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Abstract. In this paper, we consider a new class of variational inequalities involving two opera-
tors, which is called the general variational inequality. We have shown that the general variational
inequalities are equivalent to the fixed point problem using the projection technique. This equiv-
alent fixed point formulation is used to discuss the existence of solution as well as to investigate
several iterative methods for solving general variational inequalities. Some applications of the
associated dynamical system coupled with finite difference are explored. Convergence analy-
sis of the proposed methods is considered under suitable conditions. Since general variational
inequalities include the variational inequalities, complementarity problems and nonlinear equa-
tions as special cases, our results continued to hold for these problems. The techniques and ideas
of this paper be starting point for the future research.

1. Introduction

Variational principles contain a wealth of new ideas and techniques and stimulated
outstanding developments in almost every branch of pure applied sciences. The origin
of Variational principles can be traced back to Euler, Lagrange, Bernoulli’s brother and
Newton. A novel and innovative general of these Variational principles is the introduc-
tion of variational inequalities, introduced and studied by Stampacchia [36] in 1964.
It is amazing that a wide class of unrelated problems, which arise in various different
branches of pure and applied sciences such as fluid flow through porous media [3], con-
tact problems in elasticity [8], transportation problems [3] and economics equilibrium
[3, 11] can be studied in unified framework of variational inequalities. Ideas explaining
these formulations led to the developments of new and powerful techniques to solve a
wide class of linear and nonlinear problems. For the applications, motivation, numeri-
cal results and other aspects of variational inequalities, see [3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 39, 40]
and the references therein.

We would like to emphasize that the variational inequality theory so far developed
is applicable for studying free and moving boundary value problems of even order. To
overcome this serious drawback, Noor [12, 13, 14, 16] introduced and studied some new
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classes of variational inequalities involving two arbitrary operators, which are known as
the general variational inequalities. It turned out that the general variational inequality
can be used to study both the odd-order and nonsymmetric obstacle boundary value
problems. For the recent state of the art in this direction, see [14, 16, 17, 18, 27, 28,
29]and the references therein.

In the study of variational inequalities, fixed point theory plays an important role.
Using the projection technique, one can show that the variational inequalities are equiv-
alent to the fixed point problems. This alternative formulation is used to study not only
the existence theory of the solution of the variational inequalities, but also to develop
several iterative methods such as projection method, implicit methods and their variant
modifications. The convergence analysis of the projection method requires that the un-
derlying operator must be strongly monotone and Lipschitz continuous, which are strict
conditions. To overcome these serious drawback, Korpelevich [9] suggested the extra-
gradient method, convergence of which requires only the monotonicity and Lipschitz
continuity. Noor[15, 16] has proved that the convergence analysis of the extragradient
method only requires the monotonicity. This result can be viewed as the significant
refinement of a result of Korpelevich [9]. It is very important to develop some efficient
iterative methods for solving the variational inequalities, Alvarez [1] used the inertial
type projection methods for solving variational inequalities. The origin of which can
be tracked to Polyak [32]. Noor [16] suggested and investigated inertial type projec-
tion methods for solving general variational inequalities. These inertial type methods
have been modified in various directions for solving variational inequalities and related
optimization problems, see [6, 16, 20, 21, 22, 23, 24, 26, 27, 28, 34].

Related to the variational inequalities, we have problem of solving the Wiener-
Hopf equations, which were introduced and studied by Shi [35]and Robinson [33] in-
dependently. This technique has been used to study the existence of a solution as well
as to develop various iterative methods for solving the variational inequalities. Noor
[16] and Noor et al. [26, 13, 28, 29, 30] has used the Wiener-Hopf equations tech-
nique to suggest iterative method and to study the sensitivity and stability analysis of
the variational inequalities.

We also consider the concept of projected dynamical system in the context of vari-
ational inequalities, which was introduced by Dupuis and Nagurney [10]. by using the
fixed point formulation of the variational inequalities. In this technique, we reformulate
the variational inequality problem as an initial value problem. This alternative formula-
tion is used to discus the uniqueness of the solution and its asymptotic stability criteria.
Using the discretizing of the dynamical systems, one can suggest some new iterative
methods for solving the inequalities. For the applications and numerical methods of the
dynamical systems, see [6, 20, 22, 23, 26, 28, 29, 30] and the references therein.

In this paper, we introduce some new classes of variational inequalities involving
two arbitrary operators, which is also called general variational inequalities. This new
class of general variational inequalities is quite different and distinct from other general
variational inequalities considered by Noor [12, 13, 17]. Some important special cases
are also discussed. It is proved that the general variational inequalities are equivalent
to the fixed point problem. This alternative formulation is used to discuss the existence
of solution and to analyze several new iterative schemes for solving general variational
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inequalities. The Wiener-Hopf technique is used to suggest some iterative methods
for solving the general variational inequalities. The dynamical system associated with
general variational inequalities is introduced. This alternative formulation is used to
discuss the uniqueness of the solution and its asymptotic stability criteria. We also use
the associated dynamical system to investigate several iterative methods for solving the
general variational inequalities. It is expected the techniques and ideas of this paper
may represent the starting point.

