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Abstract. In the first part of this paper, a non-autonomous physiologically structured model with
nonlocal diffusion is developed. Using the semigroup generated by the diffusion operator and
characteristic method, the problem is reformulated as a fixed point problem in a suitable Banach
space. We give conditions under which the model admits a unique positive solution. In the
second part of this work, we give an application of the study done in the first part. We consider
an optimal control problem. The optimal strategies are discussed using normal cone and dual
techniques.

1. Introduction and setting of the problem

Lobesia botrana is one of the major pest that causes economic loss in vineyards
around the world. Several control strategies are used to manage the insect: chemical
tools, mating disruption, and integrated pest management, see [7, 36]. Insecticides re-
main the most control method of this pest. In most cases, dispersal ability has been
ignored when formulating optimal control problem for Lobesia botrana. Nonlocal dif-
fusion is recognized to describe movement of pests over long distances. Let d be a
positive constant. The nonlocal logistic equation

∂u
∂ t

= dAu+u(1−u)

has been investigated in [11] where the diffusion process is described by the nonlocal
dispersal operator A given by

A(u)(x) :=
∫

D
J
(
x− y

)(
u(y)−u(x)

)
dy.

The function J (x− y) is the rate at which individuals are dispersing from position y to
x . The integro-differential equation

∂u
∂ t

= dAu+ f (x,u)
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has been analyzed in [4, 13, 10]. Recently, age structured population models with non-
local diffusion have been studied in [25, 24], the authors investigated the model

∂u
∂ t

+
∂u
∂a

= −μ(a,t)u+dAu.

They obtained a systematical treatment using integrated semigroup approach, and some
comparison principles. Among other results, they determined the stability of zero
steady state and establish the asymptotic behavior of the model under Dirichlet bound-
ary conditions. Age structured models with Laplace diffusion have been extensively
investigated in the literature, see [43] and the references therein. For basic theories
involving nonlocal diffusion, we refer the reader to the monograph [4].

Another process that characterizes Lobesia botrana population is mutation. Muta-
tion has received less attention for structured models. At low insecticide rate, individ-
uals are highly stressed. The survivors mutate and develop insecticide resistance. We
introduce a continuous phenotype ω ∈ Ω describing the resistance level to insecticides
where Ω ⊂ R

n is a bounded domain. At time t , size or physiological age a , position
x , and resistance level ω ′ , the pest population with density u(t,a,ω ′,x) gives birth to
population with resistance level ω at a rate

β
(
P(t,x) ,t,a

)
γ
(
ω ,ω ′)u(t,a,ω ′,x

)
.

Here β is the birth rate, and

P
(
t,x
)

:=
∫

Ω

L∫
0

u
(
t,a,ω ,x

)
d ad ω ,

is the total population at time t and position x . The quantity γ
(
ω ,ω ′), represents the

probability that individuals with trait ω ′ emerge with a new trait ω . We refer the reader
to [17, 19] and the references therein for other models with mutation.

Let D⊂R
m be a bounded domain with smooth boundary ∂D . Let u(t,a,ω ,x) be

the population density at time t ∈ [0,T ] , size a∈ [0,L] , position x∈D , an a continuous
phenotype ω ∈ Ω , where T > 0 is a given time, and L is the maximal size. In the
present work, our attention is focused on the following model,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂ t

u(t,a,ω ,x)+
∂

∂a
[v(t,a,ω)u(t,a,ω ,x)]

= −μ
(
P(t,x),t,a

)
u
(
t,a,ω ,x

)
+dAu

(
t,a,ω ,x

)
v
(
t,a = 0,ω

)
u
(
t,0,ω ,x

)
=
∫ L

0

∫
Ω

β
(
P(t,x) ,t,s

)
γ
(
ω ,ω ′)u(t,s,ω ′,x

)
dω ′ds

u
(
0,a,ω ,x

)
= u0

(
a,ω ,x

)
,
(
a,ω ,x

) ∈ (0,L
)×Ω×D.

(1.1)

We assume that the death μ and the fertility β rates depend on the total population
P . The growth rate v depends on time t , size a and ω . The boundary conditions are of
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nonlocal Neumann type, since in the definition of the operator A, the integral is defined
only on D, the individuals may not enter or leave D see for instance [44], and the
references therein. The dispersal rate d is constant and strictly positive. Almost all size-
structured models have been studied under the assumption that d = 0, and the newborn
individuals do not mutate, see for instance [23,42,35,40,1,2,18,20,37,26,30,31,44,25]
and the references therein.

At our knowledge, despite the large amount of the literature on size-structured
models, very little results are known for the model (1.1). Well posedness and optimal
control of (1.1) remain to be done, whereas the long time behavior of solutions of
problem (1.1) is still open.

This work is organized as follows: Preliminaries are given in the next section. Our
purpose in Section 3 is to discuss the existence and positivity of solutions of the system
(1.1) in L1 . We solve the system by the characteristic method. By employing this
approach, we obtain an integral representation of the solution. However, the uknown
is still involved implicitely. Then, we define the solution as a fixed point of an integral
operator K . By contraction mapping principle, we show that K has a unique fixed
point which is the desired solution, see for instance [42] for similar approach. The
results extend those obtained in [26]. In Section 4, we consider continuous dependence
and comparison principles. As application, in Section 5, we investigate the optimal
harvesting control for a size-structured Lobesia botrana population model with nonlocal
diffusion. We obtain optimal strategies for managing the pest Lobesia-Botrana. The
result extend partially that obtained in [39]. As a development of the study given in
this paper, it could be interesting to discuss asymptotic behavior of the model (1.1) and
numerical simulations. In a forthcoming work, we shall investigate a model with life
stages.

2. Preliminaries

In this section, we introduce notations, assumptions and definitions which are used
throughout this note.

Let L1 :=L1
((

0,L
)×D

)
;R) be the Banach space of Lebesgue integrable func-

tions with the norm

‖u‖L1 :=
∫
D

L∫
0

|u(a,x)|dadx.

Let Q = [0,T ]×Ω and let B be the Banach space

B = L∞(Q; L1),
endowed with the norm

‖u‖T = sup
Q

‖u‖L1 .

We also define the Banach space B0 by

B0 = L∞(Ω; L1),
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endowed with the norm
‖u‖ = sup

Ω
‖u‖L1 .

Throughout this article, we require the following assumptions.

(AJ) The function J(.) ∈C
(
D
)
, J is bounded, J � 0, J �= 0,

∫
RN J(x)dx = 1,

and J(x) = J(−x) .
(Aγ ) The function γ : Ω×Ω→R

n is continuous, bounded, and γ � 0. In addition,
for all ω ,ω ′ ∈ Ω , we assume that

γ(ω ,ω ′) = γ(ω ′,ω).

(Au0) The function u0 ∈ L∞
((

0,L
)×Ω×D

)
is everywhere positive.

(Av) The function
(
t,a,ω

)→ v(t,a,ω) is bounded, continuous with respect to its
arguments, strictly positive, continuously differentiable with respect to a . In addition,
there exists a positive constant Lv such that

Lv = sup
t,a,w

∣∣∣∣ ∂v
∂a

(
t,a,ω

)∣∣∣∣< ∞.

Further, we assume that v(.,L, .) = 0 and

V0 = min
0�t�T,ω∈Ω

{
v
(
t, 0,ω

)}
> 0.

(Aβ ) β
(
P, t,a

)
is bounded, and nonnegative measurable function on R× [0,T ]×

[0,L] . In addition, the function β is locally Lipschitz with respect to the first variables
P .

(Aμ) μ
(
P, t,a

)
is bounded, and nonnegative measurable function on R× [0,T ]×

[0,L] . In addition, the function μ is locally Lipschitz with respect to the first variable
P .

