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GLOBAL CONVERGENCE OF RANK–ONE PGD

APPROXIMATIONS BY ALTERNATE MINIMIZATION

ABDALLAH EL HAMIDI ∗ AND CHAKIB CHAHBI

(Communicated by J.-M. Rakotoson)

Abstract. Low-rank tensor approximations of solutions to high dimensional partial differential
problems have shown their great relevance among the most used numerical methods in recent
years, both in terms of accuracy and time computation. The central point of these methods is
the computation of an optimal low-rank tensor to enrich, in a progressive way, the obtained
tensorial approximation. For minimization problems, this point can be performed through the
classical alternate minimization method. However, the transition to the tensorial framework
breaks the linearity and convexity of the considered problems and their associated functionals,
which impacts the convergence of the alternate minimization sequences. In the literature, only
local convergence results and global convergence results, under some restrictive hypotheses, are
available.

In the following work, we give an unconditional convergence result of the alternate mini-
mization scheme to compute the optimal low-rank tensor, for multi-dimensional variational lin-
ear elliptic equations. Also, we provide an adequate choice of the initialization as well as a
relevant stopping criterion in the alternating minimization process.

1. Introduction

Despite recent notorious advances in the computing capacity of computers, prob-
lems arising from research and industry still pose real challenges in terms of com-
putational complexity. Indeed, finer multidimensional or multi-parametric meshes al-
ways end up exceeding the capacities of modern computers because of the curse of
dimensionality [1]. For a d -dimensional problem discretized with n unknowns in each
dimension, the total number of unknowns is of order O

(
nd
)
. Then, as accurate solu-

tions require high mesh refinement n , the search for efficient model reduction methods
becomes necessary. Proper Generalized Decompositions are a class of recent reduc-
tion order methods, they belong to the large family of low-rank approximation of high
order tensors [20, 12, 11, 3]. For a complete study of tensor spaces and numerical
tensor calculus, we refer to the recent book [18]. The PGD provides an approximate
d -dimensional separated representation of the form:

u(x1,x2, · · · ,xd) �
m

∑
j=1

u( j)
1 (x1)×u( j)

2 (x2)×·· ·×u( j)
d (xd),

Mathematics subject classification (2020): 65K10, 49M29.
Keywords and phrases: Proper generalized decomposition (PGD), alternate minimization, low-rank

tensor approximation.
This research is supported by MARGAUx federation of mathematics (FR 2045).
∗ Corresponding author.

c© � � , Zagreb
Paper DEA-14-32

469

http://dx.doi.org/10.7153/dea-2022-14-32


470 A. EL HAMIDI AND C. CHAHBI

where xk are of some moderate dimensions, k ∈ {1,2, · · ·d} . This approximation is
carried out without any a priori knowledge of the solution u , unlike Proper Orthogonal
Decompositions (POD) (see for example [23, 13] and the references therein). Dif-
ferent classes of PGD algorithms exist in the literature, we refer the interested reader
to Nouy [21] for a detailed description. In the present work, we will focus on the
simplest definition of the PGD: the rank-one PGD. This version of the PGD seeks
to find iteratively an optimal rank-one separated representation (or rank-one tensor)

u( j)
1 (x1)× u( j)

2 (x2)× ·· · × u( j)
d (xd) for each j ∈ {1,2, · · ·m} . Notice that in general,

there is no best rank-r approximation, r � 2, for tensors of rank-m with m > r . In the
special case m = 3 and r = 2, such a result was proved by De Silva and Lim [22].

The rank-one PGD iteration can be described as the following: if the rank-m
approximation is previously computed, it is simply moved to the right hand side of the
PDE and a next optimal rank-one tensor is sought. This rank-one tensor will serve to
update the rank-m approximation and obtain the rank-(m+1) approximation.

The convergence problem of low-rank approximation methods is more difficult
than the Faedo-Galerkin methods for partial differential equations. The first difficulty
comes from the fact that low-rank approximation methods transform linear problems to
nonlinear ones: a tensor product is a nonlinear operation. The second difficulty arises
from the loss of convexity when convex functionals are composed with tensor product
operators. The third difficulty is the (nonlinear) manifold structure of the set of tensors
with fixed rank. We refer interested reader to [2, 9, 10, 16, 17] for the convergence of
the global rank one PGD method, in the sense that all minimization problems on the set
of rank-one tensors are supposed to be exactly solved.

The most important step in PGD methods is precisely the computation of an op-
timal low-rank tensor, indeed it is through this step where the number of unknowns
goes from exponential to linear orders. In variational problems, this key step can be
performed by alternating minimization (AM) technics. The convergence of such (AM)
methods, in the framework of PGD methods, presents a real challenge and only few
results are available in the literature. In finite dimensional Euclidian spaces, local con-
vergence of canonical low-rank tensor approximations has been addressed in [24] and
the convergence of alternating least-squares optimisation in tensor format representa-
tions is proved in [14].

In [4], the authors considered a 2-dimensional variational linear elliptic problem
(parameter & space) and showed a partial local convergence result of the AM – se-
quence, under the following two hypotheses: the uniqueness of the adherence value of
the AM – sequence and a large enough coerciveness coefficient. In this situation, the
authors have provided also the convergence rate of such sequences. In [19], the authors
considered a d -variational elliptic problem, without parameters, and showed a general
compactness result. However, the convergence result was proved under the following
two assumptions: (i) the AM minimizing sequences are away from the origine in the
L2 -norm and the diffusion matrix is smooth, to be able to use the Arzela-Ascoli com-
pactness Theorem. On the other hand, we refer the interested reader to the interesting
recent developments on the numerical study of the PGD method [6, 5, 7, 8].

