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Abstract. This paper presents new results to fractional boundary value problems of the Caputo
type with focal boundary conditions. This fractional derivative is used extensively in modelling
real world applications. The main aim of this paper is to present results for the existence of
solutions to ensure the usefulness in the context of modelling and providing a priori bounds
on all possible solutions subject to a single versatile differential inequality. These results vastly
expand the scope of problems which are applicable since it allows the fractional differential
equation to have unrestricted growth and be nonlinear.

1. Introduction

The paper presents novel existence results and provides a priori bounds specifi-
cally for Caputo fractional boundary value problems with focal boundary conditions.
Let α ∈ (1,2] and a,b ∈ R, a < b . We consider the following fractional boundary
value problem:

(CDα
a y)(t) = f (t,y(t)), t ∈ (a,b), (1.1)

y′(a) = c1, y(b) = c2. (1.2)

The fractional Caputo derivative in the BVP is defined as

(CDα
a y)(t) :=

1
Γ(k−α)

∫ t

a
(t− τ)k−α−1D�α�(y)(τ) dτ

where k = �α� . Denote the function space Ak[a,b] as the set of functions with an
absolutely continuous (k−1)st derviative. Furthermore, there is a direct link with the
classical Riemann-Liouville fractional derivative which is the following

(CDα
a y)(t) = (Dα

a [y−Tk−1[y;a]])(t)

almost everywhere where y ∈ Ak[a,b] and Tk−1[y;a] denotes the Taylor polynomial of
degree k− 1 for the function y centred at a . From here, it follows that y ∈ Ak[a,b]
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implies y ∈ Ck−1[a,b] , and the existence of the Taylor polynomial and its Riemann-
Liouville derivative. The Riemann-Liouville derivative is defined as

(Dα
a y)(t) =

1
Γ(k−α)

( d
dt

)k ∫ t

a
(t − τ)k−α−1y(τ) dτ.

This implies the fractional boundary value problem (1.1), (1.2) has a solution if and
only if it is a solution to the fractional BVP

(Dα
a [y− y(a)− (t−a)c1])(t) = f (t,y(t)), t ∈ (a,b) (1.3)

with (1.2) where y′(a) = c1 . This alternative representation will be applied throughout
the paper to achieve the results since the theorems have been generally proved in the
previous paper [8] for Riemann-Liouville fractional derivative. Also, hence a solution
that solves (1.3) will be considered in y ∈ C1[a,b] . Naturally, an important part is
the fractional component of the order 1 < α � 2, this leads us to let p = α − 1 from
hereon. By using the equivalent reformulated problem (1.3) with a Riemann-Liouville
derivative, the left boundary condition implies a natural and interesting property that
is all q-fractional derivatives of order 0 < q � p < 1 on the boundary are zero, that is
(CDq

ay)(a) = 0 since y(a)−T1[y;a](a) = 0.
The study of fractional boundary value problems has been quite attractive with a

lot of attention and research escalation in recent years due to the theory being a more
effective and appropriate approach to modelling various real world phenomena [3], [4],
[5], [11], [13], [15], [16], and their references therein. The reason is the fractional
order assists in effectively capturing the past history of complex dynamical systems
from past to present where we were limited to integer-order rates of change. Some
real world applications include human life disorders, electrical engineering, chemistry,
control theory and physics with examples found in Ibe [10], Kilbas et al. [11], Podlubny
[16], Xuan et al. [21] and Zheng & Zhang [22].

The methods rely on using an equivalent integral representation, applying frac-
tional differential inequalities and using topological methods. The first main aim is to
determine an equivalent integral representation and qualitative information such as a
priori bounds on all possible solutions, then to expand and present novel existence of
solutions to the fractional BVP (1.1), (1.2) subject to the following differential inequal-
ity,