REMARK 1. The assumptions (AJ ) are biologically relevant. The assumption∫
RN J(x)dx = 1 means that individuals are neither created nor destroyed during the

movement. The symmetry of J implies that an individual at position x has the same
probability of dispersion to position y as an individual in location y has of jumping to
x .

Let⎧⎪⎨⎪⎩
G
(
u
(
t, .,ω , .

))
(a,x) = −μ

(
P(t,x),t,a

)
u
(
t,a,ω ,x

)
,

F
(
u
(
t, .,ω , .

))(
x
)

=
∫ L

0

∫
Ω

β
(
P
(
t,x
)
,t,s
)

γ
(
ω ,ω ′)u(t,s,ω ′,x

)
dω ′ ds.

We have to develop the following lemmas.
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LEMMA 1. (i) There exists a constant c1 > 0 such that for ϕ1 , ϕ2 ∈ B, the func-
tion

F : B → L1(D),
satisfies ∣∣F(ϕ1

)−F
(
ϕ2
)∣∣

L1
(
D
) � c1 ‖ϕ1 −ϕ2‖T . (2.1)

(ii) There exists a positive constant c2 > 0 such that for ϕ1 , ϕ2 ∈ B, the function

G : B → L1

satisfies ∥∥G(ϕ1
)−G

(
ϕ2
)∥∥

L1 � c2 ‖ϕ1−ϕ2‖T . (2.2)

The proof is trivial, so we omit it.
The concept of a strong solution to system (1.1) requires the differentiability of

the functions u and vu respectively with respect to the variables t , and a . This is
quite restrictive. Along characteristics the system (1.1) behaves like a Cauchy problem.
Based on the semigroup theory, we introduce a concept of mild solution. Let T (t) be
the semigroup generated by the bounded operator dA , where d is the dispersal rate.
We have

T (t) = etdA := ∑
n�0

(tdA)n.

We have the following properties.

LEMMA 2. (a) ‖T (t)‖ � e2td ,

(b) the positive cone L1
+ (D)) is positively invariant by the semigroup defined by

T (t) , t � 0 .

Proof. a) Since A is an integral operator, it follows that

‖Au‖L1(D) � 2‖u‖L1(D) .

This implies that for all n � 1

‖Anu‖L1(D) � 2n‖u‖L1(D) ,

and
‖T (t)‖ � e2td .

b) We need to show that if f ∈ L1
+ (D) , then

T (t) f ∈ L1
+ (D) , ∀t � 0.

Indeed, let f ∈ L1
+((D) , then there exists a sequence of positive continuous functions

with compact support
fn ∈Cc (D) ,
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such that
fn → f in L1 (D) .

We will show that T (t) fn � 0 for t � 0. We follow the proof of proposition 4.2

in [22]. Let un(t,x) =
(
T (t) fn

)
(x) , then un(t,x) satisfies

{ ∂un(t,x)
∂ t = dAun(t,x),

un(0,x) = fn(x).

Note that vn(t,x) = eλ tun(t,x) verifies

∂vn(t,x)
∂ t

= d
∫

D
J
(
x− y

)(
vn(t,y)− vn(t,x)

)
dy+ λvn(t,x). (2.3)

For λ positive and large enough, we have p0 := λ −d > 0. Let

J0 = d max
x∈D

∫
D

J(x− y)dy,

and

τ =
1

p0 + J0
.

Suppose that for some x ∈ D , and t ∈ [0,τ] ,

vn(t,x) < 0,

then there exis x1 ∈ D , and t1 ∈ [0,τ] such that

min
x∈D, t∈[0,τ]

vn(t,x) = vn(t1,x1) < 0.

Integrating the equation (2.3) over [0,t1] , we obtain

vn(t1,x1)− vn(0,x1) � (p0 + J0)vn(t1,x1)t1.

Since vn(0,x1) = fn(x1) � 0 and t1 � τ , then

vn(t1,x1) � 0,

which a contradiction. It follows that vn(t,x) � 0 for x ∈ D and t ∈ [0,τ] . Hence
un(t,x) � 0 for x∈D and t ∈ [0,τ] . Then we repeat the same arguments on the interval
[kτ,(k+1)τ] for k = 1,2. . . . We conclude that

T (t) fn � 0, ∀t � 0.

Since the linear operator T (t) is bounded, then

T (t) fn → T (t) f in L1((D) ,
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and there exists a subsequence, such that

T (t) fn j → T (t) f a.e in D.

It follows that
T (t) f � 0 a.e in D .

For λ positive and large enough, we have p0 := λ −d > 0. Let

J0 = d max
x∈D

∫
D

J(x− y)dy,

and

τ =
1

p0 + J0
.

Suppose that for some x ∈ D , and t ∈ [0,τ] ,

vn(t,x) < 0,

then there exis x1 ∈ D , and t1 ∈ [0,τ] such that

min
x∈D, t∈[0,τ]

vn(t,x) = vn(t1,x1) < 0.

Integrating the equation (2.3) over [0,t1] , we obtain

vn(t1,x1)− vn(0,x1) � (p0 + J0)vn(t1,x1)t1.

Since vn(0,x1) = fn(x1) � 0 and t1 � τ , then

vn(t1,x1) � 0,

which a contradiction. It follows that vn(t,x) � 0 for x ∈ D and t ∈ [0,τ] . Hence
un(t,x) � 0 for x∈D and t ∈ [0,τ] . Then we repeat the same arguments on the interval
[kτ,(k+1)τ] for k = 1,2. . . . We conclude that

T (t) fn � 0, ∀t � 0.

Since the linear operator T (t) is bounded, then

T (t) fn → T (t) f in L1((D) ,

and there exists a subsequence, such that

T (t) fn j → T (t) f a.e in D.

It follows that
T (t) f � 0 a.e in D. �
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We define a characteristic curve φ
(
t;τ,η ,ω

)
through the point

(
τ,η
)

as the so-
lution of the equation {

da
dt = v

(
t,a,ω

)
,

a
(
τ
)

= η .

The function a = φ
(
t;τ,η ,ω

)
, is differentiable with respect to τ , and η , see for in-

stance ( [3], Chap 2., p. 116, Th. 9.2.). We have

da
dτ

= −v(τ,η ,ω)exp

⎛⎝ t∫
τ

∂v
∂a

(
σ ,φ (σ ;τ,η ,ω) ,ω

)
dσ

⎞⎠ , (P1)

and

da
dη

= exp

⎛⎝ t∫
τ

∂v
∂a

(
σ ,φ (σ ;τ,η ,ω) ,ω

)
dσ

⎞⎠ . (P2)

We define z
(
t,ω
)

= φ
(
t;0,0,ω

)
, and τ = τ

(
t,a,ω

)
, implicitely by the relation

φ
(
t;τ,0,ω

)
= a. (2.4)

As in [42], we define a mild solution of system (1.1) as follows

DEFINITION 1. By a mild solution to system (1.1), we mean a function u ∈ B
such that u = K(u) , where

K
(
u
)(

t,a,ω ,x
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
(
t− τ

)F(u(τ, .,ω , .
))(

x
)

v
(
τ,0,ω

)
+

t∫
τ

T
(
t− s

)
G̃
(
s,u
(
s, ., .ω , .

))(
φ
(
s,τ,0,ω

)
,x
)
ds

if a < z(t,ω),

T (t)u0

(
φ
(
0,t,a,ω

)
,ω ,x

)
+

t∫
0

T
(
t− s

)
G̃
(
s,u
(
s, .,ω , .

))(
φ
(
s,t,a,ω

)
,x
)
ds

if a � z(t,ω).

