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WEIGHTED ESTIMATES AND LARGE TIME BEHAVIOR OF SMALL

AMPLITUDE SOLUTIONS TO THE SEMILINEAR HEAT EQUATION

RYUNOSUKE KUSABA ∗ AND TOHRU OZAWA

(Communicated by P. Souplet)

Abstract. We present a new method to obtain weighted L1 -estimates of global solutions to the
Cauchy problem for the semilinear heat equation with a simple power of super-critical Fujita
exponent. Our approach is based on direct and explicit computations of commutation relations
between the heat semigroup and monomial weights in Rn , while it is independent of the standard
parabolic arguments which rely on the comparison principle or some compactness arguments.
We also give explicit asymptotic profiles with parabolic self-similarity of the global solutions.

1. Introduction

We study the large time behavior of global solutions to the Cauchy problem for
the semilinear heat equations of the form{

∂t u−Δu = f (u), (t,x) ∈ (0,+∞)×Rn,

u(0) = ϕ , x ∈ Rn,
(P)

where u : [0,+∞)×Rn →R is an unknown function, Δ is the Laplacian in Rn , ϕ : Rn →
R is a given data at t = 0, and f : R → R is a nonlinear term such that there exist con-
stants K > 0 and p ∈ (1,+∞) that ensure the estimate

| f (ξ )− f (η)| � K
(|ξ |p−1 + |η |p−1)|ξ −η | (1.1)

for all ξ ,η ∈ R and that f (0) = 0. Typical examples are given by homogeneous func-
tions of order p such as

f (ξ ) = ±ξ p, ±|ξ |p, ±|ξ |p−1ξ .

The behavior of solutions to (P) has been studied by many mathematicians since
the pioneering work by Fujita [4] and it is revealed that the behavior changes depending
on the exponent p in the nonlinear term, the size of the initial data ϕ , and so on. In
particular, the exponent pF(n) := 1+2/n , called the Fujita exponent, gives a threshold
that characterizes the large time behavior of solutions to (P). In the case of super-critical
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Fujita exponent, namely, p > pF(n) , it is known that solutions to (P) with small initial
data behave like the solution to the linear heat equation: (P) with f ≡ 0 (cf. [6, 16]).
In this paper, we consider the large time behavior of global solutions to (P) for small
initial data in L1(Rn) with algebraic weights in the case where p > pF(n) .

To state our main results precisely, we introduce some notation. Let (etΔ; t � 0)
be the heat semigroup given by

etΔϕ =

{
Gt ∗ϕ , t > 0,

ϕ , t = 0

for ϕ ∈ Lq(Rn) with q ∈ [1,+∞] , where Gt : Rn → R is the Gauss kernel given by

Gt(x) = (4πt)−
n
2 exp

(
−|x|2

4t

)
, x ∈ R

n,

∗ is the convolution in Rn , and Lq(Rn) is the standard Lebesgue space with the norm
denoted by ‖·‖q . We also need the weighted L1 -space defined by

L1
m(Rn) = {ϕ ∈ L1(Rn); xα ϕ ∈ L1(Rn) for all α ∈ Z

n
�0 with |α| � m},

where xα ϕ means the function Rn � x �→ xα ϕ(x) ∈ R .
We start with the most basic result on the existence and uniqueness of global solu-

tions to (P) in the function space X defined by

X = (C∩L∞)([0,+∞);L1(Rn))∩ (C∩L∞)((0,+∞);L∞(Rn)).

PROPOSITION 1.1. Let p > pF(n) . Then, there exists ε0 > 0 such that for any
ϕ ∈ (L1 ∩L∞)(Rn) with ‖ϕ‖1 + ‖ϕ‖∞ � ε0 , (P) has a unique global solution u ∈ X ,
which satisfies

sup
q∈[1,+∞]

sup
t�0

(1+ t)
n
2 (1− 1

q )‖u(t)‖q < +∞. (1.2)

Although the above proposition is more or less well-known, we give the proof in
Appendix A to make this paper self-contained (see also [11, Theorem 1.2] and [24,
Theorem 20.15]). We remark that any additional conditions for the initial data such as
nonnegativity or exponential decay at the far field are not supposed.

Based on Proposition 1.1, we show that L1 -space with algebraic weights is invari-
ant under the semilinear heat flow associated with (P).

THEOREM 1.2. Let p > pF(n) and let m ∈ Z>0 . Let ϕ ∈ (L1
m ∩L∞)(Rn) satisfy

‖ϕ‖1 + ‖ϕ‖∞ � ε0 and let u ∈ X be the global solution to (P) given in Proposition
1.1. Then, u ∈ C([0,+∞);L1

m(Rn)) , and moreover there exists Cm > 0 such that the
estimate

∑
|α |=m

‖xαu(t)‖1 � Cm

(
1+ t

m
2

)
(1.3)

holds for all t � 0 .
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The next theorem describes the large time behavior of the global solution to (P)
given in Proposition 1.1.

THEOREM 1.3. Let p > pF(n) . Let ϕ ∈ (L1∩L∞)(Rn) satisfy ‖ϕ‖1 +‖ϕ‖∞ � ε0

and let u ∈ X be the global solution to (P) given in Proposition 1.1. Then, for any
N ∈ Z>0 and q ∈ [1,+∞] , there exists CN,q > 0 such that the estimates

t
n
2

(
1− 1

q

)
‖u(t)−uN(t)‖q �

⎧⎪⎨⎪⎩
CN,qt

−Nσ if 0 < Nσ < 1,

CN,qt
−1 log(1+ t) if Nσ = 1,

CN,qt
−1 if Nσ > 1

(1.4)

hold for all t > 2N−1 , where

σ :=
n
2
(p−1)−1 > 0,

uN(t) :=

⎧⎨⎩
etΔϕ1 for N = 1,

etΔϕN +
∫ t

0
e(t−s)Δ f (uN−1(s))ds for N � 2,

ϕN :=

⎧⎪⎪⎨⎪⎪⎩
ϕ +

∫ +∞

0
f (u(s))ds for N = 1,

ϕ +
∫ +∞

0
( f (u(s))− f (uN−1(s)))ds for N � 2.