‖f(t,u)‖ � 2V 〈u, f(t,u)〉+W, for all (t,u) ∈ (a,b)×R
n (1.4)

where V,W are non-negative constants. Also, the euclidean norm is used and defined
as ‖u‖ := 〈u,u〉 where u ∈ R

n . Notably, this inequality is satisfied for a variety of
different functions f , including functions that are unbounded and allows the right hand
side of the fractional BVP to be unrestricted for continuous systems of fractional equa-
tions. The results in the paper will be focussed on the scalar case, since the results
naturally follow for systems by ensuring the natural adjustments in Banach spaces are
made. This inequality has been used in Fewster-Young [8] in the fractional setting with
the Riemann-Liouville derivative, and various other inequalities of a similar nature have
been used by Tisdell et al [18], [19] for fractional initial value problems with Caputo
derivative of order less than one. There are many results known when f is Lipschitz,
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satisfies certain Lypunaov conditions, monnotincity condition, Osgood condition or if
f is a bounded function [2], [5], [16], [18, 19, 20]. However, this inequality gains its
merit for allowing a vast increase in possible functions to be satisfied whereas the pre-
vious literature results cannot. We will present novel existence results with sufficient a
priori bounds to all possible solutions to the fractional BVP under condition (1.4) and
the use of topological methods such as Nonlinear Alternative Theorem. In addition, we
will illustrate and motivate the applicability with examples of functions f which satisfy
this condition but not the aforementioned conditions.

2. The alternative equivalent integral representation

This current section introduces some key lemmas and consequences in the general
theory of fractional calculus which play an important role in proofs of the upcoming
main results. The first step in proving the existence of solutions to the fractional BVP
(1.1), (1.2) is to present equivalent integral representation. Furthermore, this represen-
tation for nonlinear problems allows us to determine possible a priori bounds for all
possible solutions to the BVP (1.1), (1.2) given the inequality (1.4) is satisfied.

The following two lemmas apply to the Riemann-Liouville fractional derivative
and can be found in [5] and [16].

LEMMA 1. Let p ∈ R
+ and 0 < p < 1 . Suppose u is a continuous function, its

derivative is integrable in [a,b] , then

u(a) = 0

if and only if
lim

t→a+

[
(Dp

au)(t)
]
= 0.

LEMMA 2. If 0 < p < 1 and Lemma 1 holds then

Dp
a(Dau)(t) = (Dp+1

a u)(t) =
d
dt

(Dp
au)(t).

Furthermore, fractional integration improves the smoothness properties of func-
tions, providing some interesting results relating to the behaviour of solutions at the
lower terminal. If we suppose that y is continuous and has at least one continuous
derivative in the closed interval [a,t] then by using the fractional power series of order
q � 0 and as t → a+ then

lim
t→a+

(Jq
ay)(t) = 0, for q > 0

and
lim

t→a+
(Jq

ay)(t) = y(a), for q = 0.

We now establish an equivalent integral representation for the fractional BVP (1.1)
with (1.2).
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THEOREM 1. Suppose y is a continuous function and its derivative is integrable
in [a,b] . A function y is a solution to the fractional BVP if and only if it is a solution
to the equivalent integral representation given by

y(t) = c2 − c1(b− t)− 1
Γ(p)

∫ b

t

∫ s

a
(s− τ)p−1 f (τ,y(τ)) dτds. (2.1)

Proof. Suppose y is a solution to the fractional BVP (1.1), (1.2) and consider

(Dp+1
a [y−T1[y;a]])(t) = f (t,y(t)), for all t ∈ (a,b).

Let u(t) := (y−T1[y;a]])(t) . Notice Lemma 1 implies limt→a+(Dp
au)(t) = 0, and since

u is continuous and differentiable as well, then limt→a+(Dp−1
a u)(t) = 0. By taking

Jp+1
a of both sides and using the identity

Jp+1
a (Dp+1

a u)(t) = u(t)− lim
t→a+

[
(Dp

au)(t)
] (t−a)p

Γ(p+1)
− lim

t→a+

[
(Dp−1

a u)(t)
](t −a)p−1

Γ(p)

then this yields
y(t)− y(a)− (t−a)y′(a) = Jp+1

a f (t,y(t)).

By imposing the initial condition (1.2) and letting A := y(a) then we can simplify this
to

y(t) = A+ c1(t −a)+ (Jp+1
a f (·,y(·))(t).

If we substitute the other boundary condition and rearrange then

A = c2 − c1(b−a)− (Jp+1
a f (·,y(·),)(b).