2. Formulations and basic facts

Let H be a real Hilbert space, whose norm and inner product are denoted by ‖ · ‖
and 〈·, ·〉, respectively.

Let T,g : H → H be nonlinear operators and let K be a closed and convex set in
H. We consider the problem of finding u ∈ K, such that

〈Tu+u−g(u),v−u〉� 0, ∀v ∈ K, (1)

which is called the general variational inequalities.
If g = I, the identity operator, then the problem (1) reduces to finding u ∈ K , such

that
〈Tu,v−u〉� 0, ∀v ∈ K, (2)

which is called the variational inequalities, introduced and studied by Stampacchia [36].
A wide class of problems arising in pure and applied sciences can be studied via varia-
tional inequalities (2), see [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 27, 28, 29, 30, 31, 33,
34, 35, 36, 37, 39, 40].

If u = g(u), then problem (1) is equivalent to finding u ∈ K

〈T (g(u)),v−g(u)〉� 0, ∀v ∈ K, (3)

which is called the general variational inequalities.
We now prove that the optimality conditions of the differentiable general convex

function can be characterized by the general variational inequality (3). For this purpose,
we recall the concepts of general convex sets and general convex functions, which are
mainly due to Noor [18].

DEFINITION 1. A set Kg in the Hilbert space H is said to be general convex set,
if

(1− t)g(u)+ tv∈ Kg, ∀u,v ∈ Kg, t ∈ [0,1].

DEFINITION 2. A function F on the general convex set Kg is said to general
convex function, if

F((1− t)g(u)+ tv)� (1− t)F(g(u))+ tF(v), ∀u,v ∈ Kg, t ∈ [0,1].
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We remark that for g = I, the identity operator, the general convex set Kg and
general convex function F reduces to convex set K and convex functions.

THEOREM 1. Let Kg be a general convex set. Then u ∈ Kg is the minimum of the
differentiable general convex function F, if and only if, u ∈ Kg satisfies the inequality

〈F ′(g(u)),v−g(u)〉� 0, ∀v ∈ Kg, (4)

which is exactly the general variational inequality (3) with T (g(u)) = F ′(g(u)).

Proof. Using the technique of Noor [18], one can prove it. �

If K∗ = {u ∈ H : 〈u,v〉 � 0,∀v ∈ K,} is a polar(dual) cone, then problem (3) is
equivalent to finding u ∈ K such that

g(u) ∈ K, Tg(u) ∈ K∗, 〈Tg(u),g(u)〉 = 0, (5)

which is called the general complementarity problem and appears to be a new one.
For g = I, the nonlinear complementarity problem was introduced by Karamar-

dian [7]. For the applications and other aspects of the complementarity problems in
engineering and applied sciences, see [7, 8, 16, 28, 29, 31] and the references therein.

If K = H, then problem collapses to finding u ∈ H such that

〈ρTu+u−g(u),v−u〉= 0, ∀v ∈ H.

Consequently, it follows that u ∈ H satisfies

u = g(u)−ρTu, (6)

which is called the general equation and appears to be a new one.
This implies that one can consider the problem (6)to investigate the iterative meth-

ods as well as to discuss the existence of the solution u ∈ H of equation

Tu = 0. (7)

This novel approach may be the starting point for further research.
For suitable and appropriate choice of the operators T,g and spaces, we can obtain

several new and known classes of variational inequalities and complementarity prob-
lems. This clearly shows that problem (1) is quite flexible and unifying ones.

We now recall the some known concepts and basic results.

DEFINITION 3. An operator T : H → H is said to be:

1. Strongly monotone, if there exist a constant α > 0, such that

〈Tu−Tv,u− v〉� α‖u− v‖2, ∀u,v ∈ K.
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2. Lipschitz continuous, if there exist a constant β > 0, such that

‖Tu−Tv‖ � β‖u− v‖, ∀u,v ∈ K.

3. Monotone, if
〈Tu−Tv,u− v〉� 0, ∀u,v ∈ K.

4. Pseudo monotone, if

〈Tu,v−u〉� 0 ⇒ 〈Tv,v−u〉� 0, ∀u,v ∈ K.

DEFINITION 4. An operator T with respect to the operator g is said to pseudo
g -monotone operator, if

〈ρTu+u−g(u),v−u〉� 0, ∀u,v ∈ K

⇒
〈ρTv+ v−g(v),v−u〉� 0, ∀u,v ∈ K

Note that, for g = I, we have the known concept of pseudo monotonicity.

REMARK 1. Every strongly monotone operator is a monotone and monotone op-
erator is a pseudo monotone, but the converse is not true.

LEMMA 1. Let the operator T be a pseudo g-monotone operator. If the operator
T,g are continuous, then problem (1) is equivalent to finding u ∈ K such that

〈ρTv+ v−g(v),v−u〉� 0, ∀v ∈ K.