Alternatively, the sequence (uN ;N ∈ Z�0) in X is introduced recursively by u0 ≡
0 and {

∂t uN −ΔuN = f (uN−1), (t,x) ∈ (0,+∞)×Rn,

uN(0) = ϕN , x ∈ Rn (1.5)

for N � 1. In addition, it follows from Proposition 1.1 that

sup
q∈[1,+∞]

sup
t�0

(1+ t)
n
2

(
1− 1

q

)
‖uN(t)‖q < +∞

for any N ∈ Z>0 (see Lemma 4.2 in Section 4). Hence, Theorem 1.3 means that the
large time behavior of the global solution to (P) is approximated by that of the solution
to the Cauchy problem for the linear heat equation (1.5). In particular, the larger N ∈
Z>0 is, the faster the remainder vanishes up to t−1 . We also emphasize that we do not
need weighted L1 -spaces in Theorem 1.3. The sequences (ϕN ;N ∈ Z>0) and (uN ;N ∈
Z>0) are constructed as follows. For N = 1, we define u1 and ϕ1 by inference from
the well-studied fact that

lim
t→+∞

t
n
2

(
1− 1

q

)∥∥∥∥u(t)−
(∫

Rn
ϕ1(y)dy

)
Gt

∥∥∥∥
q
= 0,

lim
t→+∞

t
n
2

(
1− 1

q

)∥∥∥∥etΔϕ1 −
(∫

Rn
ϕ1(y)dy

)
Gt

∥∥∥∥
q
= 0
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hold for any q ∈ [1,+∞] under suitable assumptions (see [6, 16, 17, 23, 8, 24, 7, 9]
and Proposition 2.3 in Section 2). For N � 2, we set ϕN to make the difference u(t)−
uN−1(t) in the decomposition of the difference u(t)− uN(t) , where uN is constructed
by the iteration.

The following theorem provides us with explicit self-similar profiles of the global
solution to (P) given in Proposition 1.1 with explicit remainder estimates.

THEOREM 1.4. Let m ∈ {0,1} and let p > 1 + (3 + m)/n. Let ϕ ∈ (L1
m+1 ∩

L∞)(Rn) satisfy ‖ϕ‖1 +‖ϕ‖∞ � ε0 and let u ∈ X be the global solution to (P) given in
Proposition 1.1. Then, for any q ∈ [1,+∞] , there exists Cq > 0 such that the estimates

t
n
2

(
1− 1

q

)
‖u(t)− c0δtG1‖q � Cqt

− 1
2 for m = 0, (1.6)

t
n
2

(
1− 1

q

)∥∥∥∥u(t)− c0δtG1 − 1
2
t−

1
2

n

∑
j=1

c jδt(x jG1)
∥∥∥∥

q
� Cqt

−1 for m = 1 (1.7)

hold for all t > 1 , where

c0 :=
∫

Rn
ϕ1(y)dy, c j :=

∫
Rn

y jϕ1(y)dy,

ϕ1 := ϕ +
∫ +∞

0
f (u(s))ds

and δt is the dilation acting on functions ψ on Rn as

(δtψ)(x) = t−
n
2 ψ

(
t−

1
2 x

)
, x ∈ R

n.

REMARK 1.1. Theorems 1.2, 1.3 and 1.4 hold for global solutions to (P) in X
satisfying (1.2) without the smallness assumption for the initial data. However, it is
known that solutions to (P) do not necessarily satisfy (1.2). In fact, [16] showed that
if f (ξ ) = ξ p with p > pF(n) and the initial data is nonnegative and sufficiently large,
then the solution to (P) does not satisfy (1.2) and even it can be blow up in finite time.

There is a large literature on asymptotic expansions of global solutions to semi-
linear heat equations. For example, the 0-th order asymptotic expansion like (1.6) was
obtained by [6, 16, 17, 23, 8, 24] with various methods, and higher order asymptotic
expansions were given by [7, 9, 10, 12, 13]. Therefore, the above main results seem to
be well-known except for Theorem 1.3, but the novelties of this paper lie in the method
of the proofs. In [7], the authors introduced L1 -decay estimates of the heat semigroup
to derive a classification of global solutions to (P) in terms of decay rate in t of their L1 -
norm with a regularity assumption for the nonlinear term. This method was improved
by [9] to obtain higher order asymptotic expansions in the case where p > pF(n) at
the expense of the parabolic self-similarity of asymptotic profiles and generalized by
[10, 12, 13] to apply other semilinear parabolic equations. This method is also valid to
obtain asymptotic expansions of global solutions to semilinear damped wave equations
[15, 14]. Therefore, the method introduced and improved by [7, 9] is powerful, while it
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seems to be the only method to obtain not only higher order asymptotic expansions but
also the first order asymptotic expansion such as (1.7).

In this paper, we show Theorem 1.4 by using the linear approximation given in
Theorem 1.3 and asymptotic expansions of the heat semigroup with Hermite polyno-
mials (see Proposition 2.4 in Section 2). We emphasize that the asymptotic profiles
in Theorem 1.4 have the parabolic self-similarity in the sense that each term has the
form of a constant multiple of dilated functions on Rn (with decay factor in t ). Com-
paring Theorem 1.4 and the asymptotic expansions of the heat semigroup, we see that
the global solution has the same asymptotic profiles as for the heat semigroup with the
initial data ϕ1 if m ∈ {0,1} . We also see that the solution asymptotically approaches
to the same profiles as for the heat semigroup with the initial data ϕ1 even if m ∈ Z�0

with m � 2. However, it is not suitable to consider them as higher order asymptotic ex-
pansions of the global solution in terms of the decay rates of the remainders (for details,
see Remark 4.1 in Section 4).

