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OSCILLATION CRITERIA FOR ODD–ORDER NEUTRAL DIFFERENTIAL

EQUATIONS WITH DISTRIBUTED DEVIATING ARGUMENTS

ERCAN TUNÇ ∗ AND MINE SARIGÜL

(Communicated by A. Zafer)

Abstract. New sufficient conditions for the oscillation of all solutions to a class of odd-order
neutral differential equations with distributed deviating arguments are established. Examples
illustrating the results are provided and some suggestions for further research are indicated.

1. Introduction

We are here concerned with the oscillatory behavior of solutions of the following
odd-order neutral differential equation with distributed deviating arguments

(x(t)+ p(t)x(τ(t)))(n) +
∫ b

a
q(t,μ)xβ (φ(t,μ))dμ = 0, (1.1)

where t � t0 > 0, 0 < a < b < ∞ , n � 3 is an odd natural number, and β is the ratio
of positive odd integers with 0 < β � 1. The following conditions are assumed to hold
throughout this paper:

(i) p ∈C ([t0,∞),R) with p(t) � 1, and p(t) �≡ 1 for large t ;

(ii) q ∈ C ([t0,∞)× [a,b], [0,∞)) , and q(t,μ) is not identically zero on any interval
of the form [tu,∞)× [a,b] , tu � t0 ;

(iii) τ ∈C ([t0,∞),R) is strictly increasing, τ(t) � t , and limt→∞ τ(t) = ∞ ;

(iv) φ ∈C ([t0,∞)× [a,b],R) is nonincreasing in its second variable, and lim
t→∞

φ(t,μ)=

∞, μ ∈ [a,b] .

By a solution of equation (1.1), we mean a function x ∈ C ([tx,∞),R) for some
tx � t0 such that x(t)+ p(t)x(τ(t)) ∈Cn ([tx,∞),R) and x satisfies (1.1) on [tx,∞) . Our
attention is restricted to those solutions x of (1.1) that exist on some half-line [tx,∞)
and satisfy

sup{|x(t)| : T1 � t < ∞} > 0 for any T1 � tx;
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in addition, we tacitly assume that (1.1) possesses such solutions. Such a solution x(t)
of (1.1) is said to be oscillatory if it has arbitrarily large zeros on [tx,∞) , i.e., for any
t1 ∈ [tx,∞) there exists t2 � t1 such that x(t2) = 0; otherwise it is called nonoscillatory,
i.e., it is eventually of one sign. Equation (1.1) is said to be oscillatory if all its solutions
are oscillatory.

Neutral differential equations are those in which the highest-order derivative of the
unknown function appears in the equation with the argument t (present state) as well
as one or more delay or advanced arguments. As stated in many scientific sources (see,
e.g., the monograph [18]), equations of this type have many applications in the natural
sciences and technology besides their theoretical importance. For instance, they arise in
networks containing lossless transmission lines (as in high-speed computers where the
lossless transmission lines are used to interconnect switching circuits), in the study of
vibrating masses attached to an elastic bar and as the Euler equation in some variational
problems; we also refer the reader to the monograph by Hale [19] for these and other
applications.

In reviewing the literature, it becomes apparent that the oscillatory behavior of so-
lutions for different classes of third and higher odd-order neutral differential equations
without distributed deviating arguments has attracted the attention of many mathemati-
cians and many interesting results have been presented. For some typical results, we
refer the reader to [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 23, 24, 25, 29, 30, 33, 36]
and the references contained therein.

However, the oscillatory behavior of solutions for different classes of third and
higher odd-order neutral differential equations with distributed deviating arguments are
relatively scarce and most of the works on the subject has been focused on the equations
with bounded neutral coefficients, i.e., the cases where −1 < p0 � p(t) � 0, 0 � p(t) �
p0 < 1, and/or 0 � p(t) � p0 < ∞ were considered (see, the papers [4, 12, 20, 28,
34, 37] ); and very little has been published on differential equations with unbounded
neutral coefficients (see, the papers [31, 32, 35] for third order differential equations).