The definition of the mild solution is justified as follows. Let u be a solution of
system (1.1), and define

Ut0,a0 (t,ω ,x) := u
(
t,φ
(
t;t0,a0,ω

)
,ω ,x

)
,
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then Ut0,a0 satisfies

dUt0,a0 (t,ω ,x)
dt

=
∂u
(
t,φ (t;t0,a0,ω) ,ω ,x

)
∂ t

+
∂u
(
t,φ (t;t0,a0,ω) ,ω ,x

)
∂a

v
(
t,φ (t; t0,a0,ω) ,ω

)
,

and

dUt0,a0 (t,ω ,x)
dt

= G̃
(
t,u(t, .,ω , .)

)
(φ (t;t0,a0,ω) ,x)+dAUt0,a0 (t,ω ,x)

where

G̃
(
t,u(t, .ω , .)

)
(a,x) = G

(
u(t, .ω , .)

)
(a,x)− ∂v(t,a,ω)

∂a
u(t,a,ω ,x).

Let T (t) be the semigoup generated by the dispersal operator dA , then

Ut0,a0 (t,ω ,x) = T (t− τ∗0 )Ut0,a0 (τ∗0 ,ω ,x)

+
∫ t

τ∗0
T (t− s)G̃

(
s,u(s, .ω , .)

)
(φ (s; t0,a0,ω) ,x) ds,

(2.5)

where τ∗0 ∈ [0,T ] is an initial time defined by

τ∗0 := τ∗0 (t0,a0,ω) =

⎧⎨⎩τ(t0,a0,ω), if a0 < z(t0,ω),

0 if a0 � z(t0,ω).

We distinguish two cases.
i) If

a0 < z(t0,ω)

then
τ0 := τ(t0,a0,ω) > 0,

and we consider equation (2.5) with initial time τ∗0 = τ0 . Using equation (2.4), we
obtain

Ut0,a0 (t,ω ,x)
= Uτ0,0 (t,ω ,x)

= T (t − τ0)Uτ0,0 (τ0,ω ,x)+
∫ t

τ0

T (t− s)G̃
(
s,u(s.,ω , .)

)
(φ (s;τ0,0,ω) ,x) ds.

since Uτ0,0 (τ0,ω ,x) = u(τ0,φ (τ0;τ0,0,ω) ,ω ,x) = u(τ0,0,ω ,x) , this gives that

Uτ0,0 (t,ω ,x)

= T (t − τ0)u(τ0,0,ω ,x)+
∫ t

τ0

T (t − s)G̃
(
s,u(s, .,ω , .)

)
(φ (s;τ0,0,ω) ,x) ds.
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In particular, we have

Ut,a (t,ω ,x) = u(t,φ(t;t,a,ω),ω ,x) = u(t,a,ω ,x)
= T (t− τ)u(τ,0,ω ,x)

+
∫ t

τ
T (t− s)G̃

(
s,u(s, .,ω , .)

)
(φ (s;τ,0,ω) ,x) ds.

ii) If
a0 � z(t0,ω)

then τ0 � 0, and we consider the equation (2.5) with initial time τ∗0 = 0. Hence

Ut0,a0 (t,ω ,x) = T (t)Ut0,a0 (0,ω ,x)

+
∫ t

0
T (t − s)G̃

(
s,u(s, .,ω , .)

)
(φ (s; t0,a0,ω) ,x) ds.

This leads to

Ut0,a0 (t,ω ,x) = T (t)u0 (φ(0,t0,a0,ω),ω ,x)

+
∫ t

0
T (t − s)G̃

(
s,u(s, .,ω , .)

)
(φ (s; t0,a0,ω) ,x) ds.

In particular, we have

Ut,a (t,ω ,x) = u(t,φ(t;t,a,ω),ω ,x) = u(t,a,ω ,x)
= T (t)u0 (φ(0,t,a,ω),ω ,x)

+
∫ t

0
T (t − s)G̃

(
s,u(s, .,ω , .)

)
(φ (s; t,a,ω) ,x) ds.

This justifies the definition of a mild solution via characterestics and semigroup.

3. Existence of positive solutions

It is important to ensure that the model (1.1) is well posed. As in [26], the follow-
ing result shows that the mild solutions satisfy system (1.1) along characteristic curves.
Let u be a mild solution of the system (1.1), i.e u ∈ B and u=K(u).

LEMMA 3. For fixed (t,a,ω ,x) ∈ (0,T )× (0,L)×Ω×D, the function

U (s) = u
(
s,φ (s;t,a,ω) ,ω ,x

)
,

is differentiable a.e. on (τ∗,T ) and satisfies

dU (s)
ds

= G̃
(
s,u(s, .,ω , .)

)
(φ (s;t,a,ω) ,x)+dAU (s) ,

where τ∗ := τ∗0 (t,a,ω) .
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Proof. We distinguish two cases,

i) if φ (s, t,a,ω) ∈ (0,z(t,ω)) , then

1
h

[
Ku
(
s+h,φ (s+h,t,a,ω) ,ω ,x

)
−Ku

(
s,φ (s,t,a,ω) ,ω ,x

)]
= Qh

1 +Qh
2,

where

Qh
1 =

1
h

[T (s+h− τ)−T (s− τ)]
F
(
u(τ,.,ω , .)

)
(x)

v(τ, 0,ω)

=
1
h

[T (h)−1]T (s− τ)
F
(
u(τ, .,ω , .)

)
(x)

v(τ,0,ω)
.

Since the semigroup T (t) is differentiable, then

Qh
1 → dAT (s− τ)

F
(
u(τ, .,ω , .)

)
(x)

v(τ,0,ω)
,

and

Qh
2 =

1
h

⎡⎣ s+h∫
τ

T
(
s+h−η

)(
G̃
(

η ,u
(
η , .,ω , .

))(
φ
(
η ,τ,0,ω

)
,x
))

dη

−
s∫

τ

T
(
s−η

)(
G̃
(

η ,u
(
η , .,ω , .

))(
φ
(
η ,τ,0,ω

)
,x
))

dη

⎤⎦ ,

which implies that,

Qh
2 =

1
h

[T (h)−1]
s∫

τ

T (s−η)
(
G̃
(

η ,u(η , .,ω , .)
)

(φ (η ,τ,0,ω)) ,x
)

dη

+
T (h)

h

s+h∫
s

T
(
s−η

)(
G̃
(

η ,u
(
η , .,ω , .

))(
φ
(
η ,τ,0,ω

))
,x
))

dη ,

then

Qh
2 → G̃

(
s,u(s, .,ω , .)

)(
φ (s,τ,0,ω) ,x

)
+dA

s∫
τ

T
(
s−η

)(
G̃
(

η ,u
(
η , .,ω , .

))(
φ
(
η ,τ,0,ω

)
,x
))

dη .
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Since φ
(
s,τ,0,ω

)
= φ
(
s,t,a,ω

)
, it follows that when h goes to zero

Qh
1 +Qh

2 → G̃
(
s,u
(
s, .,ω , .

))(
φ
(
s,t,a,ω

)
,x
)

+dAKu
(
s,φ
(
s,t,a,ω

)
,ω ,x

)
= G̃
(
s,u
(
s, .,ω , .

))(
φ
(
s,t,a,ω

)
,x
)
+dAU(s).

In a similar manner, we consider the case where φ (s,t,a,ω) ∈ (z(t,ω),L) . �
For α ∈ R , and u ∈ B , we define the operators Kα (u) as follows

Kα
(
u
)
(t,a,ω ,x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (t− τ)e−α(t−τ)
F
(
u(τ, ., .,)

)
(x)

v(τ,0,ω)
+

t∫
τ

T (t−s)
(

G̃
(
s,u(s, .,ω , .)+αI

)
(φ (s,τ, .0,ω) ,x)e−α(t−s)

)
ds

if a < z(t,ω),

T (t)e−αtu0

(
φ (0,t,a,x) ,ω ,x

)
+

t∫
0

T (t − s)
(

G̃
(
s,u(s, .,ω , .)+ αI

)
(φ (s,t,a,ω) ,x)e−α(t−s)

)
ds

if a � z(t,ω).