Proof. Let u ∈ K satisfy the problem (1). Then

〈ρTv+ v−g(v),v−u〉� 0, ∀v ∈ K, (8)

where we have used that the operator T is pseudo g -monotone operator Since K is a
convex set, so ∀u,v ∈ K , t ∈ [0,1] , vt = u+ t(v−u)∈ K. Replacing v by vt in (8), we
obtain

〈ρTvt + vt −g(vt),v−u〉� 0, ∀v ∈ K. (9)

Since the operators T,g are continuous operators, taking the limit as t → 0, in (9), we
have

〈ρTu+u−g(u),v−u〉� 0, ∀v ∈ K,

which shows that u ∈ K satisfies (1). �
Lemma 1is known as Minty Lemma and the inequality (8) is called the Minty

general variational inequality. The inequality (8) is called the linear version of the
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inequality (1) and plays an import role to show that the set of the problem (1) is a
closed convex set.

We also need the following result, known as the projection Lemma (best approx-
imation Lemma), which plays a crucial part in establishing the equivalence between
the variational inequalities and the fixed point problem. This result can be used in the
convergence analysis of the implicit and explicit methods for solving the variational
inequalities and related optimization problems.

LEMMA 2. [4] Let K be a closed and convex set in H. Then, for a given z ∈ H ,
u ∈ K satisfies the inequality

〈u− z,v−u〉� 0, ∀v ∈ K, (10)

if and only if
u = PK(z),

where PK is the projection of the Hilbert space H onto the closed convex set K.

It is well known that the projection operator PK is nonexpansive, that is,

‖PK(u)−PK(v)‖ � ‖u− v‖, ∀u,v ∈ H,

and
PK(u) = u, if u ∈ K.

3. Projection method

In this section, we use the fixed point formulation to suggest and analyze some
new implicit methods for solving the variational inequalities.

Using Lemma 2, one can show that the variational inequalities are equivalent to
the fixed point problems.

LEMMA 3. [2] The function u ∈ K is a solution of the general variational in-
equalities (1), if and only if, u ∈ K satisfies the relation

u = PK [g(u)−ρTu], (11)

where PK is the projection of H onto the closed convex set K and ρ > 0 is a constant.

Lemma 3 implies that the general variational inequality (1) is equivalent to the
fixed point problem (11). This equivalent fixed point formulation is used to study the
existence of a solution of (1) and to suggest some iterative methods for solving the
general variational inequality (1).

We consider the mapping F(u) associated with (11) as

F(u) = PK [g(u)−ρTu], ∀u ∈ K, (12)

which is used to discuss the existence of a solution of the problem (1).
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THEOREM 2. Let the operator T,g be strongly monotone with constants α > 0 ,
δ > 0 and Lipschitz continuous with constant β > 0 , σ > 0, respectively. If there exists
a constant ρ > 0, such that

∣∣∣ρ − α
β 2

∣∣∣ <

√
α2 −β 2ν(2−ν)

β 2 , α > β
√

ν(2−ν), ν < 1, (13)

where

ν =
√

1−2δ + σ2, (14)

then the problem (1) has a unique solution.

Proof. For u1 �= u2 ∈ K, consider

‖F(u1)−F(u2)‖ = ‖PK[g(u1)−ρTu1]−PK[g(u2)−ρTu2]‖
� ‖g(u1)−g(u2)−ρ(Tu1−Tu2)‖
� ‖u1−u2− (g(u1)−g(u2))‖

+‖u1−u2−ρ(Tu1−Tu2)‖. (15)

Since the operator T is a strongly monotone with constant α > 0 and Lipschitz con-
tinuous with constant β > 0, so

‖u1−u2−ρ(Tu1−Tu2)‖2 = 〈u1−u2,u1−u2〉−2ρ〈Tu1−Tu2,u1−u2〉
+ρ2〈Tu1 −Tu2,Tu1−Tu2〉

� (1−2αρ + ρ2β 2)‖u1−u2‖2. (16)

Similarly, using the strongly monotonicity of the operator g with constant δ > 0 and
Lipschitz continuity with constant σ > 0. we have

‖u1−u2− (g(u1)−g(u2))‖2 � (1−2δ + σ2)‖u1−u2‖2 (17)

Combining (14), (15), (16) and (17), we obtain

‖F(u1)−F(u2)‖ � {
√

1−2δ + σ2 +
√

1−2αρ + ρ2β 2}‖u1−u2‖

= {ν +
√

1−2αρ + ρ2β 2}‖u1−u2‖
= θ‖u1−u2‖,

where

θ = {ν +
√

1−2αρ + ρ2β 2}.

Since |ρ − α
β 2 | <

√
α2−β 2(ν(2−ν)

β 2 , we have

ν2−2ν +2αρ −β 2ρ2 > 0,
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After simplification, we have

1−2α + ρ2β 2 < (1−ν)2.

Consequently, it follows that θ < 1. This shows that the map F(u) is a contraction
mapping and consequently has a fixed point F(u) = u ∈ K satisfying the general vari-
ational inequality (1). �

We now present this alternative fixed point formulation to suggest and analyze
iterative methods for solving the general variational inequalities (1).

Using (11), we suggest the following iterative methods.

ALGPROTIHM 1. For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = PK [g(un)−ρTun], n = 0,1,2, . . . (18)

which is known as the projection method and has been studied extensively.

ALGPROTIHM 2. For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = PK [g(un)−ρTun+1], n = 0,1,2, . . . (19)

which is known as the extragradient method, which was suggested and analyzed by
Koperlevich [9] and has been studied extensively. Noor [15, 16] has proved that the
convergence of the extragradient for pseudomonotone operators, which can be viewed
as a significant of the Korpelevich’s result.