Thus,
y(t) = c2 − c1(b− t)− (Jp+1

a f (·,y(·))(b)+ (Jp+1
a f (·,y(·))(t)

for t ∈ [a,b] . To prove the equivalence, notice that the boundary condition y(b) = c2

holds. If we differentiate then we obtain

y′(t) = c1 +(Jp
a f (·,y(·))(t).

Hence, we see that the boundary condition y′(a) = c1 holds. If we take the Caputo
derivative of order p then this yields (1.1) and proves the equivalence. �

3. A priori bounds

This section begins by presenting two key fractional differential inequalities which
has plenty of applications and variations in fractional calculus. They will play a key role
in the upcoming proofs to prove the a priori bounds and existence results of solutions.

LEMMA 3. ([8]) If u : [a,b] → R , u ∈C1(a,b) and p ∈ (0,1) then

(Dp
a [u]2)(t) � 2u(t)(Dp

au)(t)

where t ∈ (a,b) .
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In addition, a tighter inequality can be proven [8] which will be used in the next
lemma:

Dp
a([u(t)]2) � 2u(t)Dp

a([u(t)])− [u(t)]2
[ 1

Γ(1− p)
(t −a)−p

]

for t ∈ (a,b) . Notice that u ∈ C1(a,b) in the previous result and this aligns with
the function space where we will prove possible solutions exist as aforementioned
in the introduction. The main result relating to a priori bounds on all possible solu-
tions requires additional inequality that stems from this result and is deduced by letting
u(t) := (Dp

a [y−T1[y;a]])(t) . The result is as follows:

LEMMA 4. If y : [a,b] → R is continuous and CDp
ay : (a,b) → R is continuous

with p ∈ (0,1) then

Jp+1
a ((Dy)(·)(Dp

a [y−T1[y;a]])(·))(t) � −c2
1(b−a)2

2p(p+1)
(3.1)

for t ∈ [a,b] .

Proof. The proof of Lemma 4 can be deduced from Lemma 3 by letting u(t) =
(Dp

a [y−T1[y;a]])(t) and replacing p with 1− p to obtain the following inequality,

(D1−p
a [(Dp

a [y−T1[y;a]])(·)]2)(t)
� 2(Dp

a [y−T1[y;a]])(t)(D1−p
a ((Dp

a [y−T1[y;a]]))(·))(t)

− [(Dp
a [y−T1[y;a]])(t)]2

[ (t−a)p−1

Γ(p)

]

for t ∈ (a,b) . The law for the composition of fractional derivatives produces

(D1−p
a (Dp

a [y−T1[y;a]])(t) = (D[y−T1[y;a]])(t)− lim
t→a+

(J1−p
a [y−T1[y;a]])(t)

(t−a)p−2

Γ(p−1)

for t ∈ (a,b) . Since the solutions y are continuous and differentiable then lim
t→a+

(Dp
a [y−

T1[y;a]])(t) = 0, and they have at one continuous derivative implying lim
t→a+

(J1−p
a [y−

T1[y;a]])(t) = 0. Thus

(D1−p
a (Dp

a [y−T1[y;a]])(·))(t) = (D[y−T1[y;a]])(t) = (Dy)(t)− c1

for t ∈ (a,b) . By using the Peter-Paul inequality with ε > 0,

2c1(Dp
a [y−T1[y;a]])(t) � c2

1

ε
+ ε[(Dp

a [y−T1[y;a]])(t)]2, for t ∈ (a,b).
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Let ε = (b−a)p−1

Γ(p) , therefore,

D1−p
a ([(Dp

a [y−T1[y;a]])(t)]2)

� 2(Dp
a [y−T1[y;a]])(t)(Day)(t)+

c2
1Γ(p)

(b−a)p−1

+[(Dp
a [y−T1[y;a]])(t)]2

( (b−a)p−1

Γ(p)
− (t −a)p−1

Γ(p)

)

� 2(Dp
a [y−T1[y;a]])(t)(Day)(t)+

c2
1Γ(p)

(b−a)p−1

for t ∈ (a,b) . By applying this inequality, we see that

Jp+1
a ((Dy)(·)(Dp

a [y−T1[y;a]])(·))(t)
� 1

2
Jp+1
a (D1−p

a [(Dp
a [y−T1[y;a]])(·)]2)(t)

− 1
2

(
Jp+1
a

c2
1Γ(p)

(b−a)p−1

)
(t)

=
1
2
J2p
a ([(Dp

a [y−T1[y;a]])(·)]2)(t)− c2
1(b−a)2

2p(p+1)

− 1
2

(t−a)p

Γ(1+ p)
lim

t→a+
Jp
a ([(Dp

a [y−T1[y;a]])(·)]2)(t))

� −c2
1(b−a)2

2p(p+1)
. �

We now present one of the main novel results proving that a solution to the frac-
tional BVP (1.1), (1.2) satisfies the following a priori bounds.