In the following paper, we provide significant improvements of the results devel-
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oped in [19]. We show that the AM minimizing algorithm for the one-rank PGD method
is convergent, for the generalized Poisson equation, without any simplifying assump-
tion. Also, no regularity assumption is done on the source term other than the classical
L∞ hypothesis. The method developed here can be extended to general parametric lin-
ear elliptic variational problems, this will be the subject of future work.

2. Hilbert tensor spaces and variational PGDs

In the present manuscript, we are interested in the convergence of the alternating
minimization algorithm in the framework of H1

0 (Ω) and the functional J is of the form

J(u) =
1
2

∫
Ω

M(x)∇u(x) · ∇u(x)dx−
∫

Ω
f (x)u(x)dx. (2.1)

where Ω = Ω1 × ·· · × Ωd and Ωk is a bounded domain in R
Nk with Lipschitzian

boundary, for any k ∈ {1, · · · ,d} . Thus, Ω is a bounded domain in R
N , with N =

N1 + · · ·+Nd . The function f ∈ L2(Ω) and the matrix function M ∈ L∞(Ω) is uni-
formly definite positive, that is:

∃c > 0, ∀x ∈ Ω, ∀ξ ∈ R
N , 〈M(x)ξ , ξ 〉

RN � c‖ξ‖2
RN ,

where 〈 · , · 〉RN and ‖ · ‖RN denote the Euclidean inner product and norm on R
N .

In what follows, we will assume that the diffusion matrix function M satisfies:
M = (Mk)1�k�d is a block-diagonal matrix with Mk(x) is a Nk ×Nk matrix, defined on
the whole domain Ω , with Nk � 1 for every 1 � k � d . We will assume that for any
k ∈ {1, · · · ,d} , the domain Ωk is bounded with Lipschitzian boundary.

Under these assumptions, the functional J satisfies the conditions of the Lax-
Milgram theorem. Moreover, the associated boundary value problem, given by{−div(M(x)∇u(x)) = f (x) in Ω,

u(x) = 0 on ∂Ω,
(2.2)

admits a unique weak solution û ∈ H1
0 (Ω) . This weak solution û is the unique mini-

mizer of the minimization problem

inf
u∈H1

0 (Ω)
J(u), (2.3)

and satisfies the equation J′ (û) = 0.

The algebraic tensor space spanned by the family
(
H1

0 (Ωk) ,‖ · ‖H1
0 (Ωk)

)
1�k�d

,

denoted by

H := a

d⊗
k=1

H1
0 (Ωk),

is the set of all finite linear combinations of rank-one tensors z =
d⊗

k=1

zk , with zk ∈

H1
0 (Ωk) . The suffix “a” in “a

⊗
” refers to the “algebraic” nature of the tensor product.
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That is,

H =

{
m

∑
j=1

z( j)
1 ⊗·· ·⊗ z( j)

d : m ∈ N
∗ and z( j)

k ∈ H1
0 (Ωk) for k = 1, · · · ,d

}
. (2.4)

It is well-known that H1
0 (Ω1 × ·· · ×Ωd) is the completion of H with respect to the

norm ‖ · ‖H1
0 (Ω) , i.e.

H1
0 (Ω) = a

d⊗
k=1

H1
0 (Ωk)

‖·‖
H1

0 (Ω)

.

Therefore, every element of z ∈ H1
0 (Ω) can be written as

z =
+∞

∑
j=1

z( j)
1 ⊗ z( j)

2 ⊗·· ·⊗ z( j)
d ,

in the sense

lim
m→+∞

∥∥∥∥∥z− m

∑
j=1

z( j)
1 ⊗ z( j)

2 ⊗·· ·⊗ z( j)
d

∥∥∥∥∥
H1

0 (Ω)

= 0.

In the sequel, the cone of all rank-one tensors in H will be denoted by R1(H) , i.e.

R1(H) =
{
z1⊗ z2⊗·· ·⊗ zd : zk ∈ H1

0 (Ωk) for k = 1,2, · · · ,d} . (2.5)

Thus the space spanned by R1(H) is H which is in turn a dense subset of H1
0 (Ω) .

The rank-one PGD method associated to problem (2.3) consists in the construction

of a sequence (um)m∈N ⊂ a

d⊗
k=1

H1
0 (Ωk) as follows:

(i) Initialization: u0 := 0.

(ii) Descent direction: choose ẑm ∈ argmin
z∈R1(a

⊗d
k=1 H1

0 (Ωk))
J(um−1 + z) .

(iii) Update strategy

um := um−1 + ẑm.

We refer the interested reader to [17] for more general update strategies and also for the
convergence of the sequence (um)m∈N toward the unique solution û in H1

0 (Ω) , when
the step (ii) is supposed to be exactly solved, without any approximation error.

In what follows, we will focus precisely on the key step (ii) which consists on the
computation of an optimal descent direction ẑm ∈ argmin

z∈R1(a
⊗d

k=1 H1
0 (Ωk))

J(um−1 + z) .
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3. Alternate minimization for optimal descent direction

3.1. Notations

For the reader’s convenience, we will introduce the following notations:

– The algebraic tensor Hilbert space a
⊗d

k=1 H1
0 (Ωk) is denoted by H .

– The subset of the rank-one tensors in a
⊗d

k=1 H1
0 (Ωk) is denoted by R1(H) .

– The Euclidean scalar product in R
k of the vectors ξ and η is denoted by ξ ·η ,

or more explicitly by 〈ξ , η〉
Rk .