Furthermore, we need weighted L1 -estimates of the global solution to (P) as in
Theorem 1.2 to ensure the finiteness of constants c0,c1, . . . ,cn . As far as we know,
there are two methods to derive the weighted estimates. One is to attribute the weighted
estimates to those of the heat semigroup by using the comparison principle. The other is
to approximate the global solution by solutions to linear heat equations via an iteration
argument with the Ascoli-Arzelà theorem (see [7, Lemma 3.1] and [11, Theorem 1.2],
respectively). We note that the comparison principle which we use in the first method is
proved by a computation of the energy for a positive or negative part of the difference
of solutions to heat equations (see [24, Proposition 52.10]). Therefore, to obtain the
weighted estimates by using the above methods, we have to verify the regularity or
uniqueness of global solutions to (P) at the same time. By the way, the global solution
given in Proposition 1.1 is constructed by a contraction argument for the following
integral equation associated with (P):

u(t) = etΔϕ +
∫ t

0
e(t−s)Δ f (u(s))ds. (I)

Hence, it is a natural question from the view point of a priori estimates to consider what
properties the solution constructed by the contraction argument has in the framework
of the integral equation without reconstruction (approximation) of the global solution.
We show Theorem 1.2 by direct and explicit calculations with the aid of commutation
relations and their estimates between the heat semigroup and monomial weights in Rn

given by Theorems 2.5 and 2.6 in Section 2. Since we do not use the standard parabolic
arguments which rely on the comparison principle or some compactness arguments, our
method enables us to discuss independently the well-posedness and a priori estimates
for (P). Therefore, our method is available to not only parabolic equations but also
some models with dispersion which cannot be applied the comparison principle to; for
example, the following complex Ginzburg-Landau type equation:

∂t u− (λ + iα)Δu+(κ + iβ )|u|q−1u− γu = 0,

where u : [0,+∞)×Rn → C is an unknown function and α,β ,γ,κ ∈ R , λ > 0, q ∈
[1,+∞] are given parameters (cf. [21, 22]). Furthermore, our method using commu-
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tation relations helps us to understand nonlinear parabolic equations with fundamental
techniques in calculus. From these observation, our approach would have an advantage
over the previous studies. The results on new higher order asymptotic expansions for
the complex Ginzburg-Landau type equation which includes (P) in a special case will
be discussed in the forthcoming paper.

This paper is organized as follows. In Section 2, we introduce basic estimates
and asymptotic expansions in the linear case. In Section 3, we prove Theorem 1.2. In
Section 4, we prove Theorems 1.3 and 1.4.

2. Heat semigroup

In this section, we introduce basic estimates and asymptotic expansions of the
heat semigroup. See [5, 24] for the standard notion and notation of the subject. To
begin with, we prepare some notation. Let Z>0 be the set of positive integers and let
Z�0 := Z>0∪{0} . For α = (α1, . . . ,αn) ∈ Zn

�0 and x = (x1, . . . ,xn) ∈ Rn , we define

|α| :=
n

∑
j=1

α j, α! :=
n

∏
j=1

α j!, xα :=
n

∏
j=1

x
α j
j , ∂ α = ∂ α

x :=
n

∏
j=1

∂ α j
j , ∂ j :=

∂
∂x j

.

For α = (α1, . . . ,αn) , β = (β1, . . . ,βn) ∈ Z
n
�0 , α � β means that α j � β j holds for

any j ∈ {1, . . . ,n} . Furthermore, we write

(
α
β

)
:=

⎧⎪⎨⎪⎩
α!

β !(α −β )!
=

n

∏
j=1

α j!
β j!(α j −β j)!

, β � α,

0, otherwise.

The heat semigroup is represented as

(etΔϕ)(x) = (Gt ∗ϕ)(x) =
∫

Rn
Gt(x− y)ϕ(y)dy

for any (t,x)∈ (0,+∞)×Rn . We define the dilation δt which leaves L1 -norm invariant
by

(δtϕ)(x) = t−
n
2 ϕ

(
t−

1
2 x

)
, ϕ ∈ L1

loc(R
n), x ∈ R

n

for each t > 0. Then, the family of the dilations (δt ;t > 0) has the following properties:

(1) δtδs = δts for any t,s > 0.

(2) ‖δtϕ‖q = t−
n
2

(
1− 1

q

)
‖ϕ‖q for any t > 0, q ∈ [1,+∞] and ϕ ∈ Lq(Rn) .

Moreover, by using the dilation δt , we can rewrite Gt and the derivatives of etΔϕ as

Gt = δtG1,

∂ αetΔϕ = (∂ αGt)∗ϕ = (∂ α (δtG1))∗ϕ = t−
|α|
2 (δt(∂ αG1))∗ϕ

for any t > 0 and α ∈ Z
n
�0 . Then, we have the following well-known estimates.
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LEMMA 2.1. Let 1 � q � p � +∞ and let α ∈ Zn
�0 . Then, the estimate

‖∂ αetΔϕ‖p � t−
n
2

(
1
q− 1

p

)
− |α|

2 ‖∂ αG1‖r‖ϕ‖q

holds for any t > 0 and ϕ ∈ Lq(Rn) , where r ∈ [1,+∞] with 1/p+1 = 1/r+1/q.

LEMMA 2.2. Let 1 � q � p � +∞ . Then, there exists Cp,q > 0 such that the
estimate

‖etΔϕ‖p � Cp,q(1+ t)−
n
2

(
1
q− 1

p

)
(‖ϕ‖q +‖ϕ‖p)

holds for any t � 0 and ϕ ∈ (Lq ∩Lp)(Rn) . In particular, if ϕ ∈ (L1 ∩L∞)(Rn) , then

‖etΔϕ‖p � Cp,1(1+ t)−
n
2

(
1− 1

p

)
(‖ϕ‖1 +‖ϕ‖∞)

for any t � 0 .

Since we can prove these lemmas by simple calculations with Young’s inequality,
we omit the proofs.

Next, we consider asymptotic expansions of the heat semigroup. We define the
translation τh by h ∈ Rn as

(τhϕ)(x) = ϕ(x−h), ϕ ∈ L1
loc(R

n), x ∈ R
n.

PROPOSITION 2.3. Let ϕ ∈ L1
1(R

n) and let q ∈ [1,+∞] . Then, the estimate

t
n
2

(
1− 1

q

)
‖etΔϕ − c0δtG1‖q � 1

2
t−

1
2

n

∑
j=1

‖x jG1‖q‖x jϕ‖1

holds for any t > 0 , where

c0 :=
∫

Rn
ϕ(y)dy.

Proof. For any t > 0, we have

(etΔϕ − c0δtG1)(x)

=
∫

Rn
(Gt(x− y)−Gt(x))ϕ(y)dy

=
∫

Rn

(∫ 1

0

d
dθ

Gt(x−θy)dθ
)

ϕ(y)dy

= −
n

∑
j=1

∫
Rn

∫ 1

0
y j(∂ jGt)(x−θy)ϕ(y)dθdy

=
1
2
t−1

n

∑
j=1

∫
Rn

∫ 1

0
(x j −θy j)Gt(x−θy)y jϕ(y)dθdy
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=
1
2
t−

n
2− 1

2

n

∑
j=1

∫
Rn

∫ 1

0

(
t−

1
2 (x j −θy j)

)
G1

(
t−

1
2 (x−θy)

)
y jϕ(y)dθdy

=
1
2
t−

1
2

n

∑
j=1

∫
Rn

∫ 1

0
(τθy(δt(x jG1)))(x)y jϕ(y)dθdy.