LEMMA 4. Let u∈ B. For fixed (t,a,ω ,x)∈ (0,T )× (0,L)×Ω×D, the function

wα(s) := Kα
(
u
)
(s,φ (s,t,a,ω) ,ω ,x) ,

is differentiable a.e. on (τ∗,T ) , and satisfies

d
ds

wα (s) = −αwα(s)+
(
G̃
(
s,u(s, .,ω)+ αI

))
(φ (s, t,a,x) ,x)+dAwα(s) .

The proof is similar to that given in Lemma 3, so we omit it.

LEMMA 5. Let α,β ∈ R , and u ∈ B. Then

Kβ u
(
s,φ (s,t,a,ω) ,ω ,x

)
= Kαu

(
s,φ (s,t,a,ω) ,ω ,x

)
+(α −β )

∫ t

τ∗
T (t−η)e−β (t−η) (Kαu−u)

(
η ,φ (η ,t,a,ω) ,ω ,x

)
dη .

Proof. We have

d
ds

(
wβ −wα

)
= −β

(
wβ −wα

)
+(α −β )

[
wα −u

(
s,φ (s,t,a,x) ,ω ,x

)]
+dA

(
wβ −wα

)
.
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This gives that

d
ds

(
eβ s (wβ −wα

))
= eβ s (α −β )

[
wα −u

(
s,φ (s,t,a,ω) ,ω ,φ

)]
+dAeβ s(wβ −wα

)
,

and

(wβ −wα)(t) = (α −β )
∫ t

τ∗
T (s−η)e−β (t−η)

[
wα(η)−u

(
η ,φ (η ,t,a,ω) ,ω ,x

)]
dη .

�
Let α,β ∈ R and u ∈ B , then

COROLLARY 1. Kα(u) = u implies that Kβ (u) = u.

Let L1
+ be the positive cone of L1 , and let

B+ = L∞(Q, L1
+
)
.

THEOREM 1. Let u0 ∈ B+
0 . Under conditions (AJ)–(Aμ) , the problem (1.1) has

a unique solution u ∈ B+ .

Proof. Let
α = ‖μ‖∞ +Lv.

a) First step: We show that Kα is a map from B to itself. For simplicity of
notations, we put

G̃α = G̃+ α.

Let u ∈ B . Following [2], we have

∫
D

L∫
0

|Kα(u)(t,a,ω ,x)|dadx � J1 + J2 + J3 + J4,

where

J1 =
∫
D

z(t,ω)∫
0

∣∣∣∣∣∣T (t − τ)
F
(
u(τ, .,ω , .)

)
(x)

v(τ,0,ω)

∣∣∣∣∣∣dadx,

J2 =
∫
D

z(t,ω)∫
0

t∫
τ

∣∣∣T (t− s)G̃α

(
u(s, .,ω , .)

)
(φ (s,τ,0,ω) ,x)

∣∣∣dsdadx,

J3 =
∫
D

L∫
z(t,ω)

∣∣∣T (t)u0

(
φ (0,t,a,ω) ,ω ,x

)∣∣∣dadx,

J4 =
∫
D

L∫
z(t,ω)

t∫
0

∣∣∣T (t− s)G̃α

(
u(s, .,ω , .)

)(
φ (s, t,a,ω) ,x

)∣∣∣dsdadx.
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To estimate J1 , we make the change of variables from a to τ by the relation τ =
τ(t,a,ω) . It follows from (P1) that

J1 =
∫
D

z(t,ω)∫
0

∣∣∣∣∣∣T (t− τ)
F
(
u(τ, .,ω , .)

)
(x)

v(τ,0,ω)

∣∣∣∣∣∣dadx

=

z(t,ω)∫
0

∥∥∥T (t− τ)F
(
u(τ, .,ω , .)

)∥∥∥
L1(D)

1
v(τ,0,ω)

da

�
t∫

0

∥∥∥T (t− τ)F
(
u(τ, .,ω , .)

)∥∥∥
L1(D)

⎛⎝exp

t∫
τ

∂v
∂a

(
s,φ (s,τ,0,ω) ,ω

)
ds

⎞⎠dτ

� eTLv

t∫
0

∥∥∥T (t− τ)F
(
u(τ, .,ω , .)

)∥∥∥
L1(D)

dτ

� eT (2d+Lv)
t∫

0

∥∥∥F(u(τ, .,ω , .)
)∥∥∥

L1(D)
dτ.

By Lemma 1, since F(0) = 0 it follows that

J1 � eT (2d+Lv)
t∫

0

∥∥∥F(u(τ, .,ω , .)
)
−F (0)

∥∥∥
L1(D)

dτ

� eT (2d+Lv)
t∫

0

c1 ‖u‖T dτ � eT (2d+Lv)c1 ‖u‖T T.

Similarly to estimate J2 + J4 , we make the change of variables

η = φ (s,t,a,ω) = φ (s,τ,0,ω) ,

then

J2 + J4 � eTLV

⎧⎨⎩
∫
D

t∫
0

z(t,ω)∫
τ

∣∣∣T (t− s)G̃α

(
u(s, .,ω , .)

)
(η ,x)

∣∣∣dηdsdx

+
∫
D

t∫
0

L∫
z(t,ω)

∣∣∣T (t− s)G̃α

(
u(s, .,ω , .)

)
(η ,x)

∣∣∣dηdsdx

⎫⎪⎬⎪⎭
� eT (2d+Lv)

⎧⎨⎩
t∫

0

L∫
0

∫
D

∣∣∣G(u(s, .,ω , .)
)
(η ,x)

∣∣∣dxdηds

+
t∫

0

L∫
0

∫
D

[∣∣∣∣ ∂v
∂a

(s,η ,ω)+ α
]
u(s,η ,ω ,x)

∣∣∣∣dxdηds

⎫⎬⎭ .
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From Lemma 1, it follows that

∫
D

L∫
0

∣∣∣G(u(s, .,ω , .)
)
(η ,x)

∣∣∣dηdx =
∥∥∥G(u(s, .,ω , .)

)∥∥∥
L1

= ‖G(u(s, .,ω , .))−G(0)‖L1

� ‖u‖T c2

and ∫
D

L∫
0

∣∣∣∣ ∂v
∂a

(s,η ,ω)u(s,η ,ω ,x)
∣∣∣∣dηdx � ‖u‖T Lv.

Therefore, we obtain that

J2 + J4 � eT (2d+Lv)
{
c2 + α +Lv

}
T ‖u‖T .

To estimate J3 , we use the change of variables

ζ = φ (0,t,a,ω) ,

this gives that

J3 � eT (2d+Lv)
L∫

0

∫
D
|u0 (ζ ,ω ,x)|dxdζ � ‖u0‖eT(2d+Lv).

Hence

J1 + J2 + J3 + J4 � ‖u0‖eT (2d+Lv) + eT(2d+Lv)
{

α + c2 +Lv + c1
}‖u‖T T.

This shows that
Kα (u) ∈ B.

b) The second step: We introduce an equivalent norm

‖u‖λ = supt∈[0,T ]e
−λ t ‖u‖T ,

where λ > 0 is a constant. Let u1,u2 ∈ B , then

∫
D

L∫
0

∣∣Kα
(
u1
)−Kα

(
u2
)∣∣ dadx � P1 +P2 +P3,

where

P1 =

z(t,ω)∫
0

∫
D

∣∣T (t− τ)
(
F
(
u1 (τ, .,ω , .)

)
(x)−F

(
u2 (τ, .,ω , .)

)
(x)
)∣∣

v(τ,0,ω)
dxda,
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and

P2 =

z(t,ω)∫
0

t∫
τ

∫
D

|S1 (s,t,x,u1,u2)| dxdsda,

P3 =
L∫

z(t,ω)

t∫
0

∫
D

|S2 (s,t,x,u1,u2)| dxdsda.