– The Euclidean norm on R
k is denoted by ‖ · ‖

Rk .

– For every k ∈ {1, · · · ,d} , the set Ω[k] = Ω1 ×·· ·×Ωk−1 ×Ωk+1 ×·· ·×Ωd . So
we set for integration dx[k] = dx1 · · ·dxk−1dxk+1 · · ·dxd .

As mentioned before, the most important step in the PGD method is the compu-
tation of an optimal low-rank tensor. Indeed, it is through this step that the number of
unknowns (algorithmic complexity) decreases from the exponential order to the linear
order. We confine ourselves to a the widely used numerical algorithm for the computa-
tion of an adequate optimal descent direction:

ẑm ∈ argmin
z∈R1(H)

J(um−1 + z), (3.1)

at the m-th PGD iteration. Notice that

ẑm = 0 ⇐⇒ um−1 = û, the solution of Problem (2.3).

Indeed, let z ∈ R1(H) , then tz ∈ R1(H) , for any t ∈ R and consequently J(um−1 +
t z) � J(um−1) . Therefore, for any t > 0, we get

J(um−1 + tz)− J(um−1)
t

� 0,

which implies that J′(um−1) · z � 0. By choosing t < 0, we get similarly J′(um−1) · z �
0. We conclude that for any z ∈ R1(H) , it holds J′(um−1) · z = 0. It follows that

ẑm = 0 =⇒ J′(um−1) · z = 0, ∀z ∈ R1(H)
=⇒ J′(um−1) · z = 0, ∀z ∈ H, by linearity of the map J′(um−1)
=⇒ J′(um−1) · z = 0, ∀z ∈ H1

0 (Ω), by density of H in H1
0 (Ω)

=⇒ J′(um−1) = 0

=⇒ um−1 = û, by the strict convexity of J.

The reverse implication is straightforward, which achieves the claim.
Hereafter we will assume that

um−1 �= û or equivalently J′(um−1) �= 0.
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Let us introduce, the tensor product mapping

T : H1
0 (Ω1)×·· ·×H1

0 (Ωd) −→ um−1 +R1(H)

(z1, · · · ,zd) �−→ um−1 + z1⊗·· ·⊗ zd,

and the functional

J̃ : H1
0 (Ω1)×·· ·×H1

0 (Ωd) −→ R

(z1, · · · ,zd) �−→ J ◦ T(z1, · · · ,zd).

Then, Problem (3.1) can be rewritten

ẑm := (ẑ1, · · · , ẑd) ∈ argmin
(z1,···,zd)∈H1

0 (Ω1)×···×H1
0 (Ωd)

J̃(z1, · · · ,zd). (3.2)

Notice that in the formulation (3.1), the set R1(H) is not convex whereas the func-
tional: z �→ J(um−1 +z) is strictly convex, while in (3.2) the set H1

0 (Ω1)×·· ·×H1
0 (Ωd)

is convex whereas the functional J̃ is not. On the other hand, it is important to observe
that in (3.2), the functional J̃ is strictly convex with respect to each variable H1

0 (Ωk) ,
k = 1, 2, · · · ,d . Hence the computation of an optimal descent direction ẑm in (3.1) can
be performed by alternating minimization via (3.2).

For the reader’s convenience, a detailed description of the smooth manifold struc-
ture of R1(H) can be found in [15]. The mappings T and J̃ are then clearly differ-
entiable on H1

0 (Ω1)×·· ·×H1
0 (Ωd) and for any (z1, · · · ,zd) ∈ H1

0 (Ω1)×·· ·×H1
0 (Ωd)

and ϕk ∈ H1
0 (Ωk) , 1 � k � d , we have:

∂T

∂ zk
(z1, · · · ,zd) ·ϕk = z1⊗·· ·⊗ zk−1⊗ϕk ⊗ zk+1⊗·· ·⊗ zd, (3.3)

∂ J̃
∂ zk

(z1, · · · ,zd) ·ϕk = J′(um−1 + z1⊗·· ·⊗ zd) · [z1 ⊗·· ·⊗ zk−1⊗ϕk ⊗ zk+1⊗·· ·⊗ zd ] ,

=
∫

Ωk

[Ak(xk)∇kzk ·∇kϕk + βk(xk)zk ϕk − fk(xk)ϕk ] dxk (3.4)

where
∂
∂ zk

represents the partial derivative in the direction H1
0 (Ωk) , for all k∈{1,2, · · ·,d} ,

and

Ak(xk) =
∫

Ω[k]

d

∏
i=1
i�=k

z2
i (xi)Mk(x)dx[k], (3.5)

βk(xk) =
d

∑
i=1
i�=k

⎡⎢⎣ ∫
Ω[k]

⎛⎜⎝Mi(x)∇i zi ·∇i zi ×
d

∏
j=1

j �=i, j �=k

z2
j

⎞⎟⎠dx[k]

⎤⎥⎦ , (3.6)

fk(xk) =

〈
f (x1, · · · ,xd)+div(M (x1, · · · ,xd) ∇um−1 (x1, · · · ,xd)) ,

d⊗
j=1
j �=k

z j (x j)

〉
L2(Ω[k])

(3.7)
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i. Initialization: Fix (z0
1, · · · ,z0

d−1) ∈ H1
0 (Ω1)×·· ·×H1

0 (Ωd−1)
ii. Computation of z0

d

z0
d is the unique solution of the equation, of unknown z :

∂ J̃
∂ zd

(z0
1, · · · ,z0

d−1,z) = 0

iii. Given the n -th iterate (zn
1, · · · ,zn

d) , we compute the (n + 1)-th iterate
(zn+1

1 , · · · ,zn+1
d ) iteratively by:

Fork ∈ {1,2, · · · ,d}, zn+1
k is the unique solution of the equation, of unknown z :

∂ J̃
∂ zk

(zn+1
1 ,zn+1

2 , · · · ,zn+1
k−1 ,z,z

n
k+1, · · · ,zn

d) = 0

Table 1: Alternating Minimization Method (AM).

