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Abstract. In this paper, we investigate the existence of global e -positive mild solutions to the ini-
tial value problem for a nonlinear impulsive fractional evolution differential equation involving
the theory of sectorial operators. To obtain the result, we used Kuratowski’s non-compactness
measure theory, the Cauchy criterion and the Gronwall inequality.

1. Introduction

The theory of differential equations is present in several branches of science, in
particular because it excels in numerous relevant applications. We highlight here the
impulsive differential equations, which serve as basic models in the discussion of the
dynamics of systems that are subject to sudden changes in their states, that is, processes
involving an impulse effect. The corresponding models emerge as natural descriptions
of evolutionary phenomena observed in various real world problems. Natural phenom-
ena exhibiting sudden changes are common in biological systems such as heartbeats,
population dynamics and pharmacokinetics, besides other systems described by math-
ematical economics, metallurgy, ecology, and control theory [2, 3, 14, 17].

In 2012, Shu and Wang [34], considered the fractional semilinear integrodifferen-
tial equation in Banach space X given by⎧⎪⎪⎨⎪⎪⎩

Dα
0+u(t) = Au(t)+ f (t,u(t))+

∫ t

0
q(t− s)g(s,u(s))ds

u(0)+m(u) = u0 ∈ X

u′ (0)+n(u) = u1 ∈ X

(1.1)

where Dα
0+(·) is a Caputo fractional derivative with 1 < α < 2; A is a sectorial op-

erator of type (M,θ ,α,μ) defined from the domains D(A) ⊂ X into X ; the nonlinear
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maps f ,g are continuous functions defined from [0,T ]×X → X ; q : [0,T ] → X is an
integrable function on [0,T ] ; and the nonlocal conditions m : X → X , n : X → X are
two continuous functions.

As is well known, a mild solution to system (1.1) satisfies the following equation:

u(t) = Sα (t)(u0−m(u))+Kα (t)(u1−n(u))

+
∫ t

0
Tα (t− s)

[
f (s,u(s))+

∫ s

0
q(s− τ)g(τ,u(τ))dτ

]
ds.

In this sense, the authors investigated the existence and uniqueness of a mild solu-
tion for Eq. (1.1) using the Krasnoselskii theorem, the Arzelà-Ascoli theorem and the
fixed point theorem.

The importance of fractional differential equations for both mathematical theory
and its applications is noticeable. The number of works published in this field presents
an important and interesting growth in the scientific community [4, 6, 8, 9, 10, 21, 12,
22, 23, 25]. For many researchers, it is possible, with the help of fractional operators
(derivative and integral), to obtain better results as compared with classical operators
when it comes to applications [1, 11, 16, 18, 19, 20, 33, 36, 37]. From a theoretical point
of view, there is still a vast path to be explored, since the theory of fractional differential
equations is being constructed in innumerable directions, especially equations involving
sectorial and almost sectorial operators [15, 28, 29, 30, 32, 38, 39, 40, 44]. In addition,
numerous questions still need to be answered, which will enrich the theory in general.
Here, we highlight two relevant works in the theory of fractional differential equations
involving sectorial and almost sectorial operators [5, 7, 40, 43, 44, 45].

In 2013, Yang and Liang [43], using fixed point theorems and the analytical semi-
group theory, investigated the presence of positive light solutions to the Cauchy problem
of Caputo’s fractional evolution equations in Banach spaces. Examples were discussed,
in order to validate the results obtained. In 2013 Wang et al. [39] performed out a study
on optimal controls and listed a series of nonlinear fractional impulsive evolution equa-
tions. In that work, they dedicated to investigating the existence of mild continuous by
parts solutions and the application of fractional impulsive parabolic control. In 2015,
Wang et al. [36] investigated the existence of positive mild solutions of fractional evo-
lution equations with nonlocal conditions of order 1 < α < 2, using Schauder’s fixed
point theorem and the Krasnoselskii fixed point theorem. In the same year, Ding and
Ahmad [7] dedicated themselves to investigating the existence and uniqueness of mild
solutions for equations of fractional evolution with almost sectorial operators. As high-
lighted above, numerous studies have been published, some of them very important and
relevant to the theory.

Motivated by the works cited above, we consider in this paper the initial value
problem (IVP) with nonlinear impulsive fractional evolution differential equation given
by ⎧⎪⎪⎨⎪⎪⎩

CD
α
0+ξ (t)+A ξ (t) = f

(
t, ξ (t)

)
, t ∈ J∞, t �= tk,

Δξ |t=tk = Ik(ξ (tk)), k ∈ N,

ξ (0) = x0

(1.2)
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where CD
α
0+(·) is the Caputo fractional derivative of order 0 < α < 1; ξ : J → Ω ; A :

D(A ) ⊂ Ω → Ω is a sectorial operator of type (M,θ ,α,ρ) in Ω ; f ∈C(J∞ ×Ω,Ω) ;
Δξ |t=tk = ξ (t+k )− ξ (t−k ) where ξ (t+k ) and ξ (t−k ) represent the limits on the right and
left of ξ (t) in t = tk , respectively; Ik : Ω → Ω (k ∈ N) are impulsive functions and
x0 ∈ Ω . Furthermore, let 0 < t1 < t2 < · · · < tm · · · , tm → ∞ with m→ ∞ , be a partition
in J∞ , defining J′∞ = J∞\{t1,t2, . . . ,tm, . . .} , J0 = [0,t1] e Jk = (tk,tk+1] (k ∈ N) . Let
λ1 be the smallest positive real eigenvalue of the linear operator A and let e1 ∈ D(A )
be the corresponding positive eigenvector.

1.0.1. Mains results, consequences and comments

Before stating precisely our main results, it is worth making the following com-
ment. The mild solutions of fractional differential and integro-differential equations
are constructed via Laplace or Fourier transforms; this is the case, for example, of the
solution of problem Eq. (1.2). However, it has recently been noticed that there arise
problems when the solution operator Sα (t− ti) appears.

In other words, we are referring to the following question:

CDα
0+Sα (t− ti) Ii �= A Sα (t− ti) Ii

and
CDα

0+

(∫ t

ti
Tα (t−θ ) f (θ )dθ

)
�= A

(∫ t

ti
Tα (t−θ ) f (θ )dθ

)
.

We emphasize that we have taken due care in order to make the development of
the article clear and efficient. We present below the main contribution of this work.