ALGPROTIHM 3. For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = PK [g(un+1)−ρTun+1], n = 0,1,2, . . . (20)

which is known as the modified implicit projection method and can be written as:

ALGPROTIHM 4. For a given u0 ∈ H , compute un+1 by the iterative scheme

yn = PK [g(un)−ρTun]
un+1 = PK [g(yn)−ρTyn], n = 0,1,2, . . .

which is called the two-step method or double projection method, suggested and ana-
lyzed by Noor [14, 15].

We can rewrite the equation (11) as:

u = PK

[g(u)+g(u)
2

−ρTu
]
. (21)

This fixed point formulation was used to suggest the following implicit method.
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ALGPROTIHM 5. For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = PK

[
g(un)+g(un+1)

2
−ρTun+1

]
, n = 0,1,2, . . . (22)

For the implementation and numerical performance of Algorithm 5, one can use
the predictor-corrector technique to suggest the following two-step iterative method for
solving variational inequalities.

ALGPROTIHM 6. For a given u0 ∈ H , compute un+1 by the iterative scheme

yn = PK [g(un)−ρTun]

un+1 = PK

[g(yn)+g(un)
2

−ρTyn

]
, n = 0,1,2, . . .

which is an implicit method:

From equation (11), we have

u = PK

[
g(u)−ρT

(u+u
2

)]
. (23)

This fixed point formulation is used to suggest the implicit method for solving the
variational inequalities as

ALGPROTIHM 7. For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = PK

[
g(un)−ρT

(un +un+1

2

)]
, n = 0,1,2, . . . . (24)

which is another implicit method. To implement this implicit method, one can use the
predictor-corrector technique to rewrite Algorithm 7 as equivalent two-step iterative
method:

ALGPROTIHM 8. For a given u0 ∈ H , compute un+1 by the iterative scheme

yn = PK [g(un)−ρTun],

un+1 = PK

[
g(un)−ρT

(un + yn

2

)]
, n = 0,1,2, . . . .

which is known as the mid-point implicit method for solving variational inequalities.

It is obvious that Algorithm 7 and Algorithm 8 have been suggested using different
variant of the fixed point formulations of the equation (11). It is natural to combine these
fixed point formulation to suggest a hybrid implicit method for solving the variational
inequalities and related optimization problems, which is the main motivation of this
paper.

One can rewrite the (11) as

u = PK

[
g
(u+u

2

)
−ρT

(u+u
2

)]
. (25)

This equivalent fixed point formulation enables to suggest the following method for
solving the variational inequalities.
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ALGPROTIHM 9. For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = PK

[
g
(un +un+1

2

)
−ρT

(un +un+1

2

)]
, n = 0,1,2, . . . . (26)

which is an implicit method.

We would like to emphasize that Algorithm 9 is an implicit method. To implement
the implicit method, one uses the predictor-corrector technique. We use Algorithm 1 as
the predictor and Algorithm 9 as corrector. Thus, we obtain a new two-step method for
solving variational inequalities.

ALGPROTIHM 10. For a given u0 ∈ H , compute un+1 by the iterative scheme

yn = PK [g(un)−ρTun]

un+1 = PK

[
g
(yn +un

2

)
−ρT

(yn +un

2

)]
, n = 0,1,2, . . .

which is two step method ad appears to be new one.

From the above discussion, it is clear that Algorithm 9 and Algorithm 10 are equiv-
alent. It is enough to prove the convergence of Algorithm 9, which is the main motiva-
tion of our next result.

THEOREM 3. Let the operator T,g be strongly monotone with constants α > 0 ,
δ > 0 and Lipschitz continuous with constant β > 0 , σ > 0, respectively. Let u ∈ K
be solution of (1) and un+1 be an approximate solution obtained from Algorithm 9. If
there exists a constant ρ > 0, such that

‖ρ − α
β 2 ‖ <

√
α2−β 2ν(2−ν)

β 2 , α > β
√

ν(2−ν), ν < 1, (27)

where

ν =
√

1−2δ + σ2, (28)

then the approximate solution un+1 converge to the exact solution u ∈ K.

Proof. Let u ∈ K be a solution of (1) and un+1 be the approximate solution ob-
tained from Algorithm 9. Then

‖un+1−u‖ =
∥∥∥PK

[
g
(un+un+1

2

)
−ρT

(un+un+1

2

)]
−PK

[
g
(u+u

2

)
−ρT

(u+u
2

)]∥∥∥
�

∥∥∥g
(un +un+1

2

)
−g

(u+u
2

)
−ρ

(
T

(un+1 +un

2

)
−T

(u+u
2

))∥∥∥
�

∥∥∥g
(un +un+1

2

)
−g

(u+u
2

)
− un+1 +un

2
− u+u

2

∥∥∥
+

∥∥∥un+1 +un

2
− u+u

2
−ρ

(
T

(un+1 +un

2

)
−T

(u+u
2

))∥∥∥. (29)
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Using the strongly monotonicity and Lipschitz continuity of the operator T, we have