THEOREM 2. Let f : [a,b]×R→ R be a continuous function. If there exists non-
negative constants V,W such that

‖ f (t,u)‖ � 2Vu f (t,u)+W, for all (t,u) ∈ (a,b)×R (3.2)

then all possible solutions to (1.1), (1.2) satisfy

‖y(t)‖� ‖c2‖+‖c1‖(b−a)+
V
2

[
[c2− c1(b−a)]2 +

c2
1(b−a)2

p(p+1)

]
+

W
Γ(p+2)

(b−a)p+1,

for all t ∈ [a,b].

Proof. By Theorem 1, we have the equivalent integral representation of all solu-
tions to the BVP (1.1) and is given by

y(t) = c2 − c1(b− t)− 1
Γ(p)

∫ b

t

∫ s

a
(s− τ)p−1 f (τ,y(τ)) dτds.
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We now estimate y(t) and by applying condition (3.2) yields

‖y(t)‖ � ‖c2‖+‖c1‖(b−a)+
1

Γ(p)

∫ b

t

∫ s

a
(s− τ)p−1‖ f (τ,y(τ))‖ dτds

� ‖c2‖+‖c1‖(b−a)+
1

Γ(p)

∫ b

a

∫ s

a
(s− τ)p−1[Vy(τ) f (τ,y(τ))+W

]
dτds.

Recall that y is a solution to the differential equation implies

‖y(t)‖ � ‖c2‖+‖c1‖(b−a)+
V

Γ(p)

∫ b

a

∫ s

a
(s− τ)p−1y(τ)(CDp+1

a y)(τ)dτds

+
W

Γ(p)

∫ b

t

∫ s

a
(s− τ)p−1 dτds.

Integrating the last term yields

‖y(t)‖ � ‖c2‖+‖c1‖(b−a)+
V

Γ(p)

∫ b

a

∫ s

a
(s− τ)p−1y(τ)(CDp+1

a y)(τ)dτds

+
W

Γ(p+2)
(b−a)p+1.

We now focus on finding an estimate for the integral term and let

H(t) :=
∫ b

t

∫ s

a
(s− τ)p−1y(τ)(CDp+1

a y)(τ)dτds

when t = a . See that H(t) can be firstly written as follows

H(t) =
∫ b

t

∫ s

a
(s− τ)p−1[y(τ)(Dp+1

a [y−T1[y;a]])(τ)+ y′(τ)(Dp
a [y−T1[y;a]])(τ)

]
dτds

−
∫ b

t

∫ s

a
(s− τ)p−1[y′(τ)(Dp

a [y−T1[y;a]])(τ)
]
dτds.

By Lemma 4, the last term of H(a) being

Γ(p)Jp+1
a ((Dy)(·)(Dp

a [y−T1[y;a]])(·))(a) � −Γ(p)
c2
1(b−a)2

2p(p+1)
.

Therefore,

H(a) �
∫ b

a

∫ s

a
(s− τ)p−1[y(τ)(Dp

a [y−T1[y;a]])(τ)
]′

dτds+ Γ(p)
c2
1(b−a)2

2p(p+1)
.

Moreover, this is equivalent to the following bound

H(a) �
∫ b

a

∫ s

a
(s−τ)p−1[[y(τ)−y(a)](Dp

a [y−T1[y;a]])(τ)
]′

dτds+
Γ(p)c2

1(b−a)2

2p(p+1)

+
∫ b

a

∫ s

a
(s− τ)p−1[y(a)(Dp+1

a [y−T1[y;a]])(τ)
]

dτds.
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By completing the integral on the last term above gives
∫ b

a

∫ s

a
(s−τ)p−1y(a)(Dp+1

a [y−T1[y;a]])(τ) dτds = Γ(p)y(a)(y(b)−y(a)−(b−a)c1).