To the best of our knowledge, there appears to be no results for the odd-order
(n > 3) differential equations with unbounded neutral coefficients of the type (1.1), i.e.,
for the case where p(t) → ∞ as t → ∞ . By the motivation of this fact, the aim of the
present paper is to initiate the study of the oscillatory behavior of (1.1) and to provide
new results that can be applied not only to case where p(t) → ∞ as t → ∞ but also to
case where p(t) is a bounded function. Since the equation considered here is relatively
simple, it is possible to extend the results obtained here to more general differential
equations with unbounded neutral coefficients to obtain more general oscillation results
(see Remark 2 below). It is therefore hoped that the present paper partially fills the
gap in oscillation theory for odd-order differential equations with unbounded neutral
coefficients and distributed deviating arguments.

For the reader’s convenience, we introduce the notation:

z(t) := x(t)+ p(t)x(τ(t)),

φ1(t) := φ(t,b), φ2(t) := φ(t,a), (δ ′(t))+ := max(0,δ ′(t)),

g(t) := τ−1(φ1(t)), h(t) := τ−1(φ2(t)), ξ (t) := τ−1(η(t)), η ∈C([t0,∞)),



Differ. Equ. Appl. 15, No. 2 (2023), 147–160. 149

p1(t) :=
1

p(τ−1(t))

[
1−

(
τ−1(τ−1(t))

τ−1(t)

)(n−1)/κ
1

p(τ−1(τ−1(t)))

]
,

p2(t) :=
1

p(τ−1(t))

[
1− 1

p(τ−1(τ−1(t)))

]
,

q1(t) :=
∫ b

a
q(t,μ)p1(φ(t,μ))dμ , and q2(t) :=

∫ b

a
q(t,μ)p2(φ(t,μ))dμ ,

where τ−1 is the inverse function of τ and κ ∈ (0,1) .
To prove our results, we use the additional hypothesis:
(v) there exist tκ � t0 and κ ∈ (0,1) such that(

t
τ(t)

)(n−1)/κ 1
p(t)

� 1, t � tκ . (1.2)

It is also important to notice that condition (1.2) in (v) ensures the nonnegativity of the
function p1(t) .

In the sequel, all functional inequalities are supposed to hold for all t large enough.
Without loss of generality, we deal only with positive solutions of (1.1); since if x(t) is
a solution of (1.1), then −x(t) is also a solution.

2. Main results

We begin with the following auxiliary lemmas that are essential in the proofs of
our main results.

LEMMA 1. (See [27, Lemma 1]) Let f (t)∈Cn([T,∞),(0,∞)) such that the deriva-
tive f (n)(t) is nonpositive on [T,∞) and not identically zero on any interval of the form
[T ′,∞) , T ′ � T . Then there exist a T ∗ � T ′ and an integer � , 0 � � � n−1 , with n+ �
odd so that

(−1)�+ j f ( j)(t) > 0 on [T ∗,∞) for j = �, . . . ,n−1,

f (i)(t) > 0 on [T ∗,∞) for i = 1, . . . , �−1 when � > 1.
(2.1)

LEMMA 2. (See [27, Lemma 2]) Let f (t) be as in Lemma 1 and T ∗ � T ′ be
assigned to f (t) by Lemma 1. Moreover, let λ be a number with 0 < λ < 1 . If
limt→∞ f (t) �= 0 , then there exists a T ∗∗ � T ∗/λ such that

f (t) � λ
(n−1)!

tn−1 f (n−1)(t) for t � T ∗∗.

LEMMA 3. (See [3, Lemma 1]) Let f (t) be as in Lemma 1 for T ′ � T , T ∗ � T ′
and � � 1 be assigned to f (t) by Lemma 1. Then for every κ ∈ (0,1) there exists a
T ∗∗ � T ∗ such that

f (t)
f ′(t)

� κ
t
�

for t � T ∗∗. (2.2)



150 E. TUNÇ AND M. SARIGÜL

LEMMA 4. Let x(t) be an eventually positive solution of (1.1) for t � t1 for some
t1 � t0 . Then there exists a t2 � t1 such that

z(t) > 0, z′(t) > 0, z′′(t) > 0, z(n−1)(t) > 0, z(n)(t) � 0, (2.3)

or
(−1) jz( j)(t) > 0, j = 0,1,2, · · · ,n−1, and z(n)(t) � 0, (2.4)

for t � t2 . In addition, if (2.3) holds, then for every κ ∈ (0,1) there exists a tκ � t2
such that (

z(t)
t(n−1)/κ

)′
� 0 for t � tκ . (2.5)