Therefore, we obtain

‖etΔϕ − c0δtG1‖q � 1
2
t−

1
2

n

∑
j=1

∫
Rn

∫ 1

0
‖τθy(δt (x jG1))‖q|y jϕ(y)|dθdy

=
1
2
t−

1
2

n

∑
j=1

∫
Rn

∫ 1

0
‖δt(x jG1)‖q|y jϕ(y)|dθdy

=
1
2
t−

n
2

(
1− 1

q

)
− 1

2

n

∑
j=1

∫
Rn
‖x jG1‖q|y jϕ(y)|dy

=
1
2
t−

n
2

(
1− 1

q

)
− 1

2

n

∑
j=1

‖x jG1‖q‖x jϕ‖1. �

REMARK 2.1. For some readers, the above proof seems to be redundant. How-
ever, we write it to see that it is a special case of the proof of Proposition 2.4 below.

We remark that the key point in the proof of Proposition 2.3 is to calculate the
difference Gt(x− y)−Gt(x) explicitly. Therefore, by applying Taylor’s theorem, we
obtain higher order asymptotic expansions of the heat semigroup. Now, we define the
Hermite polynomial of order k by

Hk(x) = (−1)kex2
(

d
dx

)k

e−x2
, x ∈ R (2.1)

for each k ∈ Z�0 . The following representation of Hk is well-known:

Hk(x) =
[k/2]

∑
j=0

(−1) jk!
j!(k−2 j)!

(2x)k−2 j, (2.2)

where [k/2] := max{ j ∈ Z�0; j � k/2} . Moreover, we define the multi-variable Her-
mite polynomial of order α by Hα = Hα1 ⊗·· ·⊗Hαn , namely,

Hα(x) =
n

∏
j=1

Hα j (x j) = (−1)|α |e|x|
2
∂ αe−|x|2 , x = (x1, . . . ,xn) ∈ R

n (2.3)

for each α = (α1, · · · ,αn) ∈ Zn
�0 (see also [19, 20]). Then, it follows from (2.2) that

Hα(x) =
n

∏
j=1

[α j/2]

∑
β j=0

(−1)β jα j!
β j!(α j −2β j)!

(2x j)α j−2β j

= ∑
2β�α

(−1)|β |α!
β !(α −2β )!

(2x)α−2β . (2.4)
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Using the multi-variable Hermite polynomial Hα , we can rewrite the derivatives of G1

as

∂ αG1(x) = (4π)−
n
2 ∂ α exp

(
−

∣∣∣ x
2

∣∣∣2)
= (4π)−

n
2 2−|α |

[
∂ α

y e−|y|2
]
y= x

2

= (4π)−
n
2 2−|α |(−1)−|α | exp

(
−

∣∣∣ x
2

∣∣∣2)[
(−1)|α |e|y|

2
∂ α

y e−|y|2
]
y= x

2

= (−2)−|α |G1(x)Hα

( x
2

)
. (2.5)

Therefore, by setting

hα(x) := Hα

( x
2

)
= ∑

2β�α

(−1)|β |α!
β !(α −2β )!

xα−2β , x ∈ R
n, (2.6)

we have

∂ αG1 = (−2)−|α |hαG1, (2.7)

∂ αGt = ∂ α (δtG1) = t−
|α|
2 δt(∂ αG1) = (−2)−|α |t−

|α|
2 δt(hαG1). (2.8)

Under the above preparations, we state higher order asymptotic expansions of the heat
semigroup.

PROPOSITION 2.4. Let m ∈ Z�0 , ϕ ∈ L1
m+1(R

n) and q ∈ [1,+∞] . Then, the
estimate

t
n
2

(
1− 1

q

)∥∥∥∥etΔϕ −
m

∑
k=0

2−kt−
k
2 ∑
|α |=k

cα δt(hαG1)
∥∥∥∥

q

� 2−(m+1)t−
m+1

2 ∑
|α |=m+1

1
α!

‖hαG1‖q‖xα ϕ‖1

holds for any t > 0 , where

cα :=
1

α!

∫
Rn

yα ϕ(y)dy.

REMARK 2.2. When m = 1, the asymptotic profile of the heat semigroup is rep-
resented as

1

∑
k=0

2−kt−
k
2 ∑
|α |=k

cαδt(hαG1) = c0δtG1 +
1
2
t−

1
2

n

∑
j=1

cej δt(x jG1),

where (e j; j = 1, . . . ,n) is the standard basis of R
n .
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Proof of Proposition 2.4. By Taylor’s theorem, we obtain

Gt(x− y) = ∑
|α |�m

1
α!

(−y)α(∂ αGt)(x)

+ ∑
|α |=m+1

m+1
α!

∫ 1

0
(1−θ )m(−y)α(∂ αGt)(x−θy)dθ

=
m

∑
k=0

2−kt−
k
2 ∑
|α |=k

1
α!

yα(δt(hαG1))(x)

+2−(m+1)t−
m+1

2 ∑
|α |=m+1

m+1
α!

∫ 1

0
(1−θ )myα(τθy(δt(hαG1)))(x)dθ ,

whence follows(
etΔϕ −

m

∑
k=0

2−kt−
k
2 ∑
|α |=k

cα δt(hαG1)
)

(x)

=
∫

Rn

(
Gt(x− y)−

m

∑
k=0

2−kt−
k
2 ∑
|α |=k

1
α!

yα(δt(hαG1))(x)
)

ϕ(y)dy

= 2−(m+1)t−
m+1

2 ∑
|α |=m+1

m+1
α!

∫
Rn

∫ 1

0
(1−θ )m(τθy(δt(hαG1)))(x)yα ϕ(y)dθdy.

Therefore, for any t > 0, we have∥∥∥∥etΔϕ −
m

∑
k=0

2−kt−
k
2 ∑
|α |=k

cα δt(hαG1)
∥∥∥∥

q

� 2−(m+1)t−
m+1

2 ∑
|α |=m+1

m+1
α!

