudinger-Moser inequality, we shall consider the variational
situation in which VF (u,v) = (f(u,v),g(u,v)), for some function F : R* — R of class
C?, where VF stands for the gradient of F in the variables w = (u,v) € R?.

We make the following assumptions on the function m
(M) There exist real numbers myg, my,my >0 and k¥ > 1 such that
mo <m(t) <mt* ' 4my, forallr>0.
1
(Mp) M(s)+M(t) < M(s+1t) Vs,t >0 where M(t) = [ m(x)dx
0
(M3) mf(t)/t is noninreasing for z > 0.
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A typical example of a function satisfying the conditions (M;)—(M3) is given by
m(t) =my+ bt with b >0 and for all 7 > 0. As a consequence of (M3), a straightfor-
ward computation shows that

1
M(t)— Em(t)t is nondecreasing forz > 0. (1.2)

System (1.1) is related to the stationary version of a model established by Kirch-
hoff [12]. More precisely, Kirchhoff proposed the following model

L

which extends D’ Alembert’s wave equation with free vibrations of elastic strings, where
p denotes the mass density, Py denotes the initial tension, 4 denotes the area of the
cross section, E denotes the Young modulus of the material, and L denotes the length
of the string.

In the recent years, problems involving Kirchhoff type operators have been studied
in many papers, we refer to [3], [4], [10], [19], [8] in which the authors have used the
variational method and the topological method to get the existence of solutions. In [8],
by a direct variational approach, the autors establish the exietence of a positive ground
state solution for a nonlocal Kirchhoff of the type

_m(/’Vulzdx)Auzf(x,u) in Q,

Q
u=>0 on 0Q.

Motivated by above and the ideas introduced in [18], in this work, we will study
the existence of nontrivial solutions for problem (1.1).
Let us introduce the precise assumptions under which our problem is studied.

(Ho) f,g are C' functions such that f(s,7) >0, g(s,z) > 0 forall s,z >0, and
f(s,0) =g(s,1)=0if s<Oorz<O0.

(H1) f(s,;t) =o(VsZ+2)" and g(s.t) = o(v/s2+12)" as |(s,1)| — 0, for some
ueo,4).
(Hy) f and g have op-exponential critical growth, i.e., there exists o > 0 such

flst) o, 860 _{J(:;ovvo&io&

242 e H) /2 T 202 a2 42) /2
(H3) There exists 0 > 4 such that
0< 0F(s,1) < f(s,1)s+g(s,0)t, V(s,1) € R?\ {(0,0)}.

(Hy4) For every v > 1, there exists a constant Ky such that

F(s,t) = Ko(s* +1%)" forall s,t >0
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(Hs) ) )
fls) S0 8lst) _s(0)

<

(He) For all s, > 0,

df(s,t)  dg(s,t)
ds S ds

fors>s>0,7>t>0.

df(s.t)  dg(s.t)
B s+ BP t.

3f(s,1) < t and 3g(s,r) <

We observe that condition (Hg) implies

f(s,2) +g(s,t) —4F (s,) < f(5,7) +g(5,7) —4F (5,7) fors >s>0and7 > > 0.
(1.4)
An example of a function satisfying the above assumptions with oy =1 is

(s4 +t4) P2 i s 0,t>0
F(s,t)=
0 otherwise.

Now, we are ready to state our main result

THEOREM 1. Under assumption (My)—(My) and (Hy)—(Hs), Problem (1.1) ad-
mits at least one nontrivial solution (ug,vo) € H} () x H} ().

This work is organised as follows: In Section 2, we present the variational setting
in which our problem will be treated, and some preliminary results. Section 3 is devoted
to show that the energy functional has the mountain pass geometry and in Section 4 we
obtain an estimate for the minimax level associated to our functional. Finally, we prove
our main result in Section 5.

2. Preliminaries

As mentioned in the introduction, the nonlinearities f and g are allowed to have
exponential critical growth which allows to treat the problem by variational methods.
This growth is given by the so-called Trudinger-Moser inequality (see [17], [22]), which
says that if u is a H} () function then there exists a constant C > 0 such that

sp [ e*ax<clal ita <4 @.1)
<1/Q

H”HH(%(Q)

Let 7 := H} (Q) x H}(Q) be the Sobolev space endowed with the norm
12
Iaw)llor = ((lelfF o+ 011F2) " where Jul, = ( [ [Vadx)?