∥∥∥un+1 +un

2
− u+u

2
−ρ

(
T

(un+1 +un

2

)
−T

(u+u
2

))∥∥∥2

=
〈un+1 +un

2
− u+u

2
−ρ

(
T

(un+1 +un

2

)
−T

(u+u
2

))
,

un+1 +un

2
− u+u

2
−2ρ

(
T

(un+1 +un

2

)
−T

(u+u
2

)〉

�
∥∥∥un+1 +un

2
− u+u

2

∥∥∥2

−2ρ
(
T

(un+1 +un

2

)
−T

(u+u
2

)
,
un+1 +un

2
− u+u

2

)

+β 2
∥∥∥T

(un+1 +un

2

)
−T

(u+u
2

)∥∥∥2

� {(1−2ρα + ρ2β 2)}
∥∥∥un−u

2
+

un+1−u
2

∥∥∥2
. (30)

In a similar way, we can obtain

∥∥∥g
(un +un+1

2

)
− g

(u+u
2

)
− un+1 +un

2
− u+u

2

∥∥∥2

� {(1−2δ + σ2}
∥∥∥un−u

2
+

un+1−u
2

∥∥∥2
, (31)

where we have used the strongly monotonicity with constant β1 and Lipschitz continu-
ity constant δ of the operator g.

Thus, from (29), (30), (31) and (28), we have.

‖un+1−u‖ �
{√

(1−2δ + β 2)+
√

1−2ρα + ρ2β 2
}{∥∥∥un−u

2

∥∥∥+
∥∥∥un+1−u

2

∥∥∥}

=
1
2

{
ν +

√
1−2ρα + ρ2β 2

}
‖un−u‖

+
1
2

{
ν +

√
1−2ρα + ρ2β 2

}
‖un+1−u‖, (32)

which implies that

‖un+1−u‖ �
1
2{ν +

√
1−2ρα + ρ2β 2}

1− 1
2{ν +

√
1−2ρα + ρ2β 2}‖un−u‖

= θ‖un−u‖. (33)

where

θ =
1
2{ν +

√
1−2ρα + ρ2β 2}

1− 1
2{ν +

√
1−2ρα + ρ2β 2} .

Taking

θ =
1
2{ν +

√
1−2ρα + ρ2β 2}
1− 1

2

< 1,
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it follows that that ν < 1 and simple computation one easily prove that (27). Thus
it implies that θ < 1. This shows that the approximate solution un+1 obtained from
Algorithm 9 converges to the exact solution u ∈ K satisfying the general variational
inequality (1). �

From equation (11), for a constant ξ , we have

u = PK [g(u− ξ (u−u))−ρT(u− ξ (u−u))].

This fixed point equivalent formulation is used to suggest iterative method for solving
the variational inequalities.

ALGPROTIHM 11. For given u0,u1 ∈ H, compute un+1 by the iterative scheme

un+1 = PK[g(un− ξ (un−un−1))−ρT (un + ξ (un−un−1))], n = 0,1,2, . . .

Algorithm 11 is known as the inertial projection iterative method. For different
and suitable choice of the parameter ξ , one can obtain various known and new known
inertial projection type methods for solving variational inequalities and related opti-
mization problems, see Noor [16].

Algorithm 11 can be written in the following two step method:

ALGPROTIHM 12. For a given u0,u1 ∈H , compute un+1 by the iterative schemes

yn = un− ξ (un−un−1)
un+1 = PK[g(yn)−ρTyn], n = 0,1,2, . . . ,

which is the subject of recent investigation and have been extended for other classes
of variational inequalities. It is worth mentioning that to implement the inertial-type
methods, one has choose two initial values, which is the main draw back of these inertial
methods.

4. Wiener-Hopf equations technique

We now consider the problem of solving the Wiener-Hopf equations related to the
general variational inequalities. Let T be an operator and QK = I − gPK , where I is
the identity operator and PK is the projection of H onto the closed convex set K. We
consider the problem of finding z ∈ H such that

TPKz+ ρ−11QKz = 0. (34)

The equations of the type (34) are called the Wiener-Hopf equations, which were intro-
duced and studied by Shi [35] and Robinson [33] independently. It have been shown
that the Wiener-Hopf equations play an important part in the developments of itera-
tive methods, sensitivity analysis and other aspects of the variational inequalities, see
[16, 26, 27, 28, 29, 30] and references therein.
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LEMMA 4. [16] The element u ∈ K is a solution of the general variational in-
equality (1), if and only if, z ∈ H satisfies the Wiener-Hopf equation (34), where

u = PKz, (35)

z = g(u)−ρTu (36)

= g(u)−ρTz = g(u)−ρTPKz, (37)

where ρ > 0 is a constant.

From Lemma 4, it follows that the general variational inequalities (1) and the
Wiener-Hopf equations (34) are equivalent. This alternative equivalent formulation has
been used to suggest and analyze a wide class of efficient and robust iterative methods
for solving general variational inequalities and related optimization problems, see [16,
26, 27, 28, 29, 30, 33, 35] and the references therein.