Proof. Let x(t) be a positive solution of (1.1) such that x(t) > 0 and x(τ(t)) > 0
for t � t1 for some t1 � t0 and x(φ(t,μ)) > 0 for (t,μ) ∈ [t1,∞)× [a,b] . It follows
from (1.1) that z(t) = x(t)+ p(t)x(τ(t)) > 0 and

z(n)(t) = −
∫ b

a
q(t,μ)xβ (φ(t,μ))dμ � 0.

By Lemma 1, there exists a t2 � t1 and an even integer � ∈ {0,2,4, . . . ,n−1} such that

(−1)�+ jz( j)(t) > 0 for j = �, . . . ,n−1,

z(i)(t) > 0 for i = 1, . . . , �−1 when � > 1,

for t � t2 , which implies (2.3) for � � 2 and (2.4) for � = 0.
Next, assume that (2.3) holds for t � t2 . Since (n−1) � � � 2, in view of (2.2),

there exists a tκ � t2 for every κ ∈ (0,1) such that

z(t)
z′(t)

� κ
t
�

� κ
t

n−1
for t � tκ ,

which implies (
z(t)

t(n−1)/κ

)′
=

κtz′(t)− (n−1)z(t)
κt(n−1)/κ+1

� 0 for t � tκ ,

i.e., (2.5) holds. This completes the proof of the lemma. �

THEOREM 1. Let conditions (i)–(v) be satisfied and assume that there exists a
function η ∈ C([t0,∞),R) such that φ2(t) � η(t) � τ(t) for t � t0 . If there exists a
constant λ1 ∈ (0,1) such that the first-order delay differential equation

y′(t)+
λ β

1

((n−1)!)β q1(t)gβ (n−1)(t)yβ (g(t)) = 0, (2.6)

and

w′(t)+
1

((n−1)!)β q2(t) [ξ (t)−h(t)]β (n−1) wβ (ξ (t)) = 0 (2.7)

are oscillatory, then equation (1.1) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0 and
x(τ(t)) > 0 for t � t1 for some t1 � t0 and x(φ(t,μ)) > 0 for (t,μ) ∈ [t1,∞)× [a,b] .
Then the corresponding function z satisfies (2.3) or (2.4) for t � t2 for some t2 � t1 .
From the definition of z , we see that

x(t) =
1

p(τ−1(t))
[
z(τ−1(t))− x(τ−1(t))

]
� z(τ−1(t))

p(τ−1(t))
− 1

p(τ−1(t))p(τ−1(τ−1(t)))
z(τ−1(τ−1(t))). (2.8)

From (iii), we see that τ−1 is increasing and moreover t � τ−1(t) . Therefore, we
deduce the inequality

τ−1(t) � τ−1(τ−1(t)). (2.9)

We first consider case (2.3). Then there exists tκ ∈ [t2,∞) such that (2.5) holds for
t � tκ . From (2.5) and (2.9), we observe that

z
(
τ−1(τ−1(t))

)
�

(
τ−1(τ−1(t))

)(n−1)/κ
z(τ−1(t))

(τ−1(t))(n−1)/κ . (2.10)

Using (2.10) in (2.8) gives

x(t) � p1(t)z(τ−1(t)) for t � tk. (2.11)

Since limt→∞ φ(t,μ) = ∞ , we can choose t3 � tκ such that φ(t,μ) � tκ for all t � t3 .
Thus, it follows from (2.11) that

x(φ(t,μ)) � p1(φ(t,μ))z(τ−1(φ(t,μ))) for t � t3,

and so

xβ (φ(t,μ)) � pβ
1 (φ(t,μ))zβ (τ−1(φ(t,μ))) � p1(φ(t,μ))zβ (τ−1(φ(t,μ))), (2.12)

for t � t4 for some t4 � t3 . Substituting (2.12) into equation (1.1) gives

z(n)(t)+
∫ b

a
q(t,μ)p1(φ(t,μ))zβ (

τ−1(φ(t,μ))
)
dμ � 0. (2.13)