and ||u|| denotes the normin L"(Q), i.e. ||ul| = ( [ |u|"dx) Y In this work, we shall
use the following adapted version of Moser-Trudinger inequality for the pair (u,v) [18]:
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LEMMA 1. Let (u,v) € 5, then [, ey(uz'”z)dx < oo forany y> 0. Moreover,
there exists a constant C = C(Q) such that

sup / ey(u2+v2) dx < C, provided that 7 < 4.
([ () ]| p =1

We shall look for solutions of (1.1) by finding critical points of the energy func-
tional E : 77 — R given by

E(u,v) = %M(/Q|Vu|2dx> + %M(/Q|Vv\2dx> —/QF(mv)dx7

1
where M(t) / m(s)ds. Under our assumptions we have that E is well defined and it is

0
C! on . Indeed, by (H,), (H) and for & > 0 there exists § > 0 such that

flu,v) < eV +v2 and g(u,v) = e\/u? +12 always that | (u,v)| < 8.
On the other hand, for o > oy, there exist constants C > 0 such that
Fu,v) < Ce* /2 and g(u,v) < Ce™@ /2 for all |(u,v)]| = 8.

Thus, for all (u,v) € 5 we have

flu,v) <ey u2+v2+Ce°‘(”2+"2)/2, (2.2)
and ,
g(u,v) < eVu?+1? + Ce® )2, (2.3)
Hence, using (H3), (2.2) and (2.3), we obtain
|F(u,v)| < e(u?+v?) +CVu+ p2e® V)2, (2.4)

This inequality together with Lemma 1 yields F(u,v) € L' (Q) forall (u,v) € 5,
which implies that E is well defined, for o0 > o. Using standard arguments, we can
see that E € C'(J#,R) with

E' (u,v)(¢,w) zm(/’Vu|2dx)/QVu.V¢ dx—l—m(/’Vv’zdx)/QVv.Vl[/dx
Q Q

— | o dx— [ guvwds,

forall (¢,y) € 2.

Also, to prove our main result, we use the following version of Lion’s higher
integrability lemma [18]:

LEMMA 2. Let (u,,vy) be a sequence in S such that ||(un,v)||» = 1, for all
neN* and uy, — u, v, —=v in H}(Q) for some (u,v) # (0,0).

~1
Then, for 4w < p < 471:(1 - H(u,v)||2%p> , sup Jo e”(”%”%)dx < oo,
n>1
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3. The Mountain Pass Geometry

In this section, we prove that the functional E has the Mountain Pass Geometry.
This fact is proved in the next lemmas:

LEMMA 3. Assume (My) and (Hy)—(H3), then there exist positive constants T
and p such that
E(u,v) =1, V(u,v) € 7 ||(u,v) |l = p-

Proof. Just as we have obtained (2.4), we deduce that
|F(u,v)| < e +v?) +C(u+ vq)ea(u2+v2)/2’

for all (u,v) € S and q > 2. Using Holder’s inequality and the Sobolev embedding,
we have

/Q [P (u,v) i < e (Julf5 + []]3) +c</g (jute + |v|q>2)1/2</gea(u2+v2)dx)1/2

2
< eCuv) 3 + €l o+ V17 )

2 i 2
" (/ eaH(w)Hif((\\(u,\f')w) + (1) )dx>
Q

12

Now, for ||(u,v)||» = p such that p?> < /o and by the Moser-Trudinger inequality,
we obtain

L1 ) < ) B+ € (o + 011
< C||(u,v) |15 +2C | (u,v)]|%,.
Therfore, using (M), we get

mo
Eu,v) > (5 —C) | wv)5 = 2C11w,v) |-
Consequently
E(u,v) > (? - £C>p2 —2Cpe.

mo

> —&C > 0. Thus, for p > 0 sufficiently small there
exists T:= (% — £C>p2 —2Cp? >0 such that

Now, we may fix € > 0 such that

E(u,v) > 7, Y(u,v) €  with ||(u,v)||~=p.
The proof of Lemma is complete. [
LEMMA 4. Assume (Ml) and (Hy). Then, there exists (61,62) € S such that

E(ej,ez) <0 and H(el,ez)H >p.
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Proof. Using (M;) and (Hs), we obtain

E(u,v) < 31— /|Vu|2dx /|Vv\2dx) +my /\Vu\zdx+/\Vv|2dx)
—Ko/ (u +v) dx.
1) 3 a1, ) 2 = KO/Q(M2+V2)de.

Let (ug,vo) € # with up,vp >0 in Q and ||(ug,vo)|| s+ = 1. Thus, we have
E (tug,tvg) < %I2K+Fnzl2 —tsz()/ (M(2)+V(2))vdx,
Q

for all + > 0, which yields E(ru,tv) — —oo as t — +oo, provided v > k. Setting
(e1,e2) = (fug,tvp) with 7 > 0 large enough, the proof is complete. [

4. On the mini-max level

In view of Lemmas 3 and 4, we may apply a version of the Mountain Pass theorem
without Palais-Smale condition to obtain a sequence (u,,v,) € 5 such that

E(uy,vy) — po and E'(uy,v,) — 0,

where

inf max E “4.1)
po = inf 16[075] (1)),

with
I'={yec([0,1],5):y(0) =(0,0), y(1)=(e1,e2) }.