The optimality condition of Problem (3.2) at (ẑ1, · · · , ẑd) is given by the nonlinear
system ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ J̃
∂ z1

(ẑ1, ẑ2, · · · , ẑd) = 0,

...
∂ J̃
∂ zd

(ẑ1, ẑ2, · · · , ẑd) = 0.

(3.8)

The alternating minimization algorithm for solving Problem (3.8) uses the strict
convexity of the functional J̃ with respect to each variable zk , k = 1, 2, · · · ,d , it can be
summarized as the following:

In the following lemma, we will show that for each k ∈ {1, · · · ,d} , the alternat-
ing minimizing sequence

(
zn+1
1 ⊗·· ·⊗ zn+1

k ⊗ zn
k+1 · · ·⊗ zn

d

)
n∈N

defined in Table 1 is

bounded in H1
0 (Ω) . Moreover, under an adequate non-orthogonality condition on the

initialization term z0
1 ⊗·· ·⊗ z0

d−1 , this sequence is away from the origine, with respect
to the L2(Ω)-norm.

LEMMA 1. Consider the alternating minimizing sequences defined in Table 1:

• zn⊗ := zn
1 ⊗·· · ⊗ zn

d ,

• zn,k
⊗ := zn+1

1 ⊗·· · ⊗ zn+1
k ⊗ zn

k+1 · · · ⊗ zn
d , for 1 � k � d , in particular zn,d

⊗ = zn+1
⊗ .

Then
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1. ∀k ∈ {1, · · · ,d} , the sequence
(
zn,k
⊗
)

n∈N

is bounded in H1
0 (Ω) . In particular,(

zn⊗
)
n∈N

is bounded in H1
0 (Ω) .

2. If the initialization (z0
1, · · · ,z0

d−1) is such that the function fd : Ωd −→ R

defined by

fd(xd) :=
〈

f (x1, · · · ,xd)+div(M (x1, · · · ,xd) ∇um−1 (x1, · · · ,xd)) ,
d−1⊗
j=1

z0
j (x j)

〉
L2(Ω[d])

is not the null function, then

∃α > 0, ∀k ∈ {1, · · · ,d}, ∀n ∈ N,
∥∥∥zn,k

⊗
∥∥∥

L2(Ω)
� α,

in particular
∀n ∈ N,

∥∥zn
⊗
∥∥

L2(Ω) � α.

Proof. 1. Let us choose (z0
1, · · · ,z0

d−1) ∈ H1
0 (Ω1)× ·· ·×H1

0 (Ωd−1) as an initial-

ization of the AM-algorithm defined in Table 1. Since the functional J̃ is strictly convex
with respect to each of its d variables, let z0

d be the unique solution of the equation, of
unknown z :

∂ J̃
∂ zd

(z0
1, · · · ,z0

d−1,z) = 0.

In what follows, to simplify the notations, we set for any (n,k) ∈ N×{1, · · ·,d} :

• zn :=
(
zn
1, · · · ,zn

d

)
,

• zn,k :=
(
zn+1
1 , · · · ,zn+1

k ,zn
k+1 · · · ,zn

d

)
, in particular zn,d = zn+1 .

It follows that for every n ∈ N and every k ∈ {1, · · · ,d} :

J̃
(
zn,k
)

� J̃
(
zn,d
)

� J̃
(
zn+1,1)

...

� J̃
(
zn+1,k

)
·

Hence, for every k ∈ {1, · · · ,d} , the sequence
(
J̃
(
zn,k
))

n∈N

is decreasing. On the

other hand, it is known that the functionals J and consequently J̃ are bounded below

on H1
0 (Ω) and H1

0 (Ω1)×·· ·×H1
0 (Ωd) respectively, then

(
J̃
(
zn,k
))

n∈N

is convergent.

The coerciveness of J achieves the first claim.

2. Since the function fd : Ωd −→ R defined by

fd(xd) :=
〈

f (x1, · · · ,xd)+div(M (x1, · · · ,xd) ∇um−1 (x1, · · · ,xd)) ,
d−1⊗
j=1

z0
j (x j)

〉
L2(Ω[d])
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is not the null function, then the unique solution z0
d of the equation

∂ J̃
∂ zd

(z0
1,z

0
2, · · · ,z0

d−1,z)

= 0 is not the null function either. Let us fix k ∈ {1, · · · ,d} , we get therefore:

J̃
(
zn,k
)

� J̃
(
z0)< J̃

(
z0
1,z

0
2, · · · ,z0

d−1,0
)
, ∀n � 1, (3.9)

that is
J̃
(
zn,k) < J(um−1

)
, ∀n � 1.