∫
Rn

∫ 1

0
(1−θ )m‖τθy(δt(hαG1))‖q|yα ϕ(y)|dθdy

= 2−(m+1)t−
m+1

2 ∑
|α |=m+1

m+1
α!

∫
Rn

∫ 1

0
(1−θ )m‖δt(hαG1)‖q|yαϕ(y)|dθdy

= 2−(m+1)t−
n
2

(
1− 1

q

)
−m+1

2 ∑
|α |=m+1

1
α!

∫
Rn
‖hαG1‖q|yαϕ(y)|dy

= 2−(m+1)t−
n
2

(
1− 1

q

)
−m+1

2 ∑
|α |=m+1

1
α!

‖hαG1‖q‖xα ϕ‖1. �

REMARK 2.3. There are many methods to obtain the asymptotic expansions of
the heat semigroup [2, 3, 1, 5, 25]. On the m-th order asymptotic expansion of the heat
semigroup with ϕ ∈ L1

m(Rn) , see Appendix B.

As we state in the introduction, we need the following commutation relations be-
tween the heat semigroup and monomial weights in R

n to show Theorem 1.2.
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THEOREM 2.5. Let m ∈ Z>0 , ϕ ∈ L1
m(Rn) and α ∈ Zn

�0 with |α| = m. Then,
xαetΔϕ ∈ L1(Rn) and the identity

xαetΔϕ − etΔxα ϕ = Rα(t)ϕ (2.9)

holds in L1(Rn) for any t > 0 , where

Rα(t)ϕ := ∑
β+γ=α

β �=0

α!
β !γ!

(−2t∂ )β etΔxγϕ + ∑
β+γ�α , |β+γ|�|α |−2

|β |+1��� |α|+|β |−|γ|
2

Cα
�β γt

�∂ β etΔxγ ϕ (2.10)

for some Cα
�β γ ∈ R independent of t , x and ϕ .

Theorem 2.5 yields the commutator estimates of the heat semigroup and the mono-
mial weights.

THEOREM 2.6. Let m ∈ Z>0 . Then, there exists Cm > 0 such that the estimate

∑
|α |=m

‖xαetΔϕ − etΔxα ϕ‖1 � Cm

{
t

1
2 ‖|x|m−1ϕ‖1 +

(
t

1
2 + t

m
2

)
‖ϕ‖1

}
(2.11)

holds for any ϕ ∈ L1
m(Rn) and t > 0 .

By a simple calculation with the integral representation of the heat semigroup, we
have

∑
|α |=m

‖xαetΔϕ‖1 � Cm

(
‖|x|mϕ‖1 + t

m
2 ‖ϕ‖1

)
(2.12)

for any ϕ ∈ L1
m(Rn) and t > 0 (cf. [7, Lemma 2.1]). Therefore, by using (2.11)

instead of (2.12), we can control the heat semigroup with the weights of order m by not
‖|x|mϕ‖1 but ‖|x|m−1ϕ‖1 . This is crucial point to obtain weighted estimates of global
solutions to (P) without the aid of the comparison principle and the iteration argument
with some compactness arguments.

Here and hereafter, let (e j; j = 1, . . . ,n) denote the standard basis of Rn . That is,
for any j ∈ {1, . . . ,n} , e j ∈ Rn is a unit vector whose components are 0 except the
j -th coordinate.

Proof of Theorem 2.5. We regard Theorem 2.5 as the assertion with respect to
m ∈ Z>0 :

(A)m Let ϕ ∈ L1
m(Rn) and let α ∈ Zn

�0 with |α| = m . Then, xαetΔϕ ∈ L1(Rn) and
(2.9) holds for any t > 0.

We show that (A)m is true for all m ∈ Z>0 by induction on m . First, we consider the
case where m = 1. Let ϕ ∈ L1

1(R
n) , t > 0 and α ∈ Z

n
�0 with |α| = 1. Then, there
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exists j ∈ {1, . . . ,n} such that α = e j . Moreover, since ϕ , x jϕ ∈ L1(Rn) , we have
∂ jetΔϕ , etΔx jϕ ∈ L1(Rn) and

(etΔx jϕ −2t∂ je
tΔϕ)(x) =

∫
Rn

Gt(x− y)y jϕ(y)dy−2t∂ j

∫
Rn

Gt(x− y)ϕ(y)dy

=
∫

Rn
Gt(x− y)y jϕ(y)dy+

∫
Rn

(x j − y j)Gt(x− y)ϕ(y)dy

= x j

∫
Rn

Gt(x− y)ϕ(y)dy

= x j(etΔϕ)(x).

Thus, we obtain x jetΔϕ ∈ L1(Rn) and

x je
tΔϕ − etΔx jϕ = −2t∂ je

tΔϕ ,

whence follows (A)1 .
Next, we assume that (A)m holds for some m ∈ Z>0 . Let ϕ ∈ L1

m+1(R
n) , t > 0

and α ′ ∈ Zn
�0 with |α ′| = m + 1. Then, there exist α ∈ Zn

�0 with |α| = m and j ∈
{1, . . . ,n} such that α ′ = α + e j . Moreover, from the fact that xα ϕ , x jxα ϕ ∈ L1(Rn)
and (A)1 , we see that x jetΔxα ϕ ∈ L1(Rn) and

x je
tΔxα ϕ = etΔx jx

α ϕ −2t∂ je
tΔxα ϕ = etΔxα ′

ϕ −2t∂ je
tΔxα ϕ . (2.13)

Now, we show x jRα(t)ϕ ∈L1(Rn) . For this purpose, it suffices to prove that x j∂ β etΔxγϕ
∈ L1(Rn) for any β ,γ ∈ Zn

�0 with β + γ � α and |γ| � m− 1. Let γ ∈ Zn
�0 with

|γ| � m− 1. Then, from the fact that xγϕ , x jxγϕ ∈ L1(Rn) and (A)1 , it follows that
x jetΔxγ ϕ ∈ L1(Rn) and

x je
tΔxγϕ = etΔx jx

γϕ −2t∂ je
tΔxγ ϕ = etΔxγ+e j ϕ −2t∂ je

tΔxγ ϕ . (2.14)

Furthermore, since the right hand side on the above identity belongs to Wm,1(Rn) , for
any β ∈ Zn

�0 with |β | � m , we have ∂ β (x jetΔxγϕ) ∈ L1(Rn) and

∂ β (x je
tΔxγ ϕ) = ∂ β (etΔxγ+e j ϕ −2t∂ je

tΔxγ ϕ)

= ∂ β etΔxγ+e j ϕ −2t∂ β+e jetΔxγ ϕ .