Since τ and z are increasing and φ is nonincreasing in μ , we deduce from (2.13) that

z(n)(t)+
(∫ b

a
q(t,μ)p1(φ(t,μ))dμ

)
zβ (

τ−1(φ1(t))
)

� 0,

or
z(n)(t)+q1(t)zβ (g(t)) � 0 for t � t4. (2.14)

Since limt→∞ z(t) �= 0, by Lemma 2, for every λ ∈ (0,1) , there exists tλ � t4 such that

z(t) � λ
(n−1)!

tn−1z(n−1)(t) for t � tλ . (2.15)
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Since limt→∞ g(t) = ∞ , we can choose t5 � tλ such that g(t) � tλ for all t � t5 , and so
inequality (2.15) yields

z(g(t)) � λ
(n−1)!

gn−1(t)z(n−1)(g(t)) for t � t5. (2.16)

Using (2.16) in (2.14) yields

z(n)(t)+
(

λ
(n−1)!

)β
q1(t)gβ (n−1)(t)

(
z(n−1)(g(t))

)β
� 0 for t � t5. (2.17)

Letting y(t)= z(n−1)(t) in (2.17), we see that y(t) is a positive solution of the first-order
delay differential inequality

y′(t)+
λ β

((n−1)!)β q1(t)gβ (n−1)(t)yβ (g(t)) � 0 (2.18)

for every λ ∈ (0,1) . Therefore, by [26, Theorem 1], we conclude that, for every λ ∈
(0,1) , equation (2.6) has a positive solution, which contradicts the fact that (2.6) is
oscillatory.

Next, we consider case (2.4). Using the fact that z′(t) < 0, it follows from (2.9)
that

z(τ−1(t)) � z(τ−1(τ−1(t))). (2.19)

Using (2.19) in (2.8) leads to

x(t) � p2(t)z(τ−1(t)) for t � t2,

from which it follows

xβ (φ(t,μ)) � pβ
2 (φ(t,μ))zβ (τ−1(φ(t,μ))) � p2(φ(t,μ))zβ (τ−1(φ(t,μ))), (2.20)

for t � t3 for some t3 � t2 . Substituting (2.20) into (1.1) yields

z(n)(t)+q2(t)zβ (h(t)) � 0 for t � t4. (2.21)

Since (−1) jz( j)(t) > 0 for j = 0,1,2, · · · ,n− 1 and z(n)(t) � 0, for t4 � u � v , it is
easy to see that

z(u) � (v−u)n−1

(n−1)!
z(n−1)(v) for v � u � t4. (2.22)

Since φ2(t) � η(t) and τ is increasing, we deduce that τ−1(φ2(t)) � τ−1(η(t)) , i.e.,
h(t) � ξ (t) . Putting u = h(t) and v = ξ (t) into (2.22), we obtain

z(h(t)) � (ξ (t)−h(t))n−1

(n−1)!
z(n−1)(ξ (t)) for t � t4. (2.23)

Using (2.23) in (2.21) yields

z(n)(t)+
1

((n−1)!)β q2(t) [ξ (t)−h(t)]β (n−1) (z(n−1)(ξ (t)))β � 0 for t � t4. (2.24)
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Setting w(t) = z(n−1)(t) in (2.24), we see that w(t) is a positive solution of the first-
order delay differential inequality

w′(t)+
1

((n−1)!)β q2(t) [ξ (t)−h(t)]β (n−1)wβ (ξ (t)) � 0. (2.25)

The remainder of the proof in this case is similar to that of case (2.3), and hence is
omitted. This completes the proof of the theorem. �

It is well known (see, e.g., [22]) that if

liminf
t→∞

∫ t

σ(t)
ψ(s)ds >

1
e
, (2.26)

then the first-order delay differential equation

x′(t)+ ψ(t)x(σ(t)) = 0 (2.27)

is oscillatory, where ψ ,σ ∈C([t0,∞),R) with ψ(t) � 0, σ(t) < t , and limt→∞ σ(t) =
∞ . Thus, from Theorem 1, we have the following result.