The decay of the sequence
(
J̃
(
zn,k
))

n∈N

implies that

lim
n→+∞

J
(
um−1 + zn,k

⊗
)

< J(um−1). (3.10)

At this stage, suppose that there is a subsequence
(
zψ1(n),k
⊗

)
n∈N

of
(
zn,k
⊗
)

n∈N

such

that zψ1(n),k
⊗ −→ 0 in L2(Ω) as n −→ +∞ . The sequence

(
zψ1(n),k
⊗

)
n∈N

is bounded in

H1
0 (Ω) , from the first claim. It follows that there is a second subsequence

(
zψ1◦ψ2(n),k
⊗

)
n∈N

of
(
zψ1(n),k
⊗

)
n∈N

such that zψ1◦ψ2(n),k
⊗ ⇀ 0 weakly in H1

0 (Ω) as n −→ +∞ . The weak

lower semicontinuity of the functional J and the inequality (3.10) imply that

J(um−1) > lim
n→+∞

J
(
um−1 + zn,k

⊗
)

= lim
n→+∞

J
(
um−1 + zψ1◦ψ2(n),k

⊗
)

� J(um−1),

which leads to a contradiction and we obtain the second claim. �
Since the sequence

(
zn,k
⊗
)

n∈N

is bounded in H1
0 (Ω) , then it admits weakly con-

vergent subsequences in H1
0 (Ω) . In what follows, we will precise on the one hand

the limit problems satisfied by such sequences, as n → +∞ , and prove then the strong
convergence to their underlying solutions.

The fact that the sequence
(
zn,k
⊗
)

n∈N

is bounded in H1
0 (Ω) doesn’t imply that

every sequence
(
zn
k

)
n∈N

is bounded in H1
0 (Ωk) , k ∈ {1, · · · ,d} . To overcome this

difficulty, we introduce the corresponding normalized sequences:⎧⎪⎪⎪⎨⎪⎪⎪⎩
z̃n
k =

zn
k

‖∇kzn
k‖L2(Ωk)

if 1 � k � d−1,

z̃n
d =

(
d

∏
i=1

‖∇iz
n
i ‖L2(Ωi)

)
zn
d

‖∇kzn
d‖L2(Ωd)

if k = d,

(3.11)

and

ζ n
i,k(xi) =

{
z̃n+1
i (xi) if i ∈ {1, · · · ,k},
z̃n
i (xi) if i ∈ {k+1, · · · ,d},

(3.12)

so that we have

• The sequence
(
z̃n
k

)
n∈N

is bounded in H1
0 (Ωk) , for every k ∈ {1, · · · ,d} ,

• z̃n
1⊗·· ·⊗ z̃n

d = zn
1 ⊗·· ·⊗ zn

d , for every n ∈ N ,
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• ζ n
i,d(xi) = z̃n+1

i (xi) , for each i ∈ {1, · · · ,d} .

Therefore, direct computations show that (3.4), (3.5), (3.6) and (3.7) imply, for any
ϕk ∈ H1

0 (Ωk) :∥∥∇kz
n+1
k

∥∥
L2(Ωk)

∂ J̃
∂ zk

(zn,k) ·ϕk =
∫

Ωk

[
Ãn

k ∇kz̃
n+1
k ·∇kϕk + β̃ n

k z̃n+1
k ϕk − f̃ n

k ϕk

]
dxk,

(3.13)
where

Ãn
k(xk) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Ω[k]

d

∏
i=1
i�=k

(
ζ n

i,k(xi)
)2

Mk(x)dx[k] if 1 � k � d−1

αn

∫
Ω[d]

d−1

∏
i=1

(
ζ n

i,d(xi)
)2

Md(x)dx[d] if k = d

β̃ n
k (xk)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

∑
i=1
i�=k

⎡⎢⎣ ∫
Ω[k]

d

∏
j=1

j �=i, j �=k

(
ζ n

j,k(x j)
)2 ×Mi(x)∇i ζ n

i,k ·∇i ζ n
i,k dx[k]

⎤⎥⎦ if 1 � k � d−1

αn

d−1

∑
i=1

⎡⎢⎣ ∫
Ω[k]

d−1

∏
j=1
j �=i

(
ζ n

j,d(x j)
)2 ×Mi(x)∇i ζ n

i,d ·∇i ζ n
i,d dx[d]

⎤⎥⎦ if k = d

f̃ n
k (xk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

〈
f +div(M ∇um−1) ,

d⊗
j=1
j �=k

ζ n
j,k

〉
L2(Ω[k])

if 1 � k � d−1

αn

〈
f +div(M ∇um−1) ,

d−1⊗
j=1

ζ n
j,d

〉
L2(Ω[k])

if k = d

and

αn =
d

∏
i=1

‖∇iz̃
n+1
i ‖L2(Ωi) =

d

∏
i=1

‖∇iz
n+1
i ‖L2(Ωi)

Recall that from Lemma 1, there are constants α̃ > 0, β̃ > 0 such that

α̃ � αn � β̃ , ∀n ∈ N.

The optimality condition
∂ J̃
∂ zk

(zn,k) = 0 on H1
0 (Ωk) , for every k ∈ {1, · · · ,d} and ϕk in

H1
0 (Ωk) , leads to∫

Ωk

[
Ãn

k ∇kz̃
n+1
k ·∇kϕk + β̃ n

k z̃n+1
k ϕk − f̃ n

k ϕk

]
dxk = 0 (3.14)

or equivalently

−divk

(
Ãn

k ∇kz̃
n+1
k

)
+ β̃ n

k z̃n+1
k = f̃ n

k in Ωk.

At this stage, we can state the convergence result:
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LEMMA 2. For any k ∈ {1, · · · ,d} , we have:

1. There is αk > 0 such that for any i ∈ {1, · · · ,d} , it holds

‖ζ n
i,k‖L2(Ωi) � αk.

2. There are subsequences ζ̃ ψ(n)
j,k ∈Vj and ζ̂ ψ

j,k ∈ L2(Ω j) such that

ζ̃ ψ(n)
j,k −→ ζ̂ ψ

j,k in L2(Ω j).