Thus,

H(a) �
∫ b

a

∫ s

a
(s−τ)p−1[[y(τ)−y(a)](Dp

a [y−T1[y;a]])(τ)
]′

dτds+
Γ(p)c2

1(b−a)2

2p(p+1)
+ Γ(p)y(a)(y(b)− y(a)− (b−a)c1).

Furthermore, we can simplify the integral to produce

H(a) � Γ(p)
[∫ b

a
(D1−p

a [y(·)− y(a)](Dp
a [y−T1[y;a]])(·))(s) ds+

c2
1(b−a)2

2p(p+1)

+ y(a)(y(b)− y(a)− (b−a)c1)
]
.

We apply the definition of a fractional derivative to just the integral part such that

H(a) � Γ(p)
Γ(p−1)

∫ b

a

∫ s

a
(s− τ)p−2[[y(τ)− y(a)](Dp

a [y−T1[y;a]])(τ)] dτ ds

+
Γ(p)c2

1(b−a)2

2p(p+1)
+ Γ(p)y(a)(y(b)− y(a)− (b−a)c1).

By employing Lemma 3 and since Γ(p−1) < 0 then

H(a) � Γ(p)
2Γ(p−1)

∫ b

a

∫ s

a
(s− τ)p−2(Dp

a [y−T1[y;a]]2)(τ) dτ ds+
Γ(p)c2

1(b−a)2

2p(p+1)
+ Γ(p)y(a)(y(b)− y(a)− (b−a)c1).

However, this is the composition of two fractional derivatives and this yields

H(a) � Γ(p)
2

[∫ b

a

d[y−T1[y;a]]2

ds
ds+2y(a)(y(b)− y(a)− (b−a)c1)+

c2
1(b−a)2

p(p+1)

]

=
Γ(p)

2

[
[y(b)− y(a)− c1(b−a)]2 +2y(a)(y(b)− y(a)− (b−a)c1)

+
c2
1(b−a)2

p(p+1)

]

=
Γ(p)

2

[
[c2− c1(b−a)]2− [y(a)]2 +

c2
1(b−a)2

p(p+1)

]
.

Therefore, by putting everything together, we have

‖y(t)‖ � ‖c2‖+‖c1‖(b−a)+
V
2

[
[c2− c1(b−a)]2 +

c2
1(b−a)2

p(p+1)

]
+

W (b−a)p+1

Γ(p+2)

for t ∈ [a,b]. �
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4. Existence results and examples

The upcoming result is the final key in proving the novel existence of solutions to
the fractional BVP where all possible solutions satisfy the a priori bounds in Theorem
2. It is important to note for the reader’s reference that the condition on the function
f : [a,b]×→ R implies the continuity of the solution y .

THEOREM 3. If the conditions of Theorem 2 hold then there exists at least one
solution to the fractional BVP (1.1), (1.2).

Proof. Let
X := {y ∈C([a,b];R) | ‖y‖ := sup

t∈[a,b]
|y(t)|}.

Define the convex space

U := {y ∈C([a,b];R) | sup
t∈[a,b]

|y(t)| � R+1}

where

R := ‖c2‖+‖c1‖(b−a)+
V
2

[
[c2− c1(b−a)]2 +

c2
1(b−a)2

p(p+1)

]
+

W (b−a)p+1

Γ(p+2)

and the continuous operator, T : U → X by

Ty(t) := c2 − c1(b− t)− 1
Γ(p)

∫ b

t

∫ s

a
(s− τ)p−1 f (τ,y(τ)) dτds.

It follows that every fixed point of the operator T is a solution to the fractional BVP
(1.1), (1.2) by the equivalence proved by Theorem 1. To show there exists at least
one fixed point, we apply the Leray-Schauder Nonlinear Alternative theorem. By a
standard argument and it is not too difficult to show that T : U → X is a compact
continuous map and this is mainly due to the continuity of f . It now suffices to show
that T (U) ⊂U , this is equivalent to showing that for all λ ∈ (0,1) , there is no y ∈ ∂U
such that y = λT (y) . If y ∈ ∂U then ‖y‖ = R+1, however, by using the steps in the
proof of Theorem 2 then

‖Ty(t)‖ � R, for all t ∈ [a,b].