To obtain our main results, we suppose throughout this paper the following hy-
potheses concerning Eq. (1.2)

(H1 ) For t ∈ J∞ and x ∈ Ω+ , there are functions a,b ∈C(J∞,Ω+) such that

‖ f (t,x)‖ � a(t)‖x‖+b(t).

(H2 ) For all R > 0 and T > 0, there exists C = C(R,T ) > 0 such that

f (t,x2)− f (t,x1) � −C(x2− x1),

for all t ∈ [0,T ] and for 0 � x1 � x2 , with ‖x1‖ � R and ‖x2‖ � R .

(H3 ) For all R > 0 and T > 0, there exists L = L(R,T ) > 0 such that any growing
monotonous sequence D = {xn} ⊂ Ω+ ∩B(0,R) satisfies

μ
(

f (t,D)
)

� Lμ(D), ∀ t ∈ [0,T ].
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The main objective of this article is to investigate the existence of e-positive mild
solutions for an initial value problem with a nonlinear impulsive fractional evolution
differential equation involving the theory of sectoral operators. In order to obtain the
result, we shall use Kuratowski’s noncompactness measurement theory and Gronwall’s
inequality. In other words, we are going to investigate the following result, given as a
theorem.

THEOREM 1. Let (Ω,‖ · ‖) be a Banach space with partial order“�”, whose
positive cone Ω+ is normal, and where −A is the generator of positive α -resolvent
families

{
Sα(t); t � 0

}
and

{
Tα (t); t � 0

}
. For a constant σ > 0 and t ∈ J∞ , let

x0 � σe1 and f (t,σe1) � λ1σe1 . If the nonlinearity of f ∈ C(J∞ ×Ω+,Ω) satisfies
the conditions [(H1 )]–[(H3 )], then Eq. (1.2) has an e-positive mild solution in J∞ .

Here are some consequences of the result:

1. The result investigated here, involving the existence of mild e-positive solutions
of the fractional problem Eq. (1.2) in the sense of Caputo, is the first in the literature.
There are several works involving positive solutions, but e-positive solutions have not
been investigated so far.

2. When investigating results in the theory of fractional differential equations, a
natural consequence is to consider the limit α → 1 in order to recover the integer case,
a property that is verified here.

3. When Ω is a Banach space that is ordered and complete in a weak and sequen-
tial way, we exclude the condition (H3) of noncompactness measure from Theorem 1
and obtain the following result:

COROLLARY 1. Let Ω be a Banach space ordered and complete in a weak and se-
quential way whose positive cone Ω+ is normal; let −A be an infinitesimal generator
of the positive α -resolvent families {Sα(t); t � 0} and {Tα(t); t � 0} . Let x0 � σe1 ,
f (t,σe1) � λ1σe1 for σ > 0 and t ∈ J∞ . If the non-linearity of f ∈ C(J∞ ×Ω+,Ω)
satisfies assumptions (H1) and (H2) , then Eq. (1.2) has an e-positive mild solution in
J∞ .

4. The result investigated here will allow the discussion of properties of the mild
e-positive solution, uniqueness, and controllability, from new conditions beyond those
presented in [(H1 )]–[(H3 )].

The article is organized as follows: in section 2, we present the definitions of
the ψ -Riemann-Liouville fractional integral and the ψ -Hilfer fractional derivative, and
two particular cases which were used to formulate the problem investigated. We present
the Gronwall theorem (inequality) and its respective lemma. On the other hand, we
present a small part of the theory of sectorial operators and some fundamental results.
Finally, we approach the concept of Kuratowski’s noncompactness measure, together
with some essential results for obtaining the main result of this paper. In section 3,
we investigate the main result of this paper, that is, the existence of e-positive mild
solutions for Eq. (1.2), through Kuratowski’s noncompactness measure, using Cauchy’s
criterion and Gronwall’s inequality.
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2. Mathematical background: auxiliary results

In this section, we present some fundamental concepts and results that will be of
paramount importance in obtaining our main result.

Consider the Banach space (Ω,‖ · ‖) and the interval J = [a,b] ⊂ R with n ∈ N .
The continuous functions space is given by [28, 29]

C(J,Ω) := { f : J → Ω; f : continuous} ,

with norm
‖ f‖C := sup

t∈J
| f (t)|.

On the other hand, we have the space of continuously differentiable functions,
given by

Cn(J,Ω) :=
{

f : J → Ω; f (n) ∈C(J,Ω)
}

,

endowed with the norm
‖ f‖Cn := sup

t∈J
| f (n)(t)|.

Note that the spaces defined above are Banach spaces.
Now, consider the interval J∞ = [0,∞) . The space of the continuous by parts

functions, given by [42]

PC(J∞,Ω) :=
{

ξ : J∞ → Ω; ξ (t) be continuous in t �= tk, continuous left
in t = tk and there is the limit on the right ,ξ (t+k ), ∀k ∈ N

}

whose norm is given by ‖ξ‖PC = max
k∈N

{
sup
t∈Jk

‖ξ (t)‖
}

, is a Banach space.

DEFINITION 1. [42] Let Ω be a real Banach space. A non-empty, closed and
convex subset Ω+ ⊂ Ω is considered a cone if it meets the following conditions:

(i) If x ∈ Ω+ and λ � 0, then λx ∈ Ω+ .

(ii) If x ∈ Ω+ and −x ∈ Ω+ , then x = 0.

Every cone Ω+ ⊂ Ω induces an order in Ω given by: x � y ⇔ y− x ∈ Ω+ .
Let J = [a,b]⊂R be a interval with −∞ � a < b � ∞ and let ψ(x) be a monotonous

increasing and positive function at (a,b) , with derivative ψ ′(x) continuous on (a,b) .
The left ψ -Riemann-Liouville fractional integrals with respect to the ψ function of a
f function on J of order α > 0 is defined by [24, 27, 31]

I α ;ψ
a+ f (x) =

1
Γ(α)

∫ x

a
ψ ′(t)

(
ψ(x)−ψ(t)

)α−1
f (t)dt. (2.1)

The right ψ -Riemann-Liouville fractional integral is defined analogouly.
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In particular, for ψ(x) = x , we have the Riemann-Liouville fractional integral to
the left, given by

I α
a+ f (x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, x > a. (2.2)

On the other hand, let n ∈ N and J = [a, b] ⊂ R an interval such that −∞ � a <
b � ∞ . Consider the functions f ,ψ ∈Cn(J; R) so that ψ is increasing and ψ ′(x) �= 0,
for every x ∈ J . The ψ -Hilfer fractional derivative to the left of f , of order n− 1 <
α < n and type 0 � β � 1 is defined by [24, 27, 31]

H
D

α ,β ;ψ
a+ f (x) = I

β (n−α);ψ
a+

(
1

ψ ′(x)
d
dx

)n

I
(1−β )(n−α);ψ
a+ f (x).