We use the Wiener-Hopf equations (34) to suggest some new iterative methods for
solving the general variational inequalities (1). From (35) and (36),

z = gPKz−ρTPKz (38)

= gPK[g(u)−ρTu]−ρTPK [g(u)−ρTu]. (39)

Thus, we have

u = u−g(u)+ ρTu+
[
gPK[g(u)−ρTu]−ρTPK [g(u)−ρTu].

Consequently, for a constant αn > 0, we have

u = (1−αn)u+ αn{ρTu−ρTPK [g(u)−ρTu]]}
= (1−αn)u+ αn{ρTu−ρTy]}, (40)

where

y = PK[g(u)−ρTu]. (41)

Using (40) and (41), we can suggest the following new predictor-corrector method for
solving variational inequalities.

ALGPROTIHM 13. For a given u0 ∈ H , compute un+1 by the iterative scheme

yn = PK [g(un)−ρTun]
un+1 = (1−αn)un + αn

{
ρTun−ρTyn

}
.

Algorithm 13 can be rewritten in the following equivalent form:

ALGPROTIHM 14. For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = (1−αn)un + αn
{

ρTun)−ρTPK [g(un)−ρTun]
}
,

which is an explicit iterative method and appears to be a new one.
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If αn = 1, then Algorithm 13 reduces to

ALGPROTIHM 15. For a given u0 ∈ H , compute un+1 by the iterative scheme

yn = PK[un−ρTun]
un+1 = ρT (un)−ρT(yn),

which appears to be a new one.

From (35) and (37). we have

u = PK [g(u)−ρTPK [g(u)−ρTu]]. (42)

ALGPROTIHM 16. For a given u0 ∈ H , compute un+1 by the iterative scheme

yn = PK [g(un)−ρTun]
un+1 = PK [g(un)−ρTyn],

which is a two-step extragradient method in the sense of Korpelevich [9].

In a similar way, we can suggest the following iterative method.

ALGPROTIHM 17. For a given u0 ∈ H , compute un+1 by the iterative scheme

yn = PK[un−ρTun]
un+1 = PK[g(yn)−ρTyn],

which can viewed as the two-step double projection method, which is mainly due to
Noor [16].

We rewrite the equation (42) for a parameter ξ ∈ [0,1] as

u = PK [g(u− ξ (u−u))−ρ TPK(g(u− ξ (u−u))−ρT((u− ξ (u−u)))]. (43)

This fixed point formulation allows us suggest and investigate the iterative method for
solving the general variational inequality (1).

ALGPROTIHM 18. For a given u0 ∈ H , compute un+1 by the iterative scheme

yn = un− ξ (un)−un−1)
un+1 = PK [g(yn)−ρPK(g(yn)−ρTyn)],

which is known as the inertial type iterative methods, the convergence of these methods
can be considered using the technique of Noor et al. [27, 28].

REMARK 2. We would like to point out that one can obtain a wide class of new
and previous known methods for appropriate and suitable choice of the operators and
spaces. This clearly shows that the Wiener-Hopf equations technique is quite flexible
and unifying one. The Wiener-Hopf equations have been used to discuss the sensitiv-
ity analysis, dynamical systems and self-adaptive type methods and other aspects of
variational inequalities and related optimization problems. The Interested readers can
explore the applications of the Wiener-Hopf equations in various disciplines.
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5. Dynamical systems technique

In this section, we consider the projected dynamical system associated with the
general variational inequalities. The innovative and novel feature of a projected dy-
namical system is that its set of stationary points corresponds to the set of solutions of
the corresponding variational inequality problem. Equilibrium and nonlinear problems
arising in various branches in pure and applied sciences can now be studied in the more
general setting of dynamical systems. It has been shown [6, 11, 16, 26, 28, 29, 30] that
the dynamical systems are useful in developing some efficient numerical techniques
for solving variational inequalities and related optimization problems. In recent years,
much attention has been given to study the globally asymptotic stability of these pro-
jected dynamical systems. We use this equivalent fixed point formulation to suggest
and analyze the projected dynamical system associated with the general variational in-
equalities (1).

du
dt

= λ{PK[g(u)−ρTu]−u}, u(t0) = u0 ∈ H, (44)

where λ is a parameter. The system of type (44) is called the projected general dy-
namical system. Here the right hand side is related to the projection operator and is
discontinuous on the boundary. It is clear from the definition that the solution to (44)
always stays in the constraint set. This implies that the qualitative results such as the
existence, uniqueness and continuous dependence of the solution on the given data can
be studied.

The equilibrium points of the dynamical system (44) are naturally defined as fol-
lows.

DEFINITION 5. An element u ∈ H , g(u) ∈ K is an equilibrium point of the dy-
namical system (44), if du

dt = 0, that is,

PK[g(u)−ρTu]−u = 0,

Thus it is clear that u ∈ K is a solution of the general variational inequality (1), if
and only if, u ∈ K is an equilibrium point.

DEFINITION 6. The dynamical system is said to converge to the solution set S∗ of
(44), if, irrespective of the initial point, the trajectory of the dynamical system satisfies

lim
t→∞

dist(u(t),S∗) = 0, (45)

where

dist(u,S∗) = infv∈S∗‖u− v‖.
It is easy to see, if the set S∗ has a unique point u∗, then (45) implies that

lim
t→∞

u(t) = u∗.