Thus, this proves it is not possible to have y∈ ∂U such that y = λTy for all λ ∈ (0,1) .
In turn, the Nonlinear Alternative Theorem implies there exists at least one fixed point,
y ∈ C([a,b];R) and moreover, y ∈ C1([a,b];R) which satisfies the equivalent integral
representation and thus is a solution to the fractional BVP (1.1), (1.2). �

Even though the results above technically deal with the scalar Caputo fractional
derivative, they naturally hold for systems of fractional derivatives directly from the
work herein with the appropriate changes in the Banach spaces and norms.
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THEOREM 4. If the fractional boundary value problem (1.1), (1.2) is a system of
equations and the conditions of Theorem 2 hold then there exists at least one solution
to the fractional BVP system (1.1), (1.2).

We now illustrate the applicability and usefulness of the results, and in particular
where the function f is not Lipschitz or bounded.

EXAMPLE 1. Consider the fractional BVP given by

(CDp+1
a y)(t) = y3(t)+ ty(t), a < t < b (4.1)

y′(a) = 0, y(b) = 2 (4.2)

where 0 < p < 1 and b > a � 0. Here f (t,u) := u3 +tu and is a continuous function. It
suffices to show that there exists non-negative constants V, W such that the inequality
(3.2) is satisfied. If we choose V = 1

2 ,W = (2+b)
4 then

‖ f (t,u)‖ = |u3 + tu| = |u|(u2 + t)
= |u|u2 + t|u|
� u4 +

1
2

+(u2 +1/4)t

� 2Vu f (t,u)+W

Thus, all the conditions of Theorem 3 are satisfied and there exists at least one solution
to the BVP (4.1), (4.2) with

‖y‖ � 3+
2+b

4Γ(p+2)
(b−a)p+1.

The next example illustrates another BVP that has unrestricted growth and is not
Lipschitz.

EXAMPLE 2. Consider the fractional BVP given by

(CDp+1
a y)(t) = ey(t) −1, 0 < t < 4 (4.3)

y′(0) = 1, y(3) = 10 (4.4)

where 0 < p < 1. Here f (t,u) := eu − 1 and is a continuous function. It suffices
to show that there exists non-negative constants V,W such that the inequality (3.2) is
satisfied. If we choose V = 1/2,W = 1 then

‖ f (t,u)‖ = |(eu−1)| = |eu−1|
� u(eu−1)+1

= 2Vu f (t,u)+W

Thus, all the conditions of Theorem 3 are satisfied and there exists at least one solution
to the BVP (4.3), (4.4) with

‖y‖ � 23+
4

p(p+1)
+

4p+1

Γ(p+2)
.



Differ. Equ. Appl. 15, No. 2 (2023), 135–146. 145

EXAMPLE 3. Consider the fractional BVP given by

(CD3/2
0 y)(t) = (ey1(t) −1+ y1(t)y2

2(t),y
5
2(t)) 0 < t < 3 (4.5)

y′(0) = (1,1), y(3) = (2,1) (4.6)

In this BVP, the function f(t,u1,u2) := (eu1 −1+u1u2
2,u

5
2) . It now suffices to show that

f satisfies the inequality (3.2) we choose V = 1/2, W = 2 and see that

‖f(t,u)‖ = ‖(eu1 −1+u1u
2
2,u

5
2)‖ = |eu1 −1+u1u

2
2|+ |u5

2|
� u1(eu1 −1)+1+u2

1u
2
2 +u2

2/2+u6
2−u2

2/2+1

= u1((eu1 −1)+u1u
2
2)+u2(u5

2)+2

= 2V 〈u, f(t,u)〉+W

for (t,u) ∈ (0,3)×R
2 . Therefore, since this is a continuous function and all the condi-

tions of Theorem 4 are satisfied then there exists at least one solution to the fractional
BVP (4.5), (4.6) where

‖y‖ � ‖c2‖+‖c1‖(b−a)+
V
2

[
‖c2− c1(b−a)‖2 +

‖c1‖2(b−a)2

p(p+1)

]
+

W (b−a)p+1

Γ(p+2)

�
√

5+
√

2+
29
4

+
2×33/2

Γ(5/2)
.
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