The ψ -Hilfer fractional derivative to the right is defined analogously.
In particular, for ψ(x) = x and taking the limit β → 1, we have the Caputo frac-

tional derivative, given by

CDα
a+ f (x) = I n−α

a+

(
d
dx

)n

f (x) =
1

Γ(n−α)

∫ x

a
(x− t)n−α−1 f (n)(t)dt. (2.3)

For details on how to obtain other particular cases for derivatives and fractional
integrals, we suggest the work [31].

In what follows we present two fundamental results, Theorem 2 and Lemma 1.
However, their proof will not be presented here; it can be found in [26].

THEOREM 2. [26] Let ξ and ν be two integrable functions and g continuous,
with domain J = [a,b] . Let ψ ∈C1(J) be an increasing function such that ψ ′(t) �= 0 ,
∀t ∈ J . Suppose that

(1) ξ and ν are non-negative;

(2) g is non-negative and non-decreasing.

If

ξ (t) � ν(t)+g(t)
∫ t

a
ψ ′(τ)

(
ψ(t)−ψ(τ)

)α−1
u(τ)dτ,

then

ξ (t) � ν(t)+
∫ t

a

∞

∑
k=1

[g(t)Γ(α)]k

Γ(αk)
ψ ′(τ)

(
ψ(t)−ψ(τ)

)αk−1
v(τ)dτ.

LEMMA 1. [26] Under the hypotheses of the Theorem 2, let v be a non-decreasing
function on J = [a,b] . Then,

ξ (t) � ν(t)Eα

(
g(t)Γ(α)

[
ψ(t)−ψ(τ)

]α)
,

where Eα(t) =
∞
∑

k=0

tk

Γ(αk+1)
, with ℜ(α) > 0 , is the Mittag-Leffler the function.
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In order to investigate our results, we will work with the initial value problem
Eq. (1.2) using the Caputo fractional derivative, defined by Eq. (2.3).

DEFINITION 2. [42] Let a,α ∈ R . A function f : [a,∞) → Ω belongs to space
Ca,α if there exists a real number p > α and a function g ∈ C([a,∞);Ω) such that
f (t) = t pg(t) . Also, we say that f ∈Cm

a,α for some positive integer m if f (m) ∈Ca,α .

Let A be a density operator on Ω satisfying the following conditions [34, 41]:

1. For some 0 < θ < π
2 , ρ +Sθ = {ρ + λ α ; λ ∈ C, |arg(−λ α)| < θ} .

2. There exists a constant M such that

‖(λ I−A )−1‖ � M
|λ −ρ | , λ /∈ ρ +Sθ .

DEFINITION 3. [34, 41] A closed linear operator A : D ⊂ Ω → Ω is considered
a sectorial operator of the type (M,θ ,α,ρ) if there exist 0 < θ < π

2 , M > 0 and ρ ∈R

such that the α -resolvent of A exists outside the sector,

ρ +Sθ = {ρ + λ α ; λ ∈ C, |arg(−λ α)| < θ}

and

‖(λ α I−A )−1‖ � M
|λ α −ρ | , λ α /∈ ρ +Sθ .

If A is a sectorial operator of type (M,θ ,α,ρ) , then it is not difficult to see
that A is the infinitesimal generator of an α -resolvent family ‖Tα(t)‖t�0 in a Ba-

nach space, where Tα (t) =
1

2π i

∫
C

eλ tR(λ α ,A )dλ . Analogously, we will make the

estimates for ‖Sα(t)‖t�0 and ‖Kα(t)‖t�0 , as presented below.
The existence of soft solutions and the qualitative theory of evolution fractional

equations are researched through operator-solutions [34, 41],

Sα(t) =
1

2π i

∫
C

eλ tλ α−1R(λ α ,A )dλ

and

Kα(t) =
1

2π i

∫
C

eλ tλ α−2R(λ α ,A )dλ ,

where C is an appropriate path and A a sectorial operator of the type (M,θ ,α,ρ) .
We present and highlight the following two lemmas, Lemma 2 and Lemma 3.

LEMMA 2. [34, 41] Let A be a sectorial operator of type (M,θ ,α,ρ) . Then,
for ‖Sα(t)‖ and t > 0 , the following estimates are valid:
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(i) If ρ � 0 and φ ∈
(

max{θ ,(1−α)π}, π
2 (2−α)

)
, then

‖Sα(t)‖ �
K1Me[K1(1+ρtα )]

1
α
[
K

1
α
0 −1

]
π(sinθ )1+ 1

α
(1+ ρtα)

+
Γ(α)M

π(1+ ρtα)|cos π−φ
α |α sinθ sinφ

, (2.4)

where

K0 = K0(θ ,φ) = 1+
sinφ

sin(φ −θ )
and K1 = K1(θ ,φ) = max

{
1,

sinθ
sin(φ −θ )

}
.

(ii) If ρ < 0 and φ ∈
(

max{ π
2 ,(1−α)π}, π

2 (2−α)
)

, then

‖Sα(t)‖ �
(

M[(1+ sinφ)
1
α −1]

π |cosφ |1+ 1
α

+
Γ(α)M

π |cosφ ||cos π−φ
α |α

)
1

1+ |ρ |tα .