If the dynamical system is still stable at u∗ in the Lyapunov sense, then the dynamical
system is globally asymptotically stable at u∗.
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DEFINITION 7. The dynamical system is said to be globally exponentially stable
with degree η at u∗, if, irrespective of the initial point, the trajectory of the system
satisfies

‖u(t)−u∗‖ � μ1‖u(t0)−u∗‖exp(−η(t− t0)), ∀t � t0,

where μ1 and η are positive constants independent of the initial point.

It is clear that the globally exponentially stability is necessarily globally asymp-
totically stable and the dynamical system converges arbitrarily fast.

LEMMA 5. (Gronwall Lemma) [16] Let û and v̂ be real-valued nonnegative con-
tinuous functions with domain {t : t � t0} and let α(t) = α0(|t − t0|), where α0 is a
monotone increasing function. If for t � t0,

û � α(t)+
∫ t

t0
û(s)v̂(s)ds,

then

û(s) � α(t)exp{
∫ t

t0
v̂(s)ds}.

We now show that the trajectory of the solution of the general dynamical system
(44) converges to the unique solution of the general variational inequality (1). The
analysis is in the spirit of Noor [16] and Xia and Wang [39].

THEOREM 4. Let the operators T,g : H −→H be both Lipschitz continuous with
constants β > 0 and μ > 0 respectively. Then, for each u0 ∈ H, there exists a unique
continuous solution u(t) of the dynamical system (44) with u(t0) = u0 over [t0,∞).

Proof. Let

G(u) = λ{PK[g(u)−ρTu]−u}.

where λ > 0 is a constant and G(u) = du
dt .

∀u,v ∈ H, we have

‖G(u)−G(v)‖ � λ{‖PK[g(u)−ρTu]−PK[g(v)−ρTv]‖+‖u− v‖}
� λ‖u− v‖+ λ‖g(u)−g(v)‖+λρ‖Tu−Tv‖
� λ{1+ μ + β ρ}‖u− v‖.

This implies that the operator G(u) is a Lipschitz continuous in H, and for each u0 ∈
H, there exists a unique and continuous solution u(t) of the dynamical system (44),
defined on an interval t0 � t < T1 with the initial condition u(t0) = u0. Let [t0,T1) be
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its maximal interval of existence. Then we have to show that T1 = ∞. Consider, for any
u ∈ H,

‖G(u)‖ =
∥∥∥du

dt

∥∥∥ = λ‖PK[g(u)−ρTu]−u‖
� λ{‖PK[g(u)−ρTu]−PK[0]‖+‖PK[0]−u‖}
� λ{ρ‖Tu‖+‖PK[u]−PK[0]‖+‖PK[0]−u‖}
� λ{(ρβ +1+ μ)‖u‖+‖PK[0]‖}

Then

‖u(t)‖ � ‖u0‖+
∫ t

t0
‖Tu(s)‖ds

� (‖u0‖+ k1(t− t0))+ k2

∫ t

t0
‖u(s)‖ds,

where k1 = λ‖PK[0]‖ and k2 = λ (ρβ +1+ μ). Hence by the Gronwall Lemma 5, we
have

‖u(t)‖ � {‖u0‖+ k1(t − t0)}ek2(t−t0), t ∈ [t0,T1).

This shows that the solution is bounded on [t0,T1). So T1 = ∞. �

THEOREM 5. Let the operators T,g : H −→H be Lipschitz continuous with con-
stants β > 0 and μ > 0 respectively. If the operator g : H −→H is strongly monotone
with constant γ > 0 and λ > 0, then the dynamical system (44) converges globally
exponentially to the unique solution of the general variational inequality (1).

Proof. Since the operators T,g are both Lipschitz continuous, it follows from
Theorem 4 that the dynamical system (44) has unique solution u(t) over [t0,T1) for
any fixed u0 ∈ H. Let u(t) be a solution of the initial value problem (44). For a given
u∗ ∈ H satisfying (1), consider the Lyapunov function

L(u) = λ‖u(t)−u∗‖2, u(t) ∈ H. (46)

From (44) and (46), we have

dL
dt

= 2λ 〈u(t)−u∗,PK [g(u(t))−ρTu(t)]−u(t)〉
= −2λ 〈u(t)−u∗,u(t)−u∗〉

+2λ 〈u(t)−u∗,PK [g(u(t))−ρTu(t)]−u∗〉
� −2λ‖u(t)−u∗‖2

+2λ 〈u(t)−u∗,PK [g(u(t))−ρTu(t)]−u∗〉, (47)

where u∗ ∈ H is a solution of (1). Thus

u∗ = PK[g(u∗)−ρTu∗].
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Using the Lipschitz continuity of the operators T,g, we have

‖PK [g(u)−ρTu]−PK[g(u∗)−ρTu∗]‖ � ‖g(u)−g(u∗)−ρ(Tu−Tu∗)‖
� (μ + ρβ )‖u−u∗‖. (48)

From (47) and (48), we have

d
dt
‖u(t)−u∗‖ � 2αλ‖u(t)−u∗‖,

where

α = μ + ρβ λ .