Here

S1 (s, t,x,u1,u2) = T (t− s)
(

G̃α

(
s,u1 (s, .,ω , .)

)(
φ (s,τ,0,ω) ,x

))
−T (t− s)

(
G̃α

(
s,u2 (s, .,ω , .)

)(
φ (s,τ,0,ω) ,x

))
,

and

S2 (s, t,x,u1,u2) = T (t− s)
(

G̃α (s,u1 (s, .,ω , .))
(
φ
(
s,t,a,ω

)
,x
))

−T (t− s)
(

G̃α (s,u2 (s, .,ω , .))
(
φ (s,t,a,ω) ,x

))
.

Note that

P1 � eTLv

t∫
0

∣∣∣∣∣∣T (t− τ)
(
F
(
u1 (τ, .,ω , .)

)
(x)−F

(
u2 (τ, .,ω , .)

)
(x)
)∣∣∣∣∣∣

L1(D)
dτ

� eT (2d+Lv) ‖γ‖∞ ‖β‖∞

t∫
0

∫
Ω

∥∥u1
(
τ, ., .,ω ′)−u2

(
τ, ., .,ω ′)∥∥

L1 dω ′dτ.

This gives that

e−λ tP1 � eT (2d+Lv) ‖γ‖∞ ‖β‖∞ e−λ t

×
∫
Ω

t∫
0

e−λ τeλ τ ∥∥u1
(
τ, ., .,ω ′)−u2

(
τ, ., .,ω ′)∥∥

L1 dτdω ′,

and

e−λ tP1 � eT (2d+Lv) |Ω|‖γ‖∞ ‖β‖∞
1
λ
‖u1−u2‖λ ,

where |Ω| denotes the measure of the set Ω . Using the change of variables

η = φ (s,t,a,ω) = φ (s,τ,0,ω) ,
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we obtain that

P2 +P3

�
L∫

0

t∫
0

∫
D

∣∣∣T (t− s)G
(
s,u1 (s, .,ω , .)

)
(η ,x)−G

(
s,u2 (s, .,ω , .)

)
(η ,x)

∣∣∣ dxdη da

+
L∫

0

t∫
0

∫
D

∣∣∣∣T (t− s)
[ ∂v

∂a
(t,η ,ω)+ α

]
(u1 (s,η ,ω ,x)−u2 (s,η ,ω ,x))

∣∣∣∣ dxdη da.

This implies that

e−λ t(P2 +P3) � eT (2d+Lv) (α +Lv +‖μ‖∞)
1
λ
‖u1−u2‖λ .

It follows that

‖Kα (u1)−Kα (u2)‖λ � CT
1
λ
‖u1−u2‖λ ,

where
CT = eT (2d+Lv) (α +Lv +‖μ‖∞ + |Ω|‖γ‖∞ ‖β‖∞) .

Choosing λ > CT gives that Kα is a contraction on the Banach space (B,‖.‖λ ) , and
Kα has a unique fixed point u ∈ B .

c) Third step. It is clear that for u ∈ B+ , Kαu ∈ B+ . By corollary 1, it follows that

K0(u) = u,

and u is a positive solution of system (1.1). �

REMARK 2. Theorem 1 remains valid for function F and G having more general
forms, provided that they satisfy some general properties such as Lipschitz conditions
and assumptions to ensure that Kα (B+) ⊂ B+ .

4. Comparison principle and continuous dependence

We prove the following auxiliary theorems which are useful in proving our results
of optimal control. Let

D̃T = [0,T ]× [0,L]×Ω×D.

Assume that (A f ) f ∈ B , and consider the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂ t

u(t,a,ω ,x)+
∂

∂a

[
v
(
t,a,ω

)
u
(
t,a,ω ,x

)]
= G
(
u
(
t, .,ω , .

))
(a,x)+dAu,

v
(
t,a = 0,ω

)
u
(
t,0,ω ,x

)
= F
(
u(t, .,ω , .)

)(
x
)
,

u
(
0,a,ω ,x

)
= u0

(
a,ω ,x

)
,
(
a,ω ,x

) ∈ (0,L
)×Ω×D,

(4.1)
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where⎧⎪⎨⎪⎩
G
(
u
(
t, .,ω , .

))
(a,x) = −μ

(
P(t,ω),t,a

)
u
(
t,a,ω ,x

)
+ f (t,a,ω ,x),

F
(
u
(
t, .,ω , .

))(
x
)

=
∫

Ω

∫ L

0
β
(
P
(
t,ω
)
,t,s
)

γ
(
ω ,ω ′)u(t,s,ω ′,x

)
dsdω ′.

THEOREM 2. If μi , βi , γi , ui0 and fi satisfy (Aμ) , (Aβ ) , (Aγ) , (Au0) , and (Af )
respectively with f1 � f2 , β1 � β2 , γ1 � γ2 , u10 � u20 , and μ1 � μ2 then

u1(t,a,ω ,x) � u2(t,a,ω ,x) a.e on D̃T ,

where ui is the solution to (4.1) corresponding to β = βi , γ = γi μ = μi , f = fi , and
u0 = ui0 .

Proof. Let
α = ‖μ1‖∞ +‖μ2‖∞ +Lv,

and

Kk,α
(
u
)
(t,a,ω ,x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (t − τ)e−α(t−τ)
Fk

(
u(τ, ., .,)

)
(x)

v(τ,0,ω)
+

t∫
τ

T (t−s)
(

G̃k

(
s,u(s, .,ω , .)+αI

)(
φ (s,τ, .0,ω) ,x)e−α(t−s)

)
ds

if a < z(t,ω),

T (t)e−αtuk0

(
φ (0,t,a,x) ,ω ,x

)
+

t∫
0

T (t−s)
(

G̃k

(
s,u(s, .,ω , .)+αI

)(
φ (s,t,a,ω) ,x)e−α(t−s)

)
ds

if a � z(t,ω),

Similarly as in the proof of Theorem 1, for k = 1,2, the opertor Kk,α has a fixed point
uk in B+ . Hence

K1,α(u1) = u1, and K2,α(u2) = u2.

Since for u ∈ B+ , we have

G1

(
u
(
t, .,ω , .

))
(a,x) = −μ1

(
P(t,ω),t,a

)
u
(
t,a,ω ,x

)
+ f1(t,a,ω ,x)

� −μ2

(
P(t,ω),t,a

)
u
(
t,a,ω ,x

)
+ f2(t,a,ω ,x)

= G2

(
u
(
t, .,ω , .

))
(a,x),

and
F1

(
u
(
t, .,ω , .

))(
x
)

� F2

(
u
(
t, .,ω , .

))(
x
)
,
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then
u1 = K1,α

(
u1
)

� K2,α
(
u1
)
.

Moreover, the monotony of K2,α with respect to u ∈ B+ implies that

u1 � K2,α
(
u1
)

� K2,α

(
K2,α

(
u1
))

,

this leads to
u1 � K2

2,α
(
u1
)
.

By induction, we obtain for each j ∈ N , and j � 2

u1 � K2
2,α(u1) � . . . � K j

2,α(u1).

Since B+ is a normal cone, see [33], then

u1 � lim
j→∞

K j
2,α
(
u1
)

= u2. �

We will analyze the continuous dependence of the solution of the system (4.1)
with respect to the function f .

We assume that (A′
f ) fn(t,a,ω ,x), f (t,a,ω ,x) ∈ B and

‖ fn − f‖T = sup
Q

‖ fn − f‖L1 → 0, asn → ∞.

THEOREM 3. Let u be a solution of system (4.1), and let un be a solution a system
(4.1) with f replaced by fn , If conditions (A′

f ) holds, then

un → u as n → ∞ in B.

Proof. Let Gn be the function G with f replaced by fn . We have

‖un(t, .,ω , .)−u(t, .,ω , .)‖L1 � Σ1 + Σ2 + Σ3

where

Σ1 =
∫ z(t,ω)

0

∫
D

∣∣∣∣∣∣
T
(
t−τ
)
F
(
un
(
τ, .,ω , .