On the other hand, by a simple calculation, we obtain

∂ β (x je
tΔxγ ϕ) =

{
x j∂ β etΔxγ ϕ + β j∂ β−e j etΔxγ ϕ if β j � 1,

x j∂ β etΔxγ ϕ if β j = 0,
(2.15)

where β j is the j -th component of β . In any case, we conclude that x j∂ β etΔxγ ϕ ∈
L1(Rn) , whence follows x jRα(t)ϕ ∈ L1(Rn) . Therefore, from the fact that x jetΔxα ϕ ,
x jRα(t)ϕ ∈ L1(Rn) , (A)m , and (2.13), it follows that xα ′

etΔϕ ∈ L1(Rn) and

xα ′
etΔϕ = x jx

αetΔϕ

= x je
tΔxα ϕ + x jRα(t)ϕ

= etΔxα ′
ϕ −2t∂ je

tΔxα ϕ + x jRα(t)ϕ .
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Finally, to complete the proof, we show that the terms −2t∂ jetΔxα ϕ and x jRα(t)ϕ in
the above identity are represented as

Rα ′(t)ϕ = ∑
β ′+γ ′=α ′

β ′ �=0

α ′!
β ′!γ ′!

(−2t∂ )β ′
etΔxγ ′ϕ

+ ∑
β ′+γ ′�α ′, |β ′+γ ′|�|α ′|−2

|β ′|+1��′� |α′ |+|β ′ |−|γ′|
2

Cα ′
�′β ′γ ′t

�′∂ β ′
etΔxγ ′ϕ .

It is clear that the term −2t∂ jetΔxα ϕ is a part of the first sum in Rα ′(t)ϕ with (β ′,γ ′) =
(e j,α) . Let β ,γ ∈ Zn

�0 with β + γ = α and β �= 0. If β j � 1, then it follows from
(2.14) and (2.15) that

x j(−2t∂ )β etΔxγϕ

= (−2t∂ )β (x je
tΔxγϕ)−β j(−2t)|β |∂ β−e j etΔxγϕ

= (−2t∂ )β (etΔxγ+e j ϕ −2t∂ je
tΔxγ ϕ)−β j(−2)|β |t |β |∂ β−e j etΔxγϕ

= (−2t∂ )β etΔxγ+e j ϕ +(−2t∂ )β+e jetΔxγ ϕ −β j(−2)|β |t |β |∂ β−e j etΔxγϕ . (2.16)

Similarly, if β j = 0, then we have

x j(−2t∂ )βetΔxγϕ = (−2t∂ )β (x je
tΔxγϕ)

= (−2t∂ )βetΔxγ+e j ϕ +(−2t∂ )β+e jetΔxγϕ . (2.17)

The terms (−2t∂ )β etΔxγ+e j ϕ and (−2t∂ )β+e jetΔxγϕ in (2.16) or (2.17) are parts of the
first sum in Rα ′(t)ϕ with (β ′,γ ′) = (β ,γ + e j) , (β + e j,γ) , respectively. In addition,
since

−2t∂ je
tΔxα ϕ + ∑

β+γ=α
β �=0

α!
β !γ!

(
(−2t∂ )β etΔxγ+e j ϕ +(−2t∂ )β+e jetΔxγϕ

)

= ∑
β+γ=α

β �=0

α!
β !γ!

(−2t∂ )β etΔxγ+e j ϕ + ∑
β+γ=α

α!
β !γ!

(−2t∂ )β+e jetΔxγϕ

= ∑
β ′+γ ′=α ′
0 �=β ′�α

α!
β ′!(γ ′ − e j)!

(−2t∂ )β ′
etΔxγ ′ϕ + ∑

β ′+γ ′=α ′
γ ′�α

α!
(β ′ − e j)!γ ′!

(−2t∂ )β ′
etΔxγ ′ϕ

= ∑
β ′+γ ′=α ′

β ′ �=0

((
α
β ′

)
+

(
α
γ ′

))
(−2t∂ )β ′

etΔxγ ′ϕ
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= ∑
β ′+γ ′=α ′

β ′ �=0

(
α ′

β ′

)
(−2t∂ )β ′

etΔxγ ′ϕ

= ∑
β ′+γ ′=α ′

β ′ �=0

α ′!
β ′!γ ′!

(−2t∂ )β ′
etΔxγ ′ϕ ,

all components of the first sum in Rα ′(t)ϕ have appeared. On the other hand, by taking
(�′,β ′,γ ′) = (|β |,β − e j,γ) with e j � β , we have

• β ′ + γ ′ = β − e j + γ = α − e j = α ′ −2e j � α ′ ,
• |β ′ + γ ′| = |β − e j + γ| = |α|−1 = |α ′|−2,

• |β ′|+1 = |β − e j|+1 = |β | = �′ ,

• �′ � |α ′|+ |β ′|− |γ ′|
2

⇔ |β | � (|α|+1)+ (|β |−1)−|γ|
2

=
|α|+ |β |− |γ|

2
= |β | .

This implies that the term −β j(−2)|β |t |β |∂ β−e j etΔxγ ϕ in (2.16) is a part of the second
sum in Rα ′(t)ϕ with (�′,β ′,γ ′) = (|β |,β − e j,γ) . Therefore, we conclude that the
components of the first sum in x jRα(t)ϕ are represented as parts of Rα ′(t)ϕ . Next, we
take β ,γ ∈ Zn

�0 and � ∈ Z�0 satisfying

β + γ � α, |β + γ| � |α|−2, |β |+1 � � � |α|+ |β |− |γ|
2

.