Let d be the inner radius of Q, that is, it is the radius of the largest open ball
contained in Q. So By (xo) C Q. We may assume that xo = 0. In order to get more
information about the minimax level, it was crucial in our argument to consider the
following concentrating functions y(x) = W, (x/d), n € N where

(logn)'/?  for0 < |x| < 1/n

8 1 "
Pn(x) = NG lﬁiéi/)‘l/‘z) for 1/n < |x] <

0 for |x| > 1

Then, y, has support in B;(0) and (W, ) is such that ||(W,, W,)||» =1Vn €N.
We can now prove the following upper bounded for py.
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LEMMA 5. With py defined as in (4.1), we have py < %M(4TE/O(()).

Proof. Suppose po > 2 (47t/ ao) and we derive a contradiction. As E possesses
the mountain pass geometry, for each n there exist #,, s, > 0 such that

1
E(ty W, $,Wn) = sup E(t Wy, sy,) > (471/050) Vn € N.

t,s>0

From this inequality and using that F(u,v) > 0 forall (u,v) € R2, we obtain

M (llvall? )+ M(sallwa? ) > 5M (47 ).

Using (M,) and since M is an increasing bijection, we have

tht sy =41/ 0. 4.2)
On the other hand, (7,,s,) is a critical point of E(¢y,,sy,), so
(l WnasWn)| =0

=(tn.sn)
and therefore
2

(;): +m<22)s2_/9(f(tnwn,snwn)tnwn+g(tnv/n,snwn)snv/n>dx

Now, using that 7, W, — e, s, — o on {|x| < /n} and (H2), we obtain

t,, +Y,,

Tiy,2 Suy 2 ocO( )Wn
m(z)tn—f—m(2 )sn > /Qm{x<d/n e (tn + 5n) Wndx

\/_d2 (t%ﬂ%) Ea (tn—|—sn)(10gn)1/2
N \/;dze(w—ﬂlogn(tn+Sn)(10gn)1/27
and from (M), we can conclude that
2’:’; -(tr+s7)" > ‘Fdz (W*) ogn (1, +5,) (logn) /2. (4.3)

Note that, we can see

T l(tz—i—s )

22
P = O F gy sy = e
( S 72)10gn(

tn +5,)(logn)!/2
It follows from this and (4.3), we infer that

e

2452 — 161/ . (4.4)
Moreover, using (4.3) again, we obtain
22
(t +s ) \/— (t,,—i—s,,)(logn)l/2

ZK' 1
This in turn implies that ¢2 +s2 — oo as n — oo, which contradicts (4.4). [
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5. Proof of main result
First, we consider the Nehari manifold asssociated to the problem (1.1) as
N = {(u,v) IS %\{(0,0)}.’<E’(u,v), (u,v)> = O}

and the number A := inf E(u,v).
(uy)es

LEMMA 6. Assume that the conditions (Hy), (Hs) and (M3) hold. Then py < A.
Proof. Given (u,v) € N, let us define

1 1
h(t) == E(tu,v) = EM(ﬁnuniz) n EM(RHVH%Q) —/QF(tu,tv)dx, v > 0.

The function £ is differentiable and
W)= <E/(tu7tv)7 (u7v)>
= m<t2||u||?2>t“u||?2 +m<t2}|v||i2>t“v||i2 - /Qf(tu,tv)udx— /Qg(tu,tv)vdx,
vt > 0.

Since (E'(u,v),(u,v)) =0, forall (u,v) € A, we get

m(elulin) ()

W) =2}, -

2l a7
m(2ll3,)  m([)
+||v][} = - ’
B N 13
flu,v)  f(tu,tv) g(u,v)  g(tu,tv)
+t3/Q< PR e )u4dx+t3/g<—v3 —T 5 )v4dx.

Then #/(1) =0 and from (M3) and (Hs), we conclude that //'(t) >0 for 0 <7 < 1
and '(1) <0 for 0 <t < 1. Hence

E(u,v) = maxE (tu,1v).
(u,v) max (tu,tv)

Now, defining y: [0,1] — J#, y(t) = (tey,tez), we have y € " and therfore

< E(y(t)) < E(tu,tv) = E(u,v),
Po < max, (v(r)) < maxk(tu,tv) = E(u,v)

which implies pg <A. O

Next, we prove that E satisfies Palais-Smale condition.
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PROPOSITION 1. Assume (My)—(My) and (Hy)—(Hs). Then the functional E
satisfies Palais-Smale condition for all pg < %M (477: / O(()).