))(
x
)

v
(
τ,0,ω

) −
T
(
t−τ
)
F
(
u
(
τ, .,ω , .

))(
x
)

v
(
τ,0,ω

)
∣∣∣∣∣∣dxda,

Σ2 =
∫
D

∫ z(t,ω)

0

t∫
τ

∣∣S1
(
s,t,ω ,x

)∣∣dxdsda,

Σ3 =
∫
D

∫ L

z(t,ω)

t∫
0

∣∣S2
(
s,t,ω ,x

)∣∣dxdsda,
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with

S1 = T
(
t− s

)(
G̃n

(
s,un
(
s, .,ω , .

))(
φ
(
s,τ,0,ω

)
,x
))

−T
(
t− s

)(
G̃
(
s,u
(
s, .,ω , .

))(
φ
(
s,τ,0,ω

)
,x
))

,

and

S2 = T
(
t− s

)(
G̃n

(
s,un
(
s, .,ω , .

))(
φ
(
s,t,a,ω

)
,x
))

−T
(
t − s

)(
G̃
(
s,u
(
s, .,ω , .

))(
φ
(
s,t,a,ω

)
,x
))

.

By the change of variables τ = τ(t,a,ω) , it follows that

Σ1 � 1
V0

eT (Lv+2d)‖β‖∞ ‖γ‖∞ |Ω|
∫ t

0
‖u(τ, .,ω , .)−un (τ, .,ω , .)‖L1 dτ.

where |Ω| denotes the measure of the set Ω .
Similarly, we divide Σ2 into two parts, we obtain

Σ2 � Σ1
2 + Σ2

2,

where Σ1
2 satisfies

Σ1
2 �

∫
D

∫ z(t,ω)

0

t∫
τ

∣∣S1
1 (s,t,ω ,x)

∣∣dxdsda,

with

S1
1 (s, t,ω ,x) = T (t − s)

(
G̃
(
s,u(s, .,ω , .)

)
(φ (s,τ,0,ω) ,x)

− G̃n

(
s,u(s, .,ω , .)

)
(φ (s,τ,0,ω) ,x)

)
,

this implies that

Σ1
2 � e2dT

T∫
0

‖ fn (s, .ω , .)− f (s, .ω , .)‖L1 ds � e2dT T ‖ fn − f‖T → 0 as n → ∞.

The second term Σ2
2 satisfies

Σ2
2 �

∫
D

∫ z(t,ω)

0

t∫
τ

∣∣S2
1 (s,t,ω ,x)

∣∣dxdsda,
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where

S2
1 (s, t,ω ,x) = T (t− s)

(
G̃n

(
s,u(s, .,ω , .)

)
(φ (s,τ,0,ω) ,x)

)
− G̃n

(
s,un (s, .,ω , .)

)
(φ (s,τ,0,ω) ,x)

)
,

with the change of variables φ (s,τ,0,ω) = η , we obtain that

Σ2
2 � e2dT (‖μ‖∞ +Lv)

t∫
0

‖un (η , .,ω , .)−u(η , .,ω , .)‖L1 dη ,

hence

Σ2 � δ 1
n + e2dT (‖μ‖∞ +Lv)

t∫
0

‖un (η , .,ω , .)−u(η , .,ω , .)‖L1 dη .

We divide Σ3 into two parts. We have

Σ3 � Σ1
3 + Σ2

3,

where

Σ1
3 �

∫
D

∫ L

z(t,ω)

∫ t

0

∣∣S1
2 (s,t,ω ,x)

∣∣dsdadx,

with

S1
2 (s, t,ω ,x) = T (t− s)

(
G̃
(
s,u(s, .,ω , .)

)
(φ (s,t,a,ω) ,x)

)
−T (t− s)

(
G̃n

(
s,u(s, .,ω , .)

)
(φ (s,t,a,ω) ,x)

)
,

hence

Σ1
3 � e2dT

∫ T

0
‖ fn (s, .,ω , .)− f (s, .,ω , .)‖L1 ds � Te2dT ‖ fn − f‖T → 0 as as n → ∞.

The quantity Σ2
3 verifies

Σ2
3 �

∫
D

∫ L

z(t,ω)

∫ t

0

∣∣S2
2 (s,t,ω ,x)

∣∣dsdadx,

where

S2
2 (s, t,ω ,x) = T (t− s)

(
G̃n

(
s,u(s, .,ω , .)

)
(φ (s,t,a,ω) ,x)

)
−T (t− s)

(
G̃n

(
s,un (s, .,ω , .)

)
(φ (s,t,a,ω) ,x)

)
.
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By using the change of variables φ (s,t,a,ω) = η , we will have

Σ2
3 � e2dT (Lv +‖μ‖∞)

∫ t

0
‖un (η , .,ω , .)−u(η , .,ω , .)‖L1 dη .

We summarize the estimates as follows

‖un(t, .,ω , .)−u(t, .,ω , .)‖L1 � 2e2dTT ‖ fn − f‖T

+C
∫ t

0
‖u(η , .,ω , .)−un (η , .,ω , .)‖L1 dη ,

for some positive constant C independent of n . Gronwall’s Lemma implies that

‖u(t, .,ω , .)−un (t, .,ω , .)‖L1 � (2e2dTT ‖ fn − f‖T )eCT .

The right-hand side of the previous inequality is independent of t and ω , this yields
that

‖u−un‖T �
(
2e2dTT ‖ fn − f‖T

)
eCT ,

and by letting n goes to ∞ , we obtain the desired result. �

5. Application to optimal control

Optimal control for age structured model was first proposed in [15]. Then age
structured models with single equation were investigated in [5, 9, 38, 14]. A multistage
age structured model was studied in [16]. We refer the reader to [12, 6, 21, 32, 28, 34]
for other works involving control of populations dynamics. Recently, some research
have been conducted to understand the control, and the behavior of the pest Lobesia
botrana, see for instance [2,41] and the references therein. Our study is inspired by [39],
where the authors studied an optimal control for an age-dependent population dynamics
without diffusion. Let Ω0 ⊂ Ω , and let

DT = [0,T ]× [0,L]×Ω0×D.

In this section, we are concerned with the optimal control problem [P]:

maximize J(I),

where

J(I) =
∫
DT

[
η (t,a,ω ,x) I (t,a,ω ,x))uI (t,a,ω ,x)

]
dxdωdadt,

subject to the control

I ∈ A = {I ∈ L∞ (DT ) : 0 � I � Imax a.e on DT} .
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Here uI is the solution to⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂ t

u(t,a,ω ,x)+
∂
∂a

[
v(t,a,ω)u(t,a,ω ,x)

]
,

= −μ (t,a)u(t,a,ω ,x)− χΩ0 (ω) I(t, ,a,ω ,x)u(t,a,ω ,x)+dAu,

v(t,0,ω)u(t,0,ω ,x) =
∫

Ω

∫ L

0
β (t,s)γ

(
ω ,ω ′)u(t,s,ω ′,x

)
dsdω ′,

u(0,a,ω ,x) = u0 (a,ω ,x) , (a,ω ,x) ∈ (0,L)×Ω×D.

(5.1)

The control I represents the insecticide effort, and plays the role of additional mortality.
Note that I is acting only on a nonempty open subset Ω0 ⊂ Ω . That means that indi-
viduals with level of resistance ω ∈ Ω0 are more vulnerable. The quantity χΩ0 is the
characterstic function. The function η is the net profit generated by the elimination of
an individual with size a , and phenotype ω , at position x and time t . We assume that
η is non-negative and bounded by ηmax . Our aim is to maximize J , the benefits from
eliminating the pest. By Mazur’s Theorem, we establish the existence of the optimal
solution, and by the concept of normal cone, we give conditions for optimality.