COROLLARY 1. Let conditions (i)–(v) be satisfied and let β = 1 . Assume that
there exists a function η ∈C([t0,∞),R) such that φ2(t) � η(t) < τ(t) for t � t0 . If

liminf
t→∞

∫ t

g(t)
q1(s)gn−1(s)ds >

(n−1)!
e

(2.28)

and

liminf
t→∞

∫ t

ξ (t)
q2(s) [ξ (s)−h(s)]n−1 ds >

(n−1)!
e

, (2.29)

then equation (1.1) is oscillatory.

Proof. From (2.28), one can choose positive constant λ1 ∈ (0,1) such that

liminf
t→∞

λ1

∫ t

g(t)
q1(s)gn−1(s)ds >

(n−1)!
e

.

Now, in view of (2.26) and (2.27) and by Theorem 1, the conclusion of Corollary 1
follows immediately. �

COROLLARY 2. Let conditions (i)–(v) be satisfied and let β < 1 . Assume that
there exists a function η ∈C([t0,∞),R) such that φ2(t) � η(t) < τ(t) for t � t0 . If∫ ∞

t0
q1(t)gβ (n−1)(t)dt = ∞ (2.30)

and ∫ ∞

t0
q2(t) [ξ (t)−h(t)]β (n−1) dt = ∞, (2.31)

then equation (1.1) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0 and
x(τ(t)) > 0 for t � t1 for some t1 � t0 and x(φ(t,μ)) > 0 for (t,μ) ∈ [t1,∞)× [a,b] .
Proceeding exactly as in the proof of Theorem 1, we again arrive at (2.18) for t � t5
and (2.25) for t � t4 . Since g(t) < t and y(t) is positive and decreasing, inequality
(2.18) takes the form

y′(t)+
λ β

((n−1)!)β q1(t)gβ (n−1)(t)yβ (t) � 0

or
y′(t)
yβ (t)

+
λ β

((n−1)!)β q1(t))gβ (n−1)(t) � 0. (2.32)

Integrating (2.32) from t5 to t yields

∫ t

t5
q1(s)gβ (n−1)(s)ds �

(
(n−1)!

λ

)β y1−β (t5)
1−β

< ∞ as t → ∞,

which contradicts (2.30). The remainder of the proof follows from ξ (t) < t and the
inequality (2.25). This proves the corollary. �

Next, we present the following interesting result in which we need to assume that
φ(t,μ) is nondecreasing with respect to the first variable t .

THEOREM 2. Let conditions (i)–(v) be satisfied, φ2(t) � τ(t) and φ(t,μ) be non-
decreasing in t for t � t0 . Suppose also that there exists a positive function δ ∈
C1([t0,∞),R) such that, for every k > 0 ,

limsup
t→∞

∫ t

t0

[
δ (s)q1(s)

(
g(s)
s

)β (n−1)/κ
− (n−2)!k1−β((δ ′(s))+)2

4λ β sβ (n−1)−1δ (s)

]
ds = ∞, (2.33)

and

limsup
t→∞

∫ t

h(t)
q2(s) [h(t)−h(s)]β (n−1)ds

{
> (n−1)!, if β = 1,

= ∞, if β < 1.
(2.34)

Then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0 and
x(τ(t)) > 0 for t � t1 for some t1 � t0 and x(φ(t,μ)) > 0 for (t,μ) ∈ [t1,∞)× [a,b] .
Then the corresponding function z satisfies (2.3) or (2.4) for t � t2 for some t2 � t1 .

First, we consider (2.3). Proceeding exactly as in the proof of Theorem 1, we again
arrive at (2.14) for t � t4 . Now we introduce a Riccati substitution

w(t) = δ (t)
z(n−1)(t)

zβ (t)
for t � t4. (2.35)
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Differentiating (2.35) and making use of (2.14), it follows that

w′(t) � (δ ′(t))+
δ (t)

w(t)− δ (t)q1(t)
zβ (g(t))
zβ (t)

−β δ (t)zβ−1(t)
z′(t)z(n−1)(t)

z2β (t)
(2.36)

for t � t3 . Since limt→∞ z′(t) �= 0, by Lemma 2 for every λ , 0 < λ < 1, there exists
tλ � t3 such that

z′(t) � λ
(n−2)!

tn−2z(n−1)(t) for t � tλ . (2.37)

Since z(n−1)(t) is positive and decreasing on [t2,∞) , there exist a constant c > 0 and a
t3 � t2 such that

z(n−1)(t) � c for t � t3. (2.38)