3. The matrix function Ãn
k is symmetric and uniformly positive definite on Ωk , for

any n. Moreover, there is a symmetric and uniformly positive definite matrix
Âψ

k ∈ (L∞(Ωk))
Nk×Nk such that

Ãψ(n)
k −→ Âψ

k in (L∞(Ωk))
Nk×Nk .

4. The function β n
k ∈ L∞(Ωk) is nonnegative and not equal to the zero function, for

any n. Moreover, there is β̂ ψ
k ∈ L∞(Ωk) , which is nonnegative and not equal to

the zero function such that

β ψ(n)
k −→ β̂ ψ

k in L∞(Ωk).

5. The function f n
k ∈ L2(Ωk) , for any n. Moreover, there is f̂ ψ

k ∈ L2(Ωk) such that

f ψ(n)
k −→ f̂ ψ

k in L2(Ωk).

Proof. Let us fix k ∈ {1, · · · ,d} .

1. By contradiction, suppose that there is a subsequence
(

ζ ϕ(n)
i,k

)
n∈N

, for some

i ∈ {1, · · · ,d} , such that ‖ζ ϕ(n)
i,k ‖L2(Ωi) −→ 0, as n → +∞ . Then

lim
n→+∞

d

∏
j=1

‖ζ ϕ(n)
j,k ‖L2(Ω j) = 0.

Therefore, we get

lim
n→+∞

∥∥∥zϕ(n),k
⊗

∥∥∥
L2(Ω)

= 0,

which contradicts the claim 2 in Lemma 1.

2. Since the sequence ζ̃ n
j,k is bounded in H1

0 (Ωk) then there are subsequences

ζ̃ ψ(n)
j,k ∈ H1

0 (Ωk) , j �= k , and ζ̂ ψ
j,k ∈ H1

0 (Ωk) such that

ζ̃ ψ(n)
j,k ⇀ ζ̂ ψ

j,k weakly in H1
0 (Ω j).

The first claim follows from the compact embedding of H1
0 (Ω j) in L2(Ω j) .

3. For the next claims, we limit ourselves to the case k ∈ {1, · · · ,d−1} , the case
k = d can be handled in a similar way.
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For any ηk ∈ R
N , we have

〈
Ãn

k(xk)ηk , ηk

〉
Rk

=
∫

Ω[k]

d

∏
i=1
i�=k

(
ζ n

i,k(xi)
)2 〈Mk(x)ηk , ηk〉Rk dx[k]

� Λ‖ηk‖2
Rk

∫
Ω[k]

d

∏
i=1
i�=k

(
ζ n

i,k(xi)
)2

dx[k]

= Λ‖ηk‖2
Rk

d

∏
i=1
i�=k

‖ζ n
i,k‖2

L2(Ωi)

� Λα2(d−1)
k ‖ηk‖2

Rk .

The symmetry of Ãn
k is straightforward. It follows that the matrix function Ãn

k is sym-
metric and uniformly positive definite on Ωk . On the other hand, let us set Âψ

k =∫
Ω[k]

d

∏
i=1
i�=k

(
ζ̂ ψ

i,k(xi)
)2

Mk(x)dx[k] . It follows easily from 1 and 2 that for every j ∈{1, · · ·,d} ,

‖ζ̂ ψ
i,k‖L2(Ω j) � αk , then the matrix function Âψ

k is also symmetric and positive definite.
Therefore,

‖Ãψ(n)
k − Âψ

k ‖(L∞(Ωk))
Nk×Nk

=

∥∥∥∥∥∥∥
∫

Ω[k]

d

∏
i=1
i�=k

[(
ζ ψ(n)

i,k (xi)
)2 −

(
ζ̂ ψ

i,k(xi)
)2
]

Mk(x)dx[k]

∥∥∥∥∥∥∥
(L∞(Ωk))

Nk×Nk

�
∫

Ω[k]

d

∏
i=1
i�=k

∣∣∣∣(ζ ψ(n)
i,k (xi)

)2 −
(

ζ̂ ψ
i,k(xi)

)2
∣∣∣∣ ‖Mk(x)‖(L∞(Ωk))

Nk×Nk dx[k]

� ‖Mk(x)‖(L∞(Ωk))
N×N

∫
Ω[k]

d

∏
i=1
i�=k

∣∣∣∣(ζ ψ(n)
i,k (xi)

)2−
(

ζ̂ ψ
i,k(xi)

)2
∣∣∣∣ dx[k].

It follows from 2 that lim
n→+∞

‖Ãψ(n)
k − Âψ

k ‖(L∞(Ωk))
Nk×Nk = 0, which achieves the claim.

4. This claim can be proved by similar arguments as in 3.
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5. For any n ∈ N , it holds:

∣∣∣ f n
k − f̂ ψ

k

∣∣∣ �
∫

Ω[k]

| f +div(M ∇um−1)|×

∣∣∣∣∣∣∣
d⊗

j=1
j �=k

(
ζ n

j,k − ζ̂ j,k

)∣∣∣∣∣∣∣dx[k]

�
d

∏
j=1
j �=k

‖ζ n
j,k − ζ̂ j,k‖L2(Ω j) ×

[∫
Ω[k]

( f +div(M ∇um−1))2 dx[k]

]1/2

.

It follows that∫
Ωk

(
f n
k − f̂ ψ

k

)2
dxk �

d

∏
j=1
j �=k

‖ζ n
j,k − ζ̂ j,k‖2

L2(Ω j)
×
∫

Ωk

[∫
Ω[k]

( f +div(M ∇um−1))2 dx[k]

]
dxk

=
d

∏
j=1
j �=k

‖ζ n
j,k − ζ̂ j,k‖2

L2(Ω j)
×‖ f +div(M ∇um−1)‖2

L2(Ω j)
.