LEMMA 3. [34, 41] Let A be a sectorial operator of type (M,θ ,α,ρ) and t > 0 .
Then the following estimates are valid:

(i) If ρ � 0 and φ ∈
(

max{θ ,(1−α)π}, π
2 (2−α)

)
, then

‖Tα(t)‖ �
M
[
K

1
α
0 −1

]
π sinθ

(1+ ρtα)
1
α tα−1 e[K1(1+ρtα )]

1
α

+
Mtα−1

π(1+ ρtα)|cos π−φ
α |α sinθ sinφ

and

‖Kα(t)‖ �
M
[
K

1
α
0 −1

]
K1

π(sinθ )
α+2

α
(1+ ρtα)

α−1
α tα−1 e[K1(1+ρtα )]

1
α

+
MαΓ(α)

π(1+ ρtα)|cos π−φ
α |α sinθ sinφ

,

where

K0 = K0(θ ,φ) = 1+
sinφ

sin(φ −θ )
and K1 = K1(θ ,φ) = max

{
1,

sinθ
sin(φ −θ )

}
.
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(ii) If ρ < 0 and φ ∈
(

max{ π
2 ,(1−α)π}, π

2 (2−α)
)

, then

‖Tα(t)‖ �

⎛⎝eM
[
(1+ sinφ)

1
α −1

]
π |cosφ | +

M

π |cosφ ||cos π−φ
α |

⎞⎠ 1
1+ |ρ |tα ,

and

‖Kα(t)‖ �

⎛⎝eM
[
(1+ sinφ)

1
α −1

]
t

π |cosφ | α+2
α

+
αΓ(α)M

π |cosφ ||cos π−φ
α |

⎞⎠ 1
1+ |ρ |tα .

LEMMA 4. [34, 41] Let A be a sectorial operator of type (M,θ ,α,ρ); then

Sα(t) =
1

2π i

∫
Co

eλ tλ α−1R(λ α ,A )dλ = Eα ,1(A tα) =
∞

∑
k=0

(A tα)k

Γ(1+ αk)
, (2.5)

Tα(t) =
1

2π i

∫
Co

eλ tR(λ α ,A )dλ = tα−1
Eα ,α (A tα) = tα−1

∞

∑
k=0

(A tα)k

Γ(α + αk)
(2.6)

and

Kα(t) =
1

2π i

∫
Co

eλ tλ α−2R(λ α ,A )dλ = tEα ,2(A tα) = t
∞

∑
k=0

(A tα)k

Γ(2+ αk)
, (2.7)

where Co is an appropriate path belonging to Σθ ,ω .

LEMMA 5. [34, 41] Let A be a sectorial operator of type (M,θ ,α,ρ); then

d
dt

(Kα(t)) = Sα(t) and
d
dt

(Sα(t)) = A Tα(t).

LEMMA 6. [34, 41] Let A be a sectorial operator of type (M,θ ,α,ρ) and α ∈
(0,1); then

CD
α
0+[Sα(t)x0] = A [Sα (t)x0]

and

CD
α
0+

(∫ t

0
Tα (t−θ ) f (θ )dθ

)
= A

∫ t

0
Tα(t −θ ) f (θ )dθ + f (t),

where Γ (·) is an appropriate path belonging to Σθ ,ω , Sα (·) and where Tα (·) , are
given by Eq. (2.5) and Eq. (2.6), respectively.
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COROLLARY 2. [34, 41]

CD
α
tk

(∫ t

tk
Tα (t−θ ) f (θ )dθ

)
= A

∫ t

tk
Tα (t−θ ) f (θ )dθ + f (t),

where tk > 0 .

As we are working with fractional differential equations with impulses, it is im-
portant to mention the results presented below.

LEMMA 7. [34, 41]

d
dt

[∫ t

0
Tα(t −θ ) f (θ )dθ

]
�= d

dt

[∫ t

tk
Tα(t−θ ) f (θ )dθ

]
,

where tk > 0 .

LEMMA 8. [34, 35, 41] Let A be a sectorial operator of type (M,θ ,α,ρ) and
0 < α < 1 ; then

CDα
0+Sα (t − tk) Ik �= A Sα (t− tk) Ik

and
CDα

0+

(∫ t

tk
Tα (t−θ ) f (θ )dθ

)
�= A

(∫ t

tk
Tα (t−θ ) f (θ )dθ

)
.

LEMMA 9. [34, 35, 41] Let A be a sectorial operator of type (M,θ ,α,ρ) . If
0 < α < 1 and t > tk , then

CDα
tk

Sα (t− tk) Ik = A Sα (t− tk) Ik.

The following observation has the same objective as Lemma 7, that is, to present
the difference between an integral calculated on the determined interval and the integral
calculated on the partitioned interval for a choice of k ∈ N .

REMARK 1.

CD
α
0+

(∫ t

0
Tα(t−θ ) f (θ )dθ

)
�= CD

α
0+

(∫ t

tk
Tα(t−θ ) f (θ )dθ

)
,

where tk > 0.

In order to obtain the existence of an e-positive mild solution for Eq. (1.2), we
present the concept of Kuratowski’s non-compactness measure and some important
consequences of it.

DEFINITION 4. [39, 42, 44] Let B be a limited set in a Banach space Ω and
δ (B) the diameter of set B . Kuratowski’s noncompactness measure μ(·) is given by

μ(B) = inf

{
ε > 0; B =

m⋃
i=1

Bi and δ (Bi) � ε, ∀i ∈ [1 · · ·m]

}
. (2.8)
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Kuratowski’s noncompactness measure guarantees that every limited set B admits
a finite covering, that is, B can be covered by a finite number of sets with a diameter
not exceeding ε > 0.

Consider the interval J = [0,b] and the Banach space C(J,Ω) ; then, for all B ⊂
C(J,Ω) and t ∈ J , define

B(t) := {u(t); u ∈ B} ⊂ Ω.

If B is limited on C(J,Ω) , then B(t) will be limited on Ω and μ
(
B(t)

)
� μ(B) .

LEMMA 10. [39, 42, 44] Let B ⊂ C(J,Ω) limited and equicontinuous. Then
μ(B(t)) is continuous on J ,

μ(B) = max
t∈J

μ(B(t)) and μ
(∫ t

0
B(s)ds

)
�

∫ t

0
μ
(
B(s)

)
ds.

LEMMA 11. [39, 42, 44] Let S and T be limited sets in a Banach space Ω , with
S the closure of S , co(S) the convex hull of S and a a real number. So the measure of
noncompactness has the following properties:

(1) S ⊂ T ⇒ μ(S) � μ(T );

(2) μ({x}∪S) = μ(S), ∀x ∈ Ω, /0 �= S ⊂ Ω;

(3) μ(S) = 0 ⇐⇒ S is compact;

(4) μ(S+T ) � μ(S)+ μ(T) , where S+T = {x+ y; x ∈ S,y ∈ T} ;

(5) μ(S∪T ) = max{μ(S), μ(T )} ;

(6) μ(aS) = |a| μ(S);

(7) μ(S) = μ(S) = μ(co(S)) .