In order to prove this proposition, we shall use the following result of convergence,
whose proof can be found in [18].

LEMMA 7. Let {(un,vn)} C F be a Palais-Smale sequence. Then, 3 (uo,vo)
such that, up to a subsequence, u, — uy and v, — vy in Hé (Q), and

lim f Up,Vn) /f 1o, vo)d.

n—00

lim g Up,Vp)dx = /g up,vo)d.

N—o0

Proof of proposition 1. Let (un,v,) be a sequence in ¢ verifying
E(uy,vy) — po and E'(uy,v,) — 0,

which implies

—M(/Q\Vun\2dx> —|—%M</Q|an|2dx> —/QF(un,vn)dx—>p0 (5.1

m(/|Vun}2dx)/ Vit |? dx+m(/|an|2dx)/ Vv, |* dx
Q ° Q °
—/Qf(un,vn)un dx—/gg(un,vn)vn dx < &|(un, va) || s (5.2)

where g, — 0. It follows from (5.1) and (5.2) using (H3), (M;) and (M3) we obtain

1
C+ || (un,vn)l| o2 = E (n,vn) — §|E/(una"n)(unavn)’

> (20 Nl

Hence (uy,,v,) is bounded in .. Now we take a subsequence denoted again by
(t4n,vy) such that, for some (ug,vo) €€, we have

(tt,vi) — (ug,vo) in
un — up and v, — vo in L9(Q), Vg > 1. (5.3)
n (x) — uo(x) and v, (x) — vo(x) a.e. in Q.

Now, we can apply Lemma 7 to conclude that

/Qf(un,vn)dx—> /Qf(uo,vo)dx and /Qg(un,vn)dx—> /Qg(uo,vo)dx, (5.4)
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and therefore using (Hs), (5.2) and generalized Lebesgue dominated convergence the-
orem, we obtain

/F(un7vn)dx—> /F(uo,vo)dx. (5.5)
Q Q

At this point, we affirm that (ug,v) #(0,0). We suppose that (ug,vo) =(0,0) and
we derive a contradiction. Since (ug,v9) =(0,0), we have [ F(un,v,)dx — 0 and
SO

lM /\vun\2dx)+lM /|an|2dx>—>p < M(4 /o),

Il (”mvn)

and therfore NGty < 47 /0. Thus,there exist N € N and y > 0 such that

%n(un,vn)n%;f <y<d4nforalln>N.

Now, choose p > 1 close to 1 and o > o close to ¢ so that we still have
o

PEH(”mVn)”?%ﬂ <y<d4m.

From this and by using (2.2), (2.3), Holder inequality, lemma 1 and (5.3) we get

|/f(un7vn)un dx+/g(un7vn)vn dx|

<a / Pl + / wdx) + o [, -+ aheiieiar)
Q Q Q
—1 pP—

<1+ o) +cs(r|unu,,/<,,l>+ ||vn||,,/<,,l>) o

E'(tn, vn) (ttn, V) = m(H“”ng) [[unl] 5 +m<||VnH1,2) [[vall, 5
—/f(u,,,vn)un dx—/g(un,vn)vn dx
Q Q
and E’ (uy, vy) (tty, v) — O it follows that
m( el ) leally o0 (vl 2 ) vl 2 =0

Hence, by (M;) we have |[|(u,v4)||%, — 0 and therfore E(u,,v,) — 0, what is absurd
and thus we must (ug,vo) # (0,0). Next, we will make some assertions.
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Assertion 1. E(ug,vo) =0

First, we claim that
([l ) o}, (ol ) vl > [ oot [ glu,vopvad. (5.6

Suppose by contradiction that

(o]} o) o[£+ (ool ) ool < [ oo vo)uod+ [ o vo)vods:

that is
E/(Lt()7 V())(l/t()7 V()) <0.