We obtain finally:

lim
n→+∞

∥∥∥ f n
k − f̂ ψ

k

∥∥∥
L2(Ω j)

= 0,

which ends the proof. �

THEOREM 1. The sequence
(
z̃n
k

)
n∈N

is compact in H1
0 (Ωk) , for every k∈{1, · · · ,d} .

More precisely, for every k ∈ {1, · · · ,d} , there are a unique strictly increasing bijection
ψ from N to itself and a limit ẑψ

k ∈ H1
0 (Ωk) such that

z̃ψ(n)
k −→ ẑψ

k strongly in H1
0 (Ωk).

Proof. Let k ∈ {1, · · · ,d} and ϕk ∈ H1
0 (Ωk) . We recall the optimality equation

(3.14): ∫
Ωk

[
Ãn

k ∇kz̃
n+1
k ·∇kϕk + β̃ n

k z̃n+1
k ϕk − f̃ n

k ϕk

]
dxk = 0.

On the one hand, if we denote by ẑψ+1
k the weak limit of z̃ψ(n)+1

k in H1
0 (Ωk) , we get:∫

Ωk

(
Ãψ

k (n)∇kz̃
ψ(n)+1
k − Âψ

k ∇kẑ
ψ+1
k

)
·∇kϕkdxk

=
∫

Ωk

(
Ãψ

k (n)− Âψ
k

)
∇kz̃

ψ(n)+1
k ·∇kϕk dxk +

∫
Ωk

Ãψ
k

(
∇kz̃

ψ(n)+1
k −∇kẑ

ψ+1
k

)
·∇kϕk dxk

Applying Lemma 2, we deduce that

lim
n→+∞

∫
Ωk

(
Ãψ(n)

k ∇kz̃
ψ(n)+1
k − Âψ

k ∇kẑ
ψ+1
k

)
·∇kϕkdxk = 0.

In the same way, we obtain

lim
n→+∞

∫
Ωk

(
β̃ ψ(n)

k z̃ψ(n)+1
k − β̂ ψ

k ẑψ+1
k

)
ϕk dxk = 0,
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lim
n→+∞

∫
Ωk

(
f̃ ψ(n)
k − f̂ ψ

k

)
·ϕk dxk = 0,

and therefore ∫
Ωk

[
Âψ

k ∇kẑ
ψ+1
k ·∇kϕk + β̂ ψ

k ẑψ+1
k ϕk − f̂ ψ

k ϕk

]
dxk = 0.

In particular, we obtain∫
Ωk

Âψ
k ∇kẑ

ψ+1
k ·∇kẑ

ψ+1
k = −

∫
Ωk

[
β̂ ψ

k

(
ẑψ+1
k

)2− f̂ ψ
k ẑψ+1

k

]
dxk.

On the other hand, the optimality equation (3.14) also implies∫
Ωk

Ãψ(n)
k ∇kz̃

ψ(n)+1
k ·∇kz̃

ψ(n)+1
k dxk = −

∫
Ωk

[
β̃ ψ(n)

k

(
z̃ψ(n)+1
k

)2− f̃ ψ(n)
k z̃n+1

k

]
dxk.

(3.15)
Moreover, ∣∣∣∣∫Ωk

[
β̃ ψ(n)

k

(
z̃ψ(n)+1
k

)2 − β̂ ψ
k

(
ẑψ+1
k

)2
]

dxk

∣∣∣∣
�
∫

Ωk

∣∣∣∣β̃ ψ(n)
k

(
z̃ψ(n)+1
k

)2 − β̂ ψ
k

(
ẑψ+1
k

)2
∣∣∣∣ dxk

�
∫

Ωk

∣∣∣β̃ ψ(n)
k − β̂ ψ

k

∣∣∣ (z̃ψ(n)+1
k

)2
+
∣∣∣β̂ ψ

k

∣∣∣ ∣∣∣∣(z̃ψ(n)+1
k

)2−
(
ẑψ+1
k

)2
∣∣∣∣ dxk

�
∥∥∥β̃ ψ(n)

k − β̂ ψ
k

∥∥∥
L∞(Ωk)

∥∥∥z̃ψ(n)+1
k

∥∥∥2

L2(Ωk)

+
∥∥∥β̂ ψ

k

∥∥∥
L∞(Ωk)

∥∥∥z̃ψ(n)+1
k − ẑψ+1

k

∥∥∥
L2(Ωk)

∥∥∥z̃ψ(n)+1
k + ẑψ+1

k

∥∥∥
L2(Ωk)

.

Hence, it holds:

lim
n→+∞

∫
Ωk

β̃ ψ(n)
k

(
z̃ψ(n)+1
k

)2
dxk =

∫
Ωk

β̂ ψ
k

(
ẑψ+1
k

)2
dxk, (3.16)

since
∥∥∥z̃ψ(n)+1

k + ẑψ+1
k

∥∥∥
L2(Ωk)

is bounded with respect to n . We obtain in a similar way

that
lim

n→+∞

∫
Ωk

f̃ ψ(n)
k z̃ψ(n)+1

k dxk =
∫

Ωk

f̂ ψ
k ẑψ+1

k dxk. (3.17)

Combining (3.15), (3.16) and (3.17), we obtain finally that:

lim
n→+∞

∫
Ωk

Ãψ(n)
k ∇kz̃

ψ(n)+1
k ·∇kz̃

ψ(n)+1
k dxk =

∫
Ωk

Âψ
k ∇kẑ

ψ+1
k ·∇kẑ

ψ+1
k dxk.