For all W ⊂C(J;Ω) , define∫ t

0
W (s)ds =

{∫ t

0
u(s)ds; u ∈W

}
, t ∈ J.

LEMMA 12. [39, 42, 44] Let J = [a,b] , W ⊂C(J; Ω) limited and equicontinu-
ous; then co(W ) ⊂C(J; Ω) is also limited and equicontinuous.

LEMMA 13. [39, 42, 44] Let {ξn}∞
n=1 be a sequence of Bochner-integrable func-

tions, J = [a,b] in Ω , with ‖ξn(t)‖ � m(t) for almost every t ∈ J and all n � 1 , where
m ∈ L(J;R+); then the function Φ(t) = μ({ξn(t)}∞

n=1) ∈ L(J;R+) satisfies

μ
({∫ t

a
ξn(s)ds; n ∈ N

})
� 2

∫ t

a
Φ(s)ds.

LEMMA 14. [39, 42, 44] If W is limited, then, for each ε > 0 , there is a sequence
{un}∞

n=1 ⊂W such that

μ(W ) � μ
(
{ξn}∞

n=1

)
+ ε.



102 J. F. JUNIOR, J. V. DA C. SOUSA AND E. C. DE OLIVEIRA

3. Existence of e-positive mild solutions

In this section we investigate the existence of e-positive mild solutions for an ini-
tial value problem with impulsive evolution fractional nonlinear differential equation
in the Banach space Ω , through the Gronwall inequality, Cauchy’s criterion and Kura-
towski’s non-compactness measure [26, 39, 42, 44].

Consider the following initial value problem with linear impulsive evolution frac-
tional equation in Ω , given by⎧⎪⎨⎪⎩

CD
α
0+ξ (t)+A ξ (t) = ϕ(t), t ∈ J∞, t �= tk,

Δξ |t=tk = Ik(ξ (tk)), k ∈ N,

ξ (0) = x0

(3.1)

where CD
α
0+(·) is a Caputo fractional derivative of order 0 < α < 1; ξ : J → Ω ;

A : D(A ) ⊂ Ω → Ω is a sectorial operator of type (M,θ ,α,ρ) on Ω ; Δξ |t=tk =
ξ (t+k )−ξ (t−k ) , where ξ (t+k ) and ξ (t−k ) represent the limits on the right and left of ξ (t)
at t = tk , respectively; Ik : Ω → Ω (k ∈ N) are impulsive functions; x0 ∈ D(A ) and
ϕ ∈C(J,Ω) . Also, let 0 < t1 < t2 < · · ·< tm · · · , with tm → ∞ when m→ ∞ , a partition
in J∞ . Define J′∞ = J∞\{t1,t2, . . . ,tm, . . .} , J0 = [0,t1] and Jk = (tk, tk+1] (k ∈ N) .

DEFINITION 5. [34, 35, 41] An abstract function u ∈ PC(J∞,Ω) is a mild solu-
tion for Eq. (3.1) if it satisfies the integral equation

x(t) = S̃α (t)x0 +
∫ t

0
Tα (t− s)ϕ(s)ds+ S̃α (t)

k

∑
i=1

S̃
−1
α (ti) Ii (xi) ,

with S̃α(·) and T̃α(·) given by Eq. (2.5) and Eq. (2.6), respectively. Besides, S̃−1
α (·)

denotes the inverse of the fractional solution operator S̃α(·) at t = ti, i = 1,2,3, . . . ,m .
In addition, if there is e � 0 and σ > 0 so that u(t) � σe for t ∈ J∞ , then we have

an e-positive mild solution for Eq. (3.1).

Let (Ω,‖·‖) be a Banach space, A : D(A )⊂Ω→Ω a closed linear operator and
−A the infinitesimal generator of α -resolvent families {Sα(t); t � 0} and {Tα(t); t �
0} . Then, there are M̃ > 0 and δ > 0 such that [21, 39, 40]

‖Sα(t)‖C � M̃eδ t and ‖Tα(t)‖C � M̃eδ t , t � 0.

Through the results presented in the preliminary section, we are ready to attack the
main result of this article, that is, Theorem 1.

Proof of Theorem 1. The proof of this theorem will be divided into two parts.
(I) In this first part, we prove the global existence of e-positive mild solutions on

the interval J0 = [0, t1] .
In this case, Eq. (1.2) is equivalent to Eq. (3.2) with the evolution fractional equa-

tion without impulse in Ω ,{
CDα

0+ξ (t)+A ξ (t) = f
(
t,ξ (t)

)
, t ∈ J0,

ξ (0) = x0.
(3.2)
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1. The local existence of soft solutions for Eq. (3.2) on J0 = [0,t1] .
For all t0 � 0 and x0 ∈ Ω , we will prove that Eq. (3.3) below, with fractional

evolution equation {
CDα

t0+ξ (t)+A ξ (t) = f
(
t,ξ (t)

)
, t > t0,

ξ (t0) = x0,
(3.3)

has an e-positive mild solution on I = [t0,t0 + ht0 ] , where ht0 ∈ (0,1) will be defined
next by Eq. (3.6).

Consider the interval I∗ = [0,t0 +1] , α ∈ (0,1) . We introduce the following con-
stants:

Mt0 = sup
{
(t− t0)1−α‖Sα(t)‖; t ∈ I∗

}
,

Mt0 = sup
{
(t− t0)1−α‖Tα(t)‖; t ∈ I∗

}
,

and

Rt0 = (Mt0 +Mt0)(‖x0‖+1)+ σe1.

Let a and b be functions satisfying condition (H1 ), such that

at0 = max
t∈I∗

a(t) and bt0 = max
t∈I∗

b(t).

On the other hand, the functions satisfying conditions (H2 ) and (H3 ) are given by

C = C(Rt0 ,t0 +1) and L = L(Rt0 ,t0 +1).