Integrating (2.38) from t3 to t consecutively n−1 times, we obtain

z(t) � ktn−1 (2.39)

for t � t4 for some t4 � t3 and for some k > 0. Since z(t)/t(n−1)/κ is nonincreasing
(see (2.5)) and g(t) � t , we have

z(g(t))
z(t)

�
(

g(t)
t

)(n−1)/κ
. (2.40)

Using (2.37), (2.39) and (2.40) in (2.36), we obtain

w′(t) � (δ ′(t))+
δ (t)

w(t)− δ (t)q1(t)
(

g(t)
t

)β (n−1)/κ
− λ β tβ (n−1)−1

(n−2)!k1−β δ (t)
w2(t) (2.41)

for t � t4 . Completing the square with respect to w , it follows from (2.41) that

w′(t) � −δ (t)q1(t)
(

g(t)
t

)β (n−1)/κ
+

(n−2)!k1−β ((δ ′(t))+)2

4λ β tβ (n−1)−1δ (t)
. (2.42)

Integrating (2.42) from t4 to t yields

∫ t

t4

[
δ (s)q1(s)

(
g(s)
s

)β (n−1)/κ
− (n−2)!k1−β((δ ′(s))+)2

4λ β sβ (n−1)−1δ (s)

]
ds � w(t4),

which contradicts (2.33).
Next, we consider (2.4). Proceeding exactly as in the proof of Theorem 1, we

again arrive at (2.21) and (2.22) for t � t4 . Integrating (2.21) from h(t) to t gives

z(n−1)(h(t)) �
∫ t

h(t)
q2(s)zβ (h(s))ds. (2.43)

Using the fact that φ is nondecreasing in t , for t � s � t4 , it follows from (2.22) that

z(h(s)) � (h(t)−h(s))n−1

(n−1)!
z(n−1)(h(t)) for t � t3.
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Using this in (2.43) gives[
z(n−1)(h(t))

]1−β
� 1

((n−1)!)β

∫ t

h(t)
q2(s) [h(t)−h(s)]β (n−1) ds.

Taking limsup on both sides of the last inequality as t → ∞ , we get a contradiction to
(2.34). This completes the proof of the theorem. �

THEOREM 3. Let conditions (i)–(v) be satisfied, φ2(t) � τ(t) and φ(t,μ) be non-
decreasing in t for t � t0 . Suppose also that there exists a positive function δ ∈
C1([t0,∞),R) such that, for every k > 0 ,

limsup
t→∞

∫ t

t0

[
δ (s)q1(s)

(
g(s)
s

)β (n−1)/κ
− (n−1)!(δ ′(s))+

λkβ−1sβ (n−1)

]
ds = ∞ (2.44)

and (2.34) hold. Then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0 and
x(τ(t)) > 0 for t � t1 for some t1 � t0 and x(φ(t,μ)) > 0 for (t,μ) ∈ [t1,∞)× [a,b] .
Then the corresponding function z satisfies (2.3) or (2.4) for t � t2 for some t2 �
t1 . If case (2.4) holds, proceeding exactly as in the proof of Theorem 2, we obtain a
contradiction to (2.34).

Next, assume that case (2.3) holds. Proceeding as in the proof of Theorem 2, we
again arrive at (2.36), (2.39) and (2.40) for t � t4 . Using (2.39) and (2.40) in (2.36) and
taking (2.15) into account, we see that

w′(t) � (n−1)!(δ ′(t))+
λkβ−1tβ (n−1) − δ (t)q1(t)

(
g(t)
t

)β (n−1)/κ
for t � t4. (2.45)

Integrating (2.45) from t4 to t yields

∫ t

t4

[
δ (s)q1(s)

(
g(s)
s

)β (n−1)/κ
− (n−1)!(δ ′(s))+

λkβ−1sβ (n−1)

]
ds � w(t4),

which contradicts (2.44) and completes the proof of the theorem. �

REMARK 1. The results obtained here are also valid in the case when the function
φ in condition (iv) is nondecreasing in μ . In this case, we replace

φ1(t) := φ(t,b) by φ1(t) := φ(t,a)

and
φ2(t) := φ(t,a) by φ 2(t) := φ(t,b).