5.1. Existence of optimal control

We will prove the existence result for the optimal control problem [P].

DEFINITION 2. A pair
(
I∗,uI∗) is said to be optimal for the control problem if

I∗ ∈ A , maximizes the functional J , and the pair
(
I∗,uI∗) solves the problem (5.1).

In a similar way as in Theorem (1), we prove that for any I ∈ A , problem (5.1)
has a unique nonnegative solution uI . Let w be the nonegative solution of the problem
(5.1) corresponding to to I = 0, μ = 0, β = ‖β‖∞ , and γ = ‖γ‖∞ . We have

LEMMA 6. There exists Cw > 0 such that

0 � w(t,a,ω ,x) � Cw a.e on DT .

Proof. Let Pw be the total population corresponding to w . Integrating the equa-
tion of w , we obtain

∂Pw

∂ t
+
∫

Ω
v(t,L,ω)u(t,L,ω ,x)dω −

∫
Ω

v(t,0,ω)u(t,0,ω ,x)dω = dAPw,

this implies that
∂Pw

∂ t
= dAPw +‖β‖∞ ‖γ‖∞ |Ω|Pw.

Define M : L∞(D) → L∞(D) by

Mu = dAu+‖β‖∞ ‖γ‖∞ |Ω|u.
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Then
Pw(t,x) = eMtPw(0,x),

and
sup

0�t�T
‖Pw(t, .)‖∞ � ‖Pw(0, .)‖∞ e[2d+‖β‖∞‖γ‖∞|Ω|]T .

For ρ ∈ L∞([0,T ]× [0,L]×Ω) , we define

Πρ(t,τ,t0,a0,ω) = e
∫ t

τ ρ
(

σ ,X(σ ,t0,a0,ω),ω
)

dσ
.

It is easy to see that the solution w is given by

w(t,a,ω ,x) =

⎧⎨⎩T (t− τ)Πρ (t,τ,t,a,ω)
F
(
w(τ, ., .,)

)
(x)

v(τ,0,ω)
if a < z(t,ω),

T (t)Πρ (t,0,t,a,ω)u0
(
φ (0,t,a,ω) ,ω ,x

)
, if a � z(t,ω),

with

ρ(t,a,w) = − ∂v
∂a

(t,a,ω).

Since
F (w(τ, ., .,))(x) = ‖β‖∞ ‖γ‖∞ Pw(t,x),

and u0 are bounded, assumption (Av) implies that there exists a positive constant Cw

such that
0 � w(t,a,ω ,x) � Cw a.e on DT . �

THEOREM 4. The problem [P] at least one optimal solution.

Proof. Let d = max(I)∈A J(I) . Using comparaison Theorem 2, we obtain

0 � J(I) �
∫
DT

[ηmaxImaxw(t,a,ω ,x)]dxdωdadt.

Hence 0 � d < ∞ . Let (In) be a maximizing sequence satisfying

d− 1
n

< J (In) � d.

The same comparaison theorem implies that

0 � uIn(t,a,ω ,x) � w(t,a,ω ,x) a.e in DT ,

and so
∥∥uIn
∥∥

L2(DT ) is bounded. It follows that there exists a subsequence denoted again

by uIn such that
uIn → u∗ weakly in L2 (DT ) .
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By Mazur’s Theorem, see [5] we obtain a sequence ũn verifying

ũn → u∗ in L2 (DT ) ,

where ũn is given by the following convex combination

ũn =
kn

∑
i=n+1

λiu
Ii ,λi � 0,

kn

∑
i=n+1

λi = 1,kn � n+1.

Let the control Ĩn be defined as follows

Ĩn (t,a,ω ,x) =

⎧⎪⎨⎪⎩
∑kn

i=n+1 λ iuIi(t,a,ω ,x)Ii (t,a,ω ,x)

∑kn
i=n+1 λ iuIi(t,a,ω ,x)

if ∑kn
i=n+1 λ iuIi(t,a,ω ,x) �= 0,

0 if ∑kn
i=n+1 λ iuIi(t,a,ω ,x) = 0.

It is clear that Ĩn ∈ A . The sequence Ĩn is bounded in L2 (DT ) space, as a consequence
there exists a subsequence, denoted again by Ĩn , such that Ĩn converges weakly in L2 to
I∗ . The system (5.1) is linear, then ũn ∈ B+ is a solution of system (5.1) corresponding
to I = Ĩn ∈ A , i.e

ũn = uĨn ,

and

uĨn (t,a,ω ,x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (t− τ)
F

(
uĨn (τ,.,ω,.)

)
(x)

v(τ,0,ω)

+
t∫

τ

T (t− s)G̃
(
s,uĨn (s, ., .ω , .)

)(
φ (s,τ,0,ω) ,x

)
ds

if a < z(t,ω),
T (t)u0

(
φ (0,t,a,ω) ,ω ,x

)
+

t∫
0

T (t− s)G̃
(
s,uĨn (s, .,ω , .)

)(
φ (s,t,a,ω) ,x

)
ds

if a � z(t,ω).
(5.2)

Since uĨn converges strongly to u∗ , we find that u∗ ∈ B+ , and passing to the limit in
(5.2), we find that u∗ is a mild solution of the probelm (5.1) corresponding to I = I∗ .
Next, we show that the control I∗ is optimal. On the one hand, we have

J
(
Ĩn
)

=
∫
DT

[
η (t,a,ω ,x) Ĩn (t,a,ω ,x))uĨn (t,a,ω ,x)

]
dxdωdadt

=
kn

∑
i=n+1

λiJ (Ii) .

Since

d− 1
i

< J (Ii) � d,
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and i � n , we have

d− 1
n

< J (Ii) � d.

Using λi � 0 and ∑kn
i=n+1 λi = 1, we obtain

d− 1
n

<
kn

∑
i=n+1

λiJ (Ii) � d.

This implies that
kn

∑
i=n+1

λiJ (Ii) → d,

as n → +∞ . We conclude that
J
(
Ĩn
)→ d,

as n →+∞ . This means that Ĩn is a maximizing sequence. On the other hand, we have

J
(
Ĩn
)→ ∫

DT

[
η (t,a,ω ,x) I∗ (t,a,ω ,x))uI∗ (t,a,ω ,x)

]
dxdωdadt,

as n → +∞ . By uniqueness of the limit, we obtain

J(I∗) =
∫
DT

[
η (t,a,ω ,x) I∗ (t,a,ω ,x))uI∗ (t,a,ω ,x)

]
dxdωdadt = d,

and we conclude that
(
I∗,uI∗) is optimal. �

5.2. Optimality conditions

Characterization of solutions for optimal control problems are often stated in terms
of first order necessary optimality conditions. If the dynamic system is described by
ordinary differential equations, the conditions are given by maximum principle of Pon-
tryagin, see ( [27, 5]). For age-structured models, a maximum principle of Pontryagin
type is obtained in ( [15]). Note that the results obtained in [38] constitutes a ref-
erence for subsequent researches of the optimal control for age structured problems.
Following [5] we give necessary optimality conditions for problem [P]. Before stating
our main result, we establish the following useful lemmas. Let

(
I∗,uI∗) be an optimal

pair for the probem. Then for any ε > 0 small enough, and for any h ∈ L∞ (DT ) such
that I∗ + εh ∈ A , the solution uI∗ is differentiable with respect to the control I∗ in the
following sense

LEMMA 7.
uI∗+εh−uI∗

ε
→ z in B, as ε → 0
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where uI∗+εh , and uI∗ are the solutions of system corresponding to controls I∗ + εh
and I∗ respectively. The sensitivity function z, is a solution of the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ z
∂ t

+
∂ (v(t,a,ω)z)

∂a
= dAz(t,a,ω ,x)

− μ (t,a)z(t,a,ω ,x)

−h(t,a,ω ,x)χΩ0 (ω)uI∗ (t,a,ω ,x)
− I∗ (t,a,ω ,x)χΩ0 (ω)z(t,a,ω ,x) ,

z(t,0,ω ,x) =
∫ L

0

∫
Ω

β (t,s)γ
(
ω ,ω ′)z(t,s,ω ′,x

)
dω ′ds,

z(0,a,ω ,x) = 0.