Adding Cξ (t) to both sides of Eq. (3.3), we can rewrite it as{
CDα

t0+ξ (t)+ (A +CI )ξ (t) = f
(
t,ξ (t)

)
+Cξ (t), t > t0,

ξ (t0) = x0.
(3.4)

Consider the operators S̃α(t) = e−CtSα(t) and T̃α(t) = e−CtTα (t) belonging to
the positive α -resolvent families, {Sα(t); t � 0} and {Tα(t); t � 0} , respectively, both
generated by −(A +CI) . Consider the mapping Q given by

(Qu)(t) = S̃α(t − t0)x0 +
∫ t

t0
T̃α(t− s)

[
f
(
s,ξ (s)

)
+Cξ (s)

]
ds, t ∈ I. (3.5)

From the continuity of f and condition (H2 ), we have that function Q :C(I,Ω+)→
C(I,Ω) is continuous and increasing. In addition, a fixed point of Q is also a solution
of Eq. (3.4) in I .

Define the set Ω :

Λ :=
{

u ∈C(I,Ω+); ‖ξ (t)‖C � Rt0 , ξ (t) � σe1, t ∈ I
}
.
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Then, Λ ⊂C(I,Ω+) is a nonempty, bounded, convex and closed set. Let

hα
t0 � min

{
1,

(‖x0‖+1)α
(at0 +C)Rt0 +bt0

}
, (3.6)

with 0 < α < 1. Then, by Eq. (3.5) and condition (H1 ), for each u ∈ Λ and t ∈ I , we
have

‖(Qξ )(t)‖ =
∥∥∥∥S̃α(t − t0)x0 +

∫ t

t0
T̃α(t − s)

[
f
(
s,ξ (s)

)
+Cξ (s)

]
ds

∥∥∥∥ (3.7)

� ‖S̃α(t− t0)‖‖x0‖+
∫ t

t0

∥∥∥T̃α(t − s)
∥∥∥∥∥ f

(
s,ξ (s)

)
+Cξ (s)

∥∥ds

� Mt0‖x0‖+Mt0

∫ t

t0
(t− s)α−1

[
a(s)‖ξ (s)‖+b(s)+C‖ξ (s)‖

]
ds

� Mt0‖x0‖+Mt0

∫ t

t0

[
(at0 +C)Rt0 +bt0

]
(t− s)α−1ds

� Mt0‖x0‖+Mt0

[
(at0 +C)Rt0 +bt0

] (t− t0)α

α
.

From Eq. (3.7), it follows that

‖(Qξ )(t)‖ � Mt0‖x0‖+Mt0
[(at0 +C)Rt0 +bt0 ]

α
(‖x0‖+1)α

[(at0 +C)Rt0 +bt0 ]

� [Mt0 + Mt0 ] (‖x0‖+1)
� Rt0 .

Let v0(t) = σe1, ∀t ∈ I , v0 ∈ Λ . Then

ϕ(t) � CD
α
0+ν0(t)+ (A +CI)ν0(t) = λ1σe1 +Cσe1 � f (t,σe1)+Cσe1. (3.8)

As S̃α(t) and T̃α(t) are positive α -resolvent operators and Q is an increasing
operator, it follows from Eq. (3.5) that

σe1 = ν0(t) = S̃α(t− t0)ν0(t0)+
∫ t

t0
T̃α(t − s)ϕ(s)ds

� S̃α(t − t0)x0 +
∫ t

t0
T̃α(t − s)

[
f (s,σe1)+Cσe1

]
ds = (Q(σe1))(t).

Note that σe1 � u(t) ∀t ∈ I ; then

σe1 � (Q(σe1))(t) � (Qξ )(t), t ∈ I.

Thus, Q : Λ → Λ is continuous and increasing.
The set Q(Λ) is a family of equicontinuous functions in C(I,Ω+) .
Let ν0 = σe1 ∈ Ω and define a sequence on the interval {νn} by

νn = Qνn−1, n = 1,2, · · · . (3.9)
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As Q is an increasing operator and ν1 = Qν0 � ν0 , we have

ν0 � ν1 � ν2 � · · · � νn � · · · . (3.10)

Therefore, {νn} = {Qνn−1} ⊂ Q(Λ) ⊂ Λ is bounded and equicontinuous.
Now, let B = {νn; n ∈ N} and B0 = {νn−1; n ∈ N} , then B0 = B∪{ν0} . Using

Lemma 11 (2), yields μ(B(t)) = μ(Q(B0)(t)) for t ∈ I .
Substituting Q(B0)(t) , defined by Eq. (3.5), yields

μ(B(t)) = μ
({

S̃α (t− t0)x0 +
∫ t

t0
T̃α(t − s)

[
f (s,νn−1(s))+Cνn−1(s)

]
ds; n ∈ N

})
.

(3.11)

Using Lemma 11 (3), we have μ
(
S̃α(t − t0)x0

)
= 0. Then Eq. (3.11) yields

μ(B(t)) = μ
({∫ t

t0
T̃α(t − s)

[
f (s,νn−1(s))+Cνn−1(s)

]
ds; n ∈ N

})
.

Using Lemma 13 yields

μ(B(t)) � 2
∫ t

t0
μ
({

T̃α(t− s)
[
f (s,νn−1(s))+Cνn−1(s)

]
; n ∈ N

})
ds

� 2
∫ t

t0
‖T̃α(t− s)‖μ

({
f (s,νn−1(s))+Cνn−1(s); n ∈ N

})
ds

� 2Mt0

∫ t

t0
(t− s)α−1

[
μ
(

f (s,B0(s))
)

+ μ
(
CB0(s)

)]
ds.

Using condition (H3 ), for all t ∈ I , yields

μ
(
B(t)

)
� 2Mt0

∫ t

t0
(t− s)α−1[L+C]μ

(
B0(s)

)
ds

� 2Mt0(L+C)
∫ t

t0
(t− s)α−1μ

(
B0(s)

)
ds.

Now, using the Grönwall inequality (see Lemma 1 with ψ(t) = t ) yields

μ
(
B(t)

)
� 0 ·Eα

(
2M(L+C)Γ(α)(t− s)α

)
= 0.