This last equality allows us to conclude:

lim
n→+∞

∫
Ωk

Ãψ(n)
k

(
∇kz̃

ψ(n)+1
k −∇kẑ

ψ+1
k

)
·
(

∇kz̃
ψ(n)+1
k −∇kẑ

ψ+1
k

)
dxk = 0,

which achieves the proof. �
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The previous result does not imply the convergence of the alternating minimizing
sequence but only its compactness. In what follows, we will show that the alternating
minimizing sequence converges in a more general sense which clarifies the stopping
criterion in the AM algorithm. To this end, we introduce the following set:

C = {(z1, · · · ,zd) ∈ H1
0 (Ω1)×·· ·×H1

0 (Ωd) : ∇J̃(z1, · · · ,zd) = 0}.
The distance between a given element (z1, · · · ,zd) ∈ H1

0 (Ω1)× ·· · ×H1
0 (Ωd) and the

set C is given by:

dist((z1, · · · ,zd) , C ) = inf
(w1,···,wd)∈C

‖z1⊗·· ·⊗ zd −w1⊗·· ·⊗wd‖H1
0 (Ω).

LEMMA 3. Consider the alternating minimisation sequence
(
zn
1, · · · ,zn

d

)
n∈N

given
by the AM algorithm. Then, its normalized sequence

(
z̃n
1, · · · , z̃n

d

)
n∈N

converges to the
critical set C , that is:

lim
n→+∞

dist((z̃n
1, · · · , z̃n

d) , C ) = 0.

Proof. Consider the AM minimization sequence
(
zn
1, · · · ,zn

d

)
n∈N

. Then its nor-
malized sequence

(
z̃n
1, · · · , z̃n

d

)
n∈N

satisfies:

∀n ∈ N,
∂ J̃
∂ z1

(
z̃n+1
1 , z̃n

2, · · · , z̃n
d

)
= 0.

Now, let a convergent subsequence
(
z̃ϕ(n)
1 , · · · , z̃ϕ(n)

d

)
n∈N

of
(
z̃n
1, · · · , z̃n

d

)
n∈N

in H1
0 (Ω1)×

·· ·×H1
0 (Ωd) , whose limit is denoted by

(
z̃ϕ
1 , · · · , z̃ϕ

d

)
.

It is known that the equation
∂ J̃
∂ z1

(
z1, z̃

ϕ
2 , · · · , z̃ϕ

d

)
= 0 has a unique solution, de-

noted by z̃ϕ+1
1 . Suppose that z̃ϕ+1

1 �= z̃ϕ
1 , then J̃

(
z̃ϕ+1
1 , z̃ϕ

2 , · · · , z̃ϕ
d

)
< J̃
(
z̃ϕ
1 , z̃ϕ

2 , · · · , z̃ϕ
d

)
,

thanks the strict convexity of J̃ with respect to the variable z1 , k ∈ {1, · · · ,d} . On the
other hand, we have

lim
n→+∞

J̃
(
z̃ϕ(n)+1
1 , z̃ϕ(n)

2 , · · · , z̃ϕ(n)
d

)
= lim

n→+∞
J̃
(
z̃ϕ(n)
1 , · · · , z̃ϕ(n)

d

)
= lim

n→+∞
J̃ (z̃n

1, · · · , z̃n
d) ,

that leads to a contradiction. Then, z̃ϕ+1
1 = z̃ϕ

1 . The same argument implies that

z̃ϕ+1
k = z̃ϕ

k , ∀k ∈ {1, · · · ,d}
and consequently

∂ J̃
∂ zk

(
z̃ϕ
1 , z̃ϕ

2 , · · · , z̃ϕ
d

)
= 0, ∀k ∈ {1, · · · ,d},

that is
(
z̃ϕ
1 , z̃ϕ

2 , · · · , z̃ϕ
d

) ∈ C .
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Therefore, we obtain:

lim
n→+∞

dist
((

z̃ϕ(n)
1 , z̃ϕ(n)

2 , · · · , z̃ϕ(n)
d

)
, C
)

= 0.

Finally, since the sequence
(
z̃n
1, · · · , z̃n

d

)
n∈N

is compact in H1
0 (Ω1)×·· ·×H1

0 (Ωd) , from
Theorem 1, it follows that

lim
n→+∞

dist((z̃n
1, z̃

n
2, · · · , z̃n

d) , C ) = 0. �

REMARK 1. In the AM algorithm described in Table 1, the previous lemma sug-
gests the following relevant stopping criterion∥∥∥∇J̃(z̃n

1, · · · , z̃n
d)
∥∥∥

V1×···×Vd

� ε,

for a sufficiently small given threshold ε > 0. However, the following stopping
criterion ∥∥z̃n+1

1 ⊗·· ·⊗ z̃n+1
d − z̃n

1⊗·· ·⊗ z̃n
d

∥∥
V‖·‖∥∥z̃n

1⊗·· ·⊗ z̃n
d

∥∥
V‖·‖

� ε

based on the relative error distance is not suitable.
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[6] M. AZAÏEZ, L. LESTANDI, AND T. CHACÓN REBOLLO, Low Rank Approximation of Multidimen-
sional Data, In S. Pirozzoli and T. K. Sengupta (eds) High-Performance Computing of Big Data for
Turbulence and Combustion. CISM International Centre for Mechanical Sciences, vol. 592, pages
187–250. Springer, Cham, 2019.
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