If β j � 1, then it follows from (2.14) and (2.15) that

x jt
�∂ β etΔxγ ϕ = t�∂ β (x je

tΔxγϕ)−β jt
�∂ β−e j etΔxγϕ

= t�∂ β (etΔxγ+e j ϕ −2t∂ je
tΔxγ ϕ)−β jt

�∂ β−e j etΔxγ ϕ

= t�∂ β etΔxγ+e j ϕ −2t�+1∂ β+e j etΔxγϕ −β jt
�∂ β−e j etΔxγϕ . (2.18)

In the same way, if β j = 0, then we have

x jt
�∂ β etΔxγ ϕ = t�∂ β (x je

tΔxγϕ)

= t�∂ β etΔxγ+e j ϕ −2t�+1∂ β+e j etΔxγ ϕ . (2.19)

Taking (�′,β ′,γ ′) = (�,β ,γ + e j) , we have

• β ′ + γ ′ = β + γ + e j � α + e j = α ′ ,
• |β ′ + γ ′| = |β + γ + e j| = |β + γ|+1 � |α|−1 = |α ′|−2,

• |β ′|+1 = |β |+1 � � = �′ ,

• �′ � |α ′|+ |β ′|− |γ ′|
2

⇔ � � (|α|+1)+ |β |− (|γ|+1)
2

=
|α|+ |β |− |γ|

2
.

Hence, the term t�∂ β etΔxγ+e j ϕ in (2.18) or (2.19) is a part of the second sum in Rα ′(t)ϕ
with (�′,β ′,γ ′) = (�,β ,γ + e j) . Next, taking (�′,β ′,γ ′) = (�+1,β + e j,γ) , we obtain
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• β ′ + γ ′ = β + e j + γ � α + e j = α ′ ,
• |β ′ + γ ′| = |β + e j + γ| = |β + γ|+1 � |α|−1 = |α ′|−2,

• |β ′|+1 = |β + e j|+1 = (|β |+1)+1 � �+1 = �′ ,

• �′ � |α ′|+ |β ′|− |γ ′|
2

⇔ � � (|α|+1)+ (|β |+1)−|γ|
2

−1 =
|α|+ |β |− |γ|

2
.

This implies that the term −2t�+1∂ β+e j etΔxγ ϕ in (2.18) or (2.19) is a part of the second
sum in Rα ′(t)ϕ with (�′,β ′,γ ′) = (�+1,β +e j,γ) . Finally, taking (�′,β ′,γ ′) = (�,β −
e j,γ) with e j � β , we have

• β ′ + γ ′ = β − e j + γ � α − e j = α ′ −2e j � α ′ ,
• |β ′ + γ ′| = |β − e j + γ| = |β + γ|−1 � |α|−3 = |α ′|−4 � |α ′|−2,

• |β ′|+1 = |β − e j|+1 = |β | � �−1 � � = �′ ,

• �′ � |α ′|+ |β ′|− |γ ′|
2

⇔ � � (|α|+1)+ (|β |−1)−|γ|
2

=
|α|+ |β |− |γ|

2
.

Thus, the term −β jt�∂ β−e j etΔxγϕ in (2.18) is a part of the second sum in Rα ′(t)ϕ with
(�′,β ′,γ ′) = (�,β − e j,γ) , whence follows that each component of the second sum in
x jRα(t)ϕ is represented as a component of the second sum in Rα ′(t)ϕ . This completes
the proof. �

Proof of Theorem 2.6. By virtue of Theorem 2.5, it is sufficient to estimate
Rα(t)ϕ for any t > 0. For the case where m = 1, it follows from Lemma 2.1 that

∑
|α |=1

‖Rα(t)ϕ‖1 =
n

∑
j=1

‖−2t∂ je
tΔϕ‖1

� 2t
1
2

n

∑
j=1

‖∂ jG1‖1‖ϕ‖1

= 2t
1
2 ‖∇G1‖1‖ϕ‖1.

Next, we consider the case where m � 2. Here and hereafter, different positive con-
stants independent of t are denoted by the same letter C . By Lemma 2.1, for any
α ∈ Z

n
�0 with |α| = m , we have

‖Rα(t)ϕ‖1 � C ∑
β+γ=α

β �=0

t |β |‖∂ β etΔxγ ϕ‖1 +C ∑
β+γ�α , |β+γ|�m−2

|β |+1��� m+|β |−|γ|
2

t�‖∂ β etΔxγ ϕ‖1

� C ∑
|β |+|γ|=m

|β |�1

t
|β |
2 ‖xγϕ‖1 +C ∑

|β |+|γ|�m−2

|β |+1��� m+|β |−|γ|
2

t�−
|β |
2 ‖xγϕ‖1,
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whence follows

∑
|α |=m

‖Rα(t)ϕ‖1

� C ∑
|β |+|γ|=m

|β |�1

t
|β |
2 ‖xγϕ‖1 +C

m−2

∑
j=0

∑
|β |+|γ|= j

∑
|β |+1��� m+|β |−|γ|

2

t�−
|β |
2 ‖xγϕ‖1. (2.20)

Now, let β ,γ ∈ Zn
�0 with |β |+ |γ|= m and |β | � 1. Then,

|β |−1
m−1

+
|γ|

m−1
= 1, 0 � |β |−1

m−1
� 1, 0 � |γ|

m−1
� 1.

Therefore, Hölder’s inequality implies

t
|β |
2 ‖xγϕ‖1 � t

|β |
2 ‖|x||γ|ϕ‖1

� t
|β |
2 ‖ϕ‖

|β |−1
m−1

1 ‖|x|m−1ϕ‖
|γ|

m−1
1

= t
1
2

(
t

m−1
2 ‖ϕ‖1

) |β |−1
m−1 ‖|x|m−1ϕ‖

|γ|
m−1
1

� t
1
2

(
t

m−1
2 ‖ϕ‖1 +‖|x|m−1ϕ‖1

)
= t

m
2 ‖ϕ‖1 + t

1
2 ‖|x|m−1ϕ‖1. (2.21)

Similarly, we take j, � ∈ Z�0 and β ,γ ∈ Zn
�0 satisfying

0 � j � m−2, |β |+ |γ|= j, |β |+1 � � � m+ |β |− |γ|
2

.

Then,

m+ |β |− j−1
m−1

+
|γ|

m−1
= 1, 0 � m+ |β |− j−1

m−1
� 1, 0 � |γ|

m−1
� 1,

|β |+1 � 2�−|β |−1 � m+ |β |− (|γ|+ |β |)−1= m+ |β |− j−1.