So, μ(B(t))≡ 0 for t ∈ I . Using Lemma 10, we have μ(B) = maxt∈I μ(B(t)) = 0,
that is, {νn} is relatively compact in C(I,Ω+) . Therefore, there exists a subsequence
{νnk}⊂ {νn} such that νnk → ξ ∗ ∈ Λ , when k→ ∞ . Combining this with the sequence
in Eq. (3.10) and the normality of the cone Ω+ , it’s easy to see that νn → ξ ∗ , with
n → ∞ . Taking the limit n → ∞ on both sides of Eq. (3.9), and using the continuity
of operator Q , we have ξ ∗ = Qξ ∗ , a fixed point. Therefore, ξ ∗ ∈ Λ ⊂C(I,Ω+) is an
e-positive mild solution of the Eq. (3.4).
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2. The global existence of mild solutions for the Eq. (3.2) on J0 = [0,t1] .
In item 1, we proved that Eq. (3.2) admits an e-positive mild solution

ξ0 ∈C([0,h0],Ω+) , given by

ξ0(t) = S̃α (t)x0 +
∫ t

0
T̃α(t− s)

[
f (s,ξ0(s))+Cξ0(s)

]
ds. (3.12)

Using the extension theorem [42] , ξ0 can be extended to a saturated solution of
Eq. (3.2), which is also denoted by ξ0 ∈C([0,T ),Ω+) , whose interval of existence is
[0,T ) .

Next, we will show that T > t1 . Denote

a = max
t∈[0,T+1]

a(t), b = max
t∈[0,T+1]

b(t),

M1 = sup
t∈[0,T+1]

‖(t−T)1−α
Sα(t)‖ and M1 = sup

t∈[0,T+1]
‖(t−T )1−α

Tα(t)‖.

Suppose T � t1 ; taking the norm on both sides of (see Eq. (3.12)) we obtain

‖ξ0(t)‖ �
∥∥∥S̃α(t)x0

∥∥∥+
∥∥∥∥∫ t

0
T̃α(t − s)

[
f (s,ξ0(s))+Cξ0(s)

]∥∥∥∥ds

� ‖S̃α(t)‖‖x0‖
+
∫ t

0
(t− s)α−1(t − s)1−α

∥∥∥T̃α(t − s)
∥∥∥∥∥∥[ f (s,ξ0(s))+Cξ0(s)

]∥∥∥ds

� M1‖x0‖+M1

∫ t

0
(t− s)α−1

[
‖ f (s,ξ0(s))‖+‖Cξ0(s)‖

]
ds

� M1‖x0‖+M1

∫ t

0
(t− s)α−1

[
b+(a+C)‖ξ0(s)‖

]
ds

� M1‖x0‖+M1b
Tα

α
+M1(a+C)

∫ t

0
(t − s)α−1‖ξ0(s)‖ds.

Using the Gränwall inequality (see Lemma 1 with ψ(t) = t ) we get

‖ξ0(t)‖ �
(

M1‖x0‖+M1b
T α

α

)
Eα

(
M1(a+C)Γ(α)t

)
�
(

M1‖x0‖+M1b
T α

α

)
Eα

(
M1(a+C)Γ(α)T

)
� M2. (3.13)

Now, we define the following constant:

N0 := sup
{
‖ f (t,x)‖; t ∈ [0,T +1] e ‖x‖ � M2

}
. (3.14)

As S̃α(t) is a continuous standard operator for t > 0, for any 0 < τ1 < τ2 < T ,
consider the following functions:

ξ0(τ2) = S̃α(τ2)x0 +
∫ τ2

0
T̃α (τ2 − s)

(
f (s,ξ0(s))+Cξ0(s)

)
ds (3.15)
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and

ξ0(τ1) = S̃α(τ1)x0 +
∫ τ1

0
T̃α(τ1 − s)

(
f (s,ξ0(s))+Cξ0(s)

)
ds. (3.16)

Subtracting Eq. (3.16) from Eq. (3.15), and rearranging the integrals with respect
to the integration limits, we obtain

ξ0(τ2)− ξ0(τ1) = S̃α(τ2)x0 − S̃α(τ1)x0

+
∫ τ1

0

[
T̃α(τ2 − s)− T̃α(τ1 − s)

][
f (s,ξ0(s))+Cξ0(s)

]
ds

+
∫ τ2

τ1

T̃α (τ2 − s)
[
f (s,ξ0(s))+Cξ0(s)

]
ds.

Let’s draw the norm for this difference to determine a higher quota. Then, making
the change of variable s → τ1 − s , using Eq. (3.14), Eq. (3.13) and the constant M1

yields

‖ξ0(τ2)− ξ0(τ1)‖
� ‖S̃α(τ2)x0− S̃α(τ1)x0‖

+
∫ τ1

0
‖T̃α(τ2 − s)− T̃α(τ1 − s)‖‖ f (s,ξ0(s))+Cξ0(s)‖ds

+
∫ τ2

τ1

‖T̃α(τ2 − s)‖‖ f (s,ξ0(s))+Cξ0(s)‖ds

� S̃α(τ2)x0 − S̃α(τ1)x0‖
+
∫ τ1

0
‖T̃α(τ2 − τ1 + s)− T̃α(s)‖‖ f (s,ξ0(s))+Cξ0(s)‖ds

+
∫ τ2

τ1

(τ2 − s)α−1(τ2 − s)1−α‖T̃α(τ2 − s)‖‖ f (s,ξ0(s))+Cξ0(s)‖ds

� ‖S̃α(τ2)x0− S̃α(τ1)x0‖
+(N0 +CM2)

∫ τ1

0
‖T̃α(τ2 − τ1 + s)− T̃α(s)‖ds

+M1(N0 +CM2)
∫ τ2

τ1

(τ2 − s)α−1ds

� ‖S̃α(τ2)x0− S̃α(τ1)x0‖+M1(N0 +CM2)
(τ2 − τ1)α

α

+(N0 +CM2)
∫ τ1

0
‖T̃α(τ2 − τ1 + s)− T̃α(s)‖ds.

When τ1 → T− and τ2 → T− we have

‖S̃
∗
α(τ2)x0− S̃

∗
α(τ1)x0‖→ 0,

(τ2 − τ1)α

α
→ 0
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and ∫ T

0
‖T̃

∗
α(τ2 − τ1 + s)− T̃

∗
α(s)‖ds → 0.

So, ‖u0(τ2)−u0(τ1)‖ ≡ 0. Using Cauchy criteria, there exists x ∈ Ω+ such that
lim

t→T− u0(t) = x .

Now, consider the initial value problem with fractional evolution equation and
without impulse in Ω , given by{

cDα
0+ξ (t)+ (A +CI )ξ (t) = f (t,u(t))+Cξ (t), t > T,

ξ (T ) = x.
(3.17)

From item 1, we have that Eq. (3.17), has an e-positive mild solution v in [T,T +
hT ] . Let

u(t) =

{
ξ0(t), t ∈ [0,T ),

ν(t), t ∈ [T,T +hT ].