We conclude this paper with the following examples and remarks to illustrate the
above results. Our first example is concerned with an equation with bounded neutral
coefficients in the case where p is a constant function; the second example is for an
equation with unbounded neutral coefficients in the case where p(t) → ∞ as t → ∞ .
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EXAMPLE 1. Consider the odd-order differential equation

[
x(t)+22nx

( t
2

)](n)
+

∫ 2

1

q0μ
tn

x

(
t
6

+
1
μ

)
dμ = 0, t � 6. (2.46)

Here p(t) = 22n , q(t,μ) = q0μ/tn , β = 1, τ(t) = t/2, and φ(t,μ) = t/6+1/μ . Then,
it is easy to see that conditions (i)–(iv) hold, and

τ−1(t) = 2t, τ−1(τ−1(t)) = 4t, g(t) = (t +3)/3,

h(t) = (t +6)/3, and ξ (t) = (t +4)/2 with η(t) = (t +4)/4.

Choosing κ = 1/2, we see that

(
t

τ(t)

)(n−1)/κ 1
p(t)

=
1
4
,

i.e., condition (v) holds. Since

p1(t) =
3

22n+2 , p2(t) =
22n−1

24n , q1(t) =
9q0

22n+3tn
, and q2(t) =

3q0(22n−1)
24n+1tn

,

by Corollary 1, Eq. (2.46) is oscillatory for

q0 > max

{
22n+33n−3(n−1)!

e ln3
,
25n3n−2(n−1)!
(22n−1)e ln2

}
=

25n3n−2(n−1)!
(22n−1)e ln2

.

EXAMPLE 2. Consider the equation

[
x(t)+ tx

( t
2

)]′′′
+

∫ 2

1

q0μ
t3/5

x3/5
(

t
4

+
1
μ

)
dμ = 0, t � 12. (2.47)

Here p(t) = t , τ(t) = t/2, a = 1, b = 2, q(t,μ) = q0μ/t3/5 , φ(t,μ) = t/4+1/μ , and
β = 3/5. Then, it is easy to see that conditions (i)–(iv) hold and

φ1(t) = (t +2)/4, φ2(t) = (t +4)/4, τ−1(t) = 2t, τ−1 (
τ−1(t)

)
= 4t,

g(t) = (t +2)/2, h(t) = (t +4)/2, ξ (t) = (2t +6)/3 with η(t) = (t +3)/3.

Choosing κ = 2/3, we see that

(
t

τ(t)

)2/κ 1
p(t)

=
8
t

� 2
3
,

i.e., condition (v) holds, and

p1(t) � 5
12t

, p2(t) � 47
96t

, q1(t) � 5q0 ln7/4

3t8/5
, and q2(t) � 47q0 ln7/4

24t8/5
.

With δ (t) = t , we see that condition (2.33) holds. It is easy to show that condition
(2.34) holds as well, and so, by Theorem 2, Eq. (2.47) is oscillatory.
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REMARK 2. The results of this paper can be extended to the odd-order equation

(
r(t)

(
z(n−1)(t)

)γ)′
+

∫ b

a
q(t,μ)xβ (φ(t,μ))dμ = 0,

under either of the conditions ∫ ∞

t0
r−1/γ(t)dt = ∞

or ∫ ∞

t0
r−1/γ(t)dt < ∞,

where n � 3 is an odd natural number, r ∈ C ([t0,∞),(0,∞)) , γ is the ratio of odd
positive integers, and the other functions in the equation are defined as in this paper.

REMARK 3. It would be of interest to study the oscillatory behavior of all solu-
tions of (1.1) for p(t) � −1 with p(t) �≡ −1 for large t . Another interesting research
problem could lie in obtaining a variant of Lemma 4 with κ = 1, at cost of an addi-
tional condition imposed on the coefficients of (1.1), which would further improve and
simplify the obtained criteria. Similar research problem was investigated for n = 3 in
[16] and further generalized in [21].
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[15] J. R. GRAEF, E. TUNÇ AND S. R. GRACE, Oscillatory and asymptotic behavior of a third-order
nonlinear neutral differential equation, Opuscula Math., 37, 6 (2017), 839–852.
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