Thus, for λ = −λ1, where λ1 is a positive constant, we have

‖u(t)−u∗‖ � ‖u(t0)−u∗‖e−αλ1(t−t0),

which shows that the trajectory of the solution of the dynamical system (44) con-
verges globally exponentially to the unique solution of the general variational inequality
(1). �

We use the projected dynamical system (44) to suggest some iterative for solving
variational inequalities (1). These methods can be viewed in the sense of Korpelevich
[9] and Noor [15, 16] involving the double projection operator.

For simplicity, we take λ = 1. Thus the dynamical system (44) becomes

du
dt

+u = PK [g(u)−ρTu], u(t0) = α. (49)

We construct the implicit iterative method using the forward difference scheme. Dis-
cretizing (44), we have

un+1−un

h
+un+1 = PK [g(un+1)−ρTun+1], (50)

where h > 0 is the step size. Now, we can suggest the following implicit iterative
method for solving the variational inequality (1).

ALGPROTIHM 19. For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = PK

[
g(un+1)−ρTun+1− un+1−un

h

]
, n = 0,1,2, . . . .

This is an implicit method and is quite different from the implicit method of [4].
Using Lemma 2, Algorithm 19 can be rewritten in the equivalent form as:

ALGPROTIHM 20. For a given u0 ∈ H , compute un+1 by the iterative scheme
〈

ρTun+1 +un+1−g(un+1)+
un+1−un

h
,v−un+1

〉
� 0, ∀v ∈ K. (51)
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We now study the convergence analysis of algorithm 19

THEOREM 6. Let u ∈ K be a solution of variational inequality (1). Let un+1 be
the approximate solution obtained from (51). If T is pseudo g-monotone, then

‖u−un+1‖2 � ‖u−un‖2−‖un−un+1‖2. (52)

Proof. Let u ∈ K be a solution of (1). Then

〈ρTv+ v−g(v),v−u〉� 0, ∀v ∈ K, (53)

since T is a pseudo g -monotone operator.
Set v = un+1 in (53), to have

〈ρTun+1 +un+1−g(un+1),un+1−u〉� 0. (54)

Take v = u in equation (51), we have

〈
ρTun+1 +un+1−g(un+1)+

un+1−un

h
,u−un+1

〉
� 0. (55)

From (54) and (55), we have

〈un+1−un,u−un+1〉 � 0. (56)

From (56) and using 2〈a,b〉 = ‖a+b‖2−‖a‖2−‖b‖2 , ∀a,b ∈ H, we obtain

‖un+1−u‖2 � ‖u−un‖2−‖un+1−un‖2, (57)

the required result. �

THEOREM 7. Let u ∈ K be the solution of general variational inequality (1). Let
un+1 be the approximate solution obtained from (51). If T is a pseudo g-monotone
operator, then un+1 converges to u ∈ K satisfying (1).

Proof. Let T be a pseudo g -monotone operator. Then, from (52), it follows the
sequence {ui}∞

i=1 is a bounded sequence and

∞

∑
i=1

‖un−un+1‖2 � ‖u−u0‖2,

which implies that
lim
n→∞

‖un+1−un‖2 = 0. (58)

Since sequence {ui}∞
i=1 is bounded, so there exists a cluster point û to which the sub-

sequence {uik}∞
k=1 converges. Taking limit in (51) and using (58), it follows that û ∈ K

satisfies
〈T û+ û−g(û),v− û〉 � 0, ∀v ∈ K,
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and
‖un+1−u‖2 � ‖u−un‖2.

Using this inequality, one can show that the cluster point û is unique and

lim
n→∞

un+1 = û. �

We now suggest an other implicit iterative method for solving (1). Discretizing
(44), we have

un+1−un

h
+un = PK [g(un+1)−ρTun+1], (59)

where h is the step size.
For h = 1, this formulation enable us to suggest the following iterative method.

ALGPROTIHM 21. For a given u0 ∈ K, compute un+1 by the iterative scheme

un+1 = PK [g(un+1)−ρTun+1], n = 0,1,2, . . . .

Using lemma 2, algorithm 21 can be rewritten in the equivalent form as:

ALGPROTIHM 22. For a given u0 ∈ K, compute un+1 by the iterative scheme

〈ρTun+1 +un+1−g(un+1),v−un+1〉 � 0, ∀v ∈ K. (60)

For appropriate and suitable choice of the discretizing (44), one can suggest and
analyze a wide class of iterative methods for solving variational inequalities. This is an
interesting problem for future research.

Conclusion

In this paper, we have introduced and investigated a new class of general inequal-
ities involving two arbitrary functions. Several important cases are discussed, which
can be obtained as special cases. We have shown that the general variational inequal-
ities are equivalent to the fixed point problems, Wiener-Hopf equations and dynami-
cal systems. These different equivalent formulations have been used to suggest some
new iterative methods for solving the general variational inequalities and their variant
forms. These new implicit methods include extragradient method and modified double
projection methods as special cases. Convergence analysis of the proposed method is
investigated under suitable conditions. Our methods of proof is simple as compared
with other techniques. We have only given the theoretical aspects of these methods.
Numerical implementation and comparison of the proposed methods with other meth-
ods need further efforts. Ideas and techniques of this paper may be the starting point
for further exploration, motivation, developments and applications.
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