(5.3)

Proof. The existence and uniqueness of solution to (5.3) can be proved by a similar
way as that in Theorem 1. By Lemma 3, we have

uI∗+εh−uI∗ → 0 in B, as ε → 0.

Define

wε =

[
uI∗+εh−uI∗

ε

]
,

then wε is a solution of the system

Dw(t,a,ω ,x) = dAw(t,a,ω ,x)
− μ (t,a)w(t,a,ω ,x)

−h(t,a,ω ,x)χΩ0 (ω)uI∗+εh− I∗ (t,a,ω ,x)χΩ0 (ω)w(t,a,ω ,x) ,

w(t,0,ω ,x) =
∫

Ω

∫ L

0
β (t,s)γ

(
ω ,ω ′)w(t,s,ω ′,x

)
dsdω ′,

w(0,a,ω ,x) = 0.

Passing to the limit ε → 0, and using Lemma 3, we obtain

wε (t, .,ω , .) → z in B, as ε → 0. �

Let NA (I∗) be the normal cone of A at I∗ in X , see [8]. To characterize the
optimal strategy, we define the dual problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂q
∂ t

+ v(t,a,ω)
∂q
∂a

= −dAq(t,a,ω ,x)+ μ (t,a)q(t,a,ω ,x)

+ η (t,a,ω ,x) I∗ (t,a,ω ,x)χΩ0 (ω)
+ I∗ (t,a,ω ,x)χΩ0 (ω)q(t,a,ω ,x)

−β (t,a)
∫

Ω
γ(w,w′)q

(
t,0,ω ′,x

)
dω ′,

q(t,L,ω ,x) = 0,

q(T,a,ω ,x) = 0.

(5.4)
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Under the change of variables ν := T − t , s := L−a , and q̃(ν,s,ω ,x) := q(T −ν,L−
s,ω ,x) , the above problem becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ q̃
∂ν

+ v(T −ν,L− s,ω)
∂ q̃
∂ s

= dAq̃(ν,s,ω ,x)

− μ (T −ν,L− s) q̃(ν,s,ω ,x)
−η (t,a,ω ,x) I∗ (t,a,ω ,x)χΩ0 (ω)

− I∗χΩ0 (ω) q̃(ν,s,ω ,x)

+ β (T −ν,L− s)
∫

Ω
γ(w,w′)q̃

(
ν,0,ω ′,x

)
dω ′,

q̃(ν,0,ω ,x) = 0,

q̃(0,s,ω ,x) = 0.
(5.5)

Treating the system (5.5) in the same manner as in Theorem 1, we get existence and
uniqueness. The main result of this section is the following result

THEOREM 5. Assume that
(
I∗,uI∗) is optimal, q is the solution of the dual prob-

lem, and z is a solution of system (5.3), then

I∗ =

{
0 if η (t,a,ω ,x)+q(t,a,ω ,x) < 0,

Imax if η (t,a,ω ,x)+q(t,a,ω ,x) > 0.

Proof. Let TA(I∗) be the tangent cone to A at I∗ . For any element h ∈ TA(I∗) ,
and for any ε > 0 small enough, we have I∗ + εh ∈ A . Since I∗ is optimal, we obtain

J (I∗) �
∫

DT

[
ηuI∗+εh (I∗ + εh)

]
(t,a,ω ,x)dtdadωdx,

this gives that ∫
DT

[
ηI∗wε + ηhuI∗+εh

]
(t,a,ω ,x)dtdadωdx � 0.

By lemma 7, passing to the limit, we obtain∫
DT

[
ηI∗z+ ηhuI∗](t,a,ω ,x)dtdadωdx � 0.

Multiplying the dual problem by z and integrating over DT , we get∫
DT

[
∂q
∂ t

+ v(t,a,ω)
∂q
∂a

+dAq− μ (t,a)q(t,a,ω ,x)
]
z(t,a,ω ,x)dtdadωdx

=
∫

DT

[
I∗q(t,a,ω ,x)+ ηI∗−β (t,a)

∫
Ω

γ(w,w′)q
(
t,0,ω ′,x

)
dω ′
]
zdtdadωdx.
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Note that the operator A is self-adjoint on L2(D) , see appendix for a proof. Using the
equation of z , we obtain

−
∫

DT

[
∂ z
∂ t

+
∂ (v(t,a,ω)z)

∂a
−dAz+ μ (t,a)z(t,a,ω ,x)

]
qdtdadωdx

−
∫

DT

q(t,0,ω ,x)β (t,a)
∫

Ω
γ(ω ,ω ′)z(t,a,ω ′,x)dω ′dtdadωdx

=
∫

DT

[
I∗q(t,a,ω ,x)+ ηI∗−β (t,a)

∫
Ω

γ(w,w′)q
(
t,0,ω ′,x

)
dω ′
]
zdtdadωdx,

this implies that∫
DT

[
huI∗ + I∗z

]
qdtdadωdx

−
∫

DT

q(t,0,ω ,x)β (t,a)
∫

Ω
γ(ω ,ω ′)z(t,a,ω ′,x)dω ′dtdadωdx

=
∫

DT

[
I∗q(t,a,ω ,x)+ ηI∗−β (t,a)

∫
Ω

γ(w,w′)q
(
t,0,ω ′,x

)
dω ′
]
zdtdadωdx.

Changing ω ′ by ω and using assumption (Aγ ) , we have∫
DT

q(t,0,ω ,x)β (t,a)
∫

Ω
γ(ω ,ω ′)z(t,a,ω ′,x)dω ′dtdadωdx

=
∫

DT

∫
Ω

q(t,0,ω ′,x)β (t,a)γ(ω ,ω ′)z(t,a,ω ,x)dω ′dtdadωdx,

hence ∫
DT

huI∗qdtdadωdx =
∫

DT

ηI∗zdtdadωdx.

It follows that ∫
DT

huI∗ (η +q)dtdadωdx � 0.

for any element of tangent cone h ∈ TA(I∗) , that is

uI∗ (η +q) ∈ NA (I∗) . (5.6)

which implies that

I∗ =

{
0 if η (t,a,ω ,x)+q(t,a,ω ,x) < 0,

Imax if η (t,a,ω ,x)+q(t,a,ω ,x) > 0. �

REMARK 3. a) The first equations of (5.1) and (5.4) with (5.6) represent Pontrya-
gin’s principle. The first equation of (5.4) and (5.6) constitute the first order necessary
conditions of optimality, see for instance [5, 15].

b) The optimal policity depends on (η +q) . If (η +q) < 0, that is η is small
enough then there is no need to apply insecticides; otherwise, one needs to apply the
insecticides at the maximum control Imax .
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6. Appendix

LEMMA 8. The operator A is self adjoint on L2 (D) .

Proof. We have

∫
D

Au(x)v(x)dx =
∫
D

⎡⎣∫
D

J (x− y)u(y)dy−u(x)

⎤⎦v(x)dx

=
∫
D

∫
D

J (x− y)u(y)v(x)dydx−
∫
D

u(x)v(x)dx.

Since J is symmetric, then∫
D

Au(x)v(x)dx =
∫
D

∫
D

J (y− x)v(x)u(y)dydx−
∫
D

u(x)v(x)dx

=
∫
D

⎡⎣∫
D

J (y− x)v(x)dx

⎤⎦u(y)dy−
∫
D

u(y)v(y)dy

=
∫
D

Av(y)u(y)dy. �
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