Now, using (M), (H;) and Sobolev imbedding, we can see that
E'(tug,tvo)(uo,vo) >0 for t sufficiently small.
Thus,there exists 7 € (0,1) such that E'(Tug, Tv)(uo,vo) =0, which implies that

(Tug, Tvo) €. Then, according to (1.2), (H6), semicontinuity of norm and Fatou
lemma we obtain

1
po < A< E(Tug, Tvo) = E(Tuo,TV())—ZE/(Tu()7TVO)(TM(),TV())

1 1
— L(Jfwl) 2ol
1 1
a(lolls) - (el el
+%/ <f(7:uo,7:vo)ruo+g(1’uo,7:v0)7:v0—4F(Tuo,7:v0)>dx
Q
1 1 1
< 3M(JJuoll?5) = gm (ol ) ol 1}, + 52 (1ol )
1 2 2
—m(IIvoll,) ol

+%/Q (f(uo7VO)Mo+g(uo7VO)Vo—4F(uo,VO)>dx

NN 1
< timint[ 30 (o) = o0 (o) o

n—oo

stimin 23 ([2,) = T (vl ) o)

—l—liminf[;‘/Q (f(un,vn)u,, + g(ttn,vn)va —4F(un,vn)>dx]

n—00

< lim {E(unvvn)_%E/(”nvvn)(”mVn)] = Po;

n—oo

which is absurd.
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Next, we claim that E (ug,vo) = 0. By (5.6), (1.2) and (1.4) one has

1 2 1 2 2 1 2
Eluocro) > 201 (aol25) = S () ol + S (o)
— (ol ) ol
4 Ofl12 J1IYOll12
1
+4—1/Q (f(uo,vo)uo-i-g(uo,vo)vo—4F(u0,Vo)>dx
> 0.
This completes the proof of assertion 1.
Assertion 2. (up,vy) — (up,vo) in J2.
As (up,vy) is bounded, up to a subsequence, ||(un,vn)|| 2 — r > 0, with
P=ritr, ], = and [f],, —r.

By using (5.5) and semicontinuity of norm, we have

E(ug,v0) < po- (5.7)

In this case we claim that E(ug,vo) = po. So it remains to prove (5.7), assume by
contradiction that E(ug,vo) < po. Then, MOHLZ <r/2 and HVOHLZ <r/2. Let

2u, 2v, 2u 2vp

u=——, Vy=—+—, Uoz—o and Vy = —.
| (ny Vi) | 7 | (ny i) | 7 r r

We have
U, — Uy in Hy (Q) and V, =V, in Hy (Q)

[Uoll, , <1 and Vo, < 1.
Thus, by lemma 2
sup [ e (UF+Y2) gy < oo, p < R (5.8)
neN ) 1— HUOHLz_ HVOH1,2
On the other hand,
2p0—2E(oov0) = M) +M(3) — (o) +M (o). 59

Using this equality, lemma 5 and the fact that E(u,vo) = 0, we get
4r 2 2
m() +m(3) <m () +m(fuoll; )+ (o]l )
From (M;) and (M>) it follows that

4r
() < (o + ol T2+ ool ).
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and 4
T
() <M (5 ol ol )

which implies that
4z 4z
A<k uollFy+ ol and A< ol ol fy S0

and therfore 3
T
rntn=r< %+2(H’40Hi2+H"OHiz)' (.11

Now, we observe that , ,
2 =2([[uoll} , +[vol[} )

= [loolfy, = velli,

2:

and from (5.11), it follows that

(S}

4r

r 2 2\ -1
< o U=l = [Vollyn)

2

2 _

Then, we can choose p > 47 such that %M <p<4rn(l— HUom ,— HVOM 5) !

for n sufficiently large. Now, taking g > 1 close to 1 and a > o close to ¢ such
that

2
a||(un7;n)||yf <p<dn(l— ||U0Hi2_ ||V0Hiz)_1, for n large enough

and invoking (5.8), for some C > 0, we concluded that

B2 l@nvn)l3y (12, 2
/eqa( ) n)dx:/eqa S (U"+V")dx

Q Q

</eP(Unz+Vn2)dx<c. (5.12)
Q

Hence, using Holder inequality, (5.12) and (5.3) we reach

|/Qf(u,,7v,,)(un—uo) dx} — 0 as n— oo,

and
|/ g(umv,,)(v,,—vo) dx’ — 0 as n— oo,
Q

Since E’(un,vn)((tn — ug),0) = 0(1), we get

([l [} ) il = [2) [ Vita¥i = m(2)73 = m () o[, = 0.
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It follows that
[uoll, , =11

Similarly, we obtain
[vol[ 1 =r2,

which implies that ||(u,,v,)|| 2 — || (u0,v0)||# and so (uy,vi) — (uo,vo) in SZ. In
view of the continuity of E, we must have E(ug,vo) = po what is an absurde. Thus,
the proof of Proposition 1 is complete. [

Finalizing the proof of Theorem 1. It follows from the hypotheses in Theorem 1
that E satisfies Palais-Smale condition for all pg < %M (47t/ ao), see proposition 1.
To finish the proof of theorem 1, we use lemmas 2 and 3 and apply the Mountain pass
Theorem. [J
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