It is easy to see that ξ (t) is an e-positive mild solution of Eq. (3.2) in [0,T +hT ] .
As ξ (t) is an extension of ξ0(t) , that is a contradiction. Thus, T > t1 , i.e., a global
e-positive mild solution ξ0(t) of the Eq. (3.2) exists in J0 , which is also an e-positive
mild solution of Eq. (1.2) in J0 .

We have thus finished the first part of the theorem.
(II) In this second part, we prove the existence of global e-positive mild solutions

on the interval J∞ .
Initially, we prove that Eq. (1.2) has a global e-positive mild solution on interval

J1 = (t1, t2] . As in Eq. (3.17), here we also consider the initial value problem with
evolution fractional equation without impulse in J1 , given by{

CD
α ,β
0+ ξ (t)+ (A +CI )ξ (t) = f (t,ξ (t))+Cξ (t), t ∈ J1,

ξ (t+1 ) = ξ0(t1)+ I1(ξ0(t1)).
(3.18)

Clearly, a global e-positive mild solution of Eq. (3.18) in J1 , is also an e-positive
mild solution of Eq. (1.2) in J1 . From the proof of item I, for t ∈ J0 = [0, t1] we have

ξ0 (t) = S̃α (t)x0 +
∫ t

0
Tα (t− s) [ f (s,ξ (s))+Cξ (s)]ds. (3.19)

By an argument similar to proof I, Eq. (3.18) has an e−positive mild solution
ξ1 ∈C (J1,Ω+) (J1 = (t1,t2]) , given by

ξ1 (t) = S̃α (t)θ0 +
∫ t

0
Tα (t− s) [ f (s,ξ (s))+Cξ (s)]ds. (3.20)

From the impulsive condition and Eq. (3.19) and Eq. (3.20) we have

θ0 = x0 + S̃
−1
α (t1) I1 (ξ0 (t1)) .
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So, for t ∈ J1 = (t1,t2] , we have

ξ1 (t) = S̃α (t)x0 +
∫ t

0
Tα (t− s) [ f (s,ξ (s))+Cξ (s)]ds+ S̃α (t) S̃

−1
α (t1) I1 (ξ0 (t1)) .

(3.21)
Now, consider J2 = (t2,t3] and ξ2 ∈C (J2,Ω+) ; then

ξ2 (t) = S̃α (t)θ1 +
∫ t

0
Tα (t− s) [ f (s,ξ (s))+Cξ (s)]ds. (3.22)

From the impulsive condition, Eq. (3.21), and Eq. (3.22), we get

θ1 = x0 + S̃
−1
α (t1) I1 (ξ0 (t1))+ S̃

−1
α (t2) I2 (ξ1 (t2)) .

So, for t ∈ J2 = (t2,t3] we have

ξ2 (t) = S̃α (t)x0 +
∫ t

0
Tα (t− s) [ f (s,ξ (s))+Cξ (s)]ds

+S̃α (t) S̃
−1
α (t1) I1 (ξ0 (t1))+ S̃α (t) S̃

−1
α (t2) I2 (ξ1 (t2)) .

Suppose that, for t ∈ Jk−1 (k = 4,5, . . .) , Eq. (1.2) has an e-positive mild solution
ξk−1 ∈ C(Jk−1,Ω+) (k = 4,5, . . .) . Then, for t ∈ Jk (k = 3,4, . . .) , the IVP with
fractional evolution differential equation without impulse in Ω , given by{

CD
α
0+ξ (t)+ (A +CI )ξ (t) = f (t,ξ (t))+Cξ (t), t ∈ Jk, k = 3,4, . . .

ξ (t+k ) = ξk−1(tk)+ Ik(ξk−1(tk))
(3.23)

has an e-positive mild solution ξk ∈C(Jk,Ω+) , given by

ξk (t)

= S̃α (t)θk−1 +
∫ t

0
Tα (t− s) [ f (s,ξ (s))+Cξ (s)]ds

= S̃α (t)
(
x0 + S̃

−1
α (t1) I1 (ξ0 (t1))+ S̃

−1
α (t2) I2 (ξ1 (t2))+ · · ·++S̃

−1
α (tk) Ik (ξk−1 (tk))

)
+
∫ t

0
Tα (t− s) [ f (s,ξ (s))+Cξ (s)]ds

= S̃α (t)x0 +
∫ t

0
Tα (t− s)[ f (s,ξ (s))+Cξ (s)]ds+ S̃α (t)

k

∑
j=1

S̃
−1
α (t j) I j

(
ξ j−1 (t j)

)
.

(3.24)

Now, we define a ξ function as

ξ (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ξ0(t), t ∈ J0,

ξ1(t), t ∈ J1,

· · ·
ξk(t), t ∈ Jk (k = 2,3, . . .).

(3.25)
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Of course ξ (t)∈ PC(J∞,Ω+) is an e-positive mild solution of Eq. (1.2), satisfying

ξ (t) = S̃α(t)x0 +
∫ t

0
T̃α(t− s)

[
f (s,ξ (s))+Cξ (s)

]
ds+ S̃α (t)

k

∑
j=1

S̃
−1
α (t j) I j (ξ (t j)) .

From the property of global existence of ξi(t) in Ji , i∈ N , a solution ξ (t) defined
by Eq. (3.25) is a global e-positive mild solution of Eq. (1.2) in J∞ . �

4. Discussion of results and concluding remarks

We investigated the existence of e-positive global mild solutions to the initial value
problem with nonlinear impulsive fractional evolution differential equation involving
the theory of sectorial operators. Although we successfully obtained the result, building
the global e-positive solution on interval J∞ was not an easy task, since it is necessary
to solve auxiliary problems. We also had to obtain estimates for Q , since it acts on
u , which is composed of the solution operators S̃α and T̃α . In this sense, a natural
question arises: Once the definition of the ψ -Hilfer fractional derivative is presented,
why not to discuss the results presented here with this operator? The answer to this
question, is known, that is, it is not yet possible since we do not have a closed expression
(mild solution) for problems involving an infinitesimal generator A . This is an open
problem that we are working on in order to obtain new interesting results.
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[10] E. HERNÁNDEZ, DONAL O’REGAN AND K. BALACHANDRAN, Existence results for abstract frac-
tional differential equations with nonlocal conditions via resolvent operators, Indagationes Mathemat-
icae 24.1 (2013): 68–82.
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