Hence, we obtain

t�−
|β |
2 ‖xγϕ‖1 � t�−

|β |
2 ‖|x||γ|ϕ‖1

� t
2�−|β |

2 ‖ϕ‖
m+|β |− j−1

m−1
1 ‖|x|m−1ϕ‖

|γ|
m−1
1

= t
1
2

(
t

(m−1)(2�−|β |−1)
2(m+|β |− j−1) ‖ϕ‖1

)m+|β |− j−1
m−1 ‖|x|m−1ϕ‖

|γ|
m−1
1

� t
1
2

(
t

(m−1)(2�−|β |−1)
2(m+|β |− j−1) ‖ϕ‖1 +‖|x|m−1ϕ‖1

)
�

(
t

1
2 + t

m
2

)
‖ϕ‖1 + t

1
2 ‖|x|m−1ϕ‖1. (2.22)
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Here, we have used the inequalities

t
(m−1)(2�−|β |−1)
2(m+|β |− j−1) �

{
1, 0 < t � 1,

t
m−1

2 , t > 1,

which follow from the following relation of exponents:

0 � |β |+1
m+ |β |− j−1

� 2�−|β |−1
m+ |β |− j−1

� 1.

Finally, combining (2.20), (2.21), and (2.22), we arrive at the desired estimate. �

REMARK 2.4. From the proofs of Theorems 2.5 and 2.6, we see that if m ∈ Z>0

and ϕ ∈ L1
m(Rn) , then for any α ∈ Zn

�0 with |α| = m , j ∈ {1, . . . ,n} and t > 0,
x jRα(t)ϕ is represented as a part of Rα+e j(t)ϕ and the estimate

n

∑
j=1

∑
|α |=m

‖x jRα(t)ϕ‖1 � Cm+1

{
t

1
2 ‖|x|mϕ‖1 +

(
t

1
2 + t

m+1
2

)
‖ϕ‖1

}
holds for some Cm+1 > 0 independent of t and ϕ .

The following lemma will be used in the proof of Theorem 1.2 to calculate weighted
estimates with approximation.

LEMMA 2.7. Let w ∈W 2,∞(Rn) and let ϕ ∈ L1(Rn) . Then, the estimate

‖wetΔϕ − etΔwϕ‖1 �
(
‖Δw‖∞t +‖∇w‖∞‖∇G1‖1t

1
2

)
‖ϕ‖1 (2.23)

holds for any t > 0 .

Proof. From the identity

wetΔϕ − etΔwϕ =
∫ t

0

d
ds

(
e(t−s)ΔwesΔϕ

)
ds

=
∫ t

0
e(t−s)Δ(−Δ(wesΔϕ)+wΔesΔϕ

)
ds

=
∫ t

0
e(t−s)Δ(−ΔwesΔϕ −2∇w ·∇esΔϕ

)
ds

and Lemma 2.1, we have

‖wetΔϕ − etΔwϕ‖1 �
∫ t

0

∥∥e(t−s)Δ(−ΔwesΔϕ −2∇w ·∇esΔϕ
)∥∥

1ds

� ‖G1‖1

∫ t

0
‖−ΔwesΔϕ −2∇w ·∇esΔϕ‖1ds
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� ‖Δw‖∞

∫ t

0
‖esΔϕ‖1ds+2‖∇w‖∞

∫ t

0
‖∇esΔϕ‖1ds

� ‖Δw‖∞‖G1‖1‖ϕ‖1

∫ t

0
ds+2‖∇w‖∞‖∇G1‖1‖ϕ‖1

∫ t

0
s−

1
2 ds

=
(
‖Δw‖∞t +‖∇w‖∞‖∇G1‖1t

1
2

)
‖ϕ‖1. �

3. Proof of Theorem 1.2

We show Theorem 1.2 by induction on m ∈ Z>0 . First of all, we introduce ap-
proximate functions of the monomial weights. For j ∈ {1, . . . ,n} and ε ∈ (0,1] , we
define a function wj,ε : R

n → R by

wj,ε (x) := x je
−ε|x|2 , x = (x1, . . . ,xn) ∈ R

n.

Then, we can see that wj,ε ∈W 2,∞(Rn) and

∇wj,ε(x) = e−ε|x|2(−2εx jx+ e j),

Δwj,ε(x) = e−ε|x|2(4ε2x j|x|2−2(n+2)εx j),

whence follows

‖∇wj,ε‖∞ � 2sup
ρ�0

ρe−ρ +1 � 2, (3.1)

‖Δwj,ε‖∞ � 4ε
1
2 sup

ρ�0
ρ

3
2 e−ρ +2(n+2)ε

1
2 sup

ρ�0
ρ

1
2 e−ρ � (n+4)ε

1
2 . (3.2)

Now, we show the case where m = 1. Let ϕ ∈ (L1
1∩L∞)(Rn) , t > 0 and α ∈ Z

n
�0

with |α| = 1. Then, there exists j ∈ {1, . . . ,n} such that α = e j . Here and hereafter,
let C denote a positive constant independent of t and ε which may change from line
to line. Multiplying (I) by wj,ε yields

wj,εu(t) = wj,εe
tΔϕ +

∫ t

0
wj,εe

(t−s)Δ f (u(s))ds

= etΔwj,ε ϕ +
(
wj,εe

tΔϕ − etΔwj,ε ϕ
)

+
∫ t

0
e(t−s)Δwj,ε f (u(s))ds

+
∫ t

0

(
wj,εe

(t−s)Δ f (u(s))− e(t−s)Δwj,ε f (u(s))
)
ds.

By (1.1), (3.1), (3.2), Proposition 1.1, and Lemma 2.7, we have

‖wj,εu(t)‖1 � ‖etΔwj,ε ϕ‖1 +‖wj,εe
tΔϕ − etΔwj,ε ϕ‖1

+
∫ t

0

∥∥e(t−s)Δwj,ε f (u(s))
∥∥

1ds

+
∫ t

0

∥∥wj,εe
(t−s)Δ f (u(s))− e(t−s)Δwj,ε f (u(s))

∥∥
1ds
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� ‖wj,ε ϕ‖1 +
(
‖Δwj,ε‖∞t +‖∇wj,ε‖∞‖∇G1‖1t

1
2

)
‖ϕ‖1

+C
∫ t

0
‖u(s)‖p−1

∞ ‖wj,εu(s)‖1ds

+C
∫ t

0

(
‖Δwj,ε‖∞(t− s)+‖∇wj,ε‖∞‖∇G1‖1(t− s)

1
2

)
‖u(s)‖p

pds

� ‖x jϕ‖1 +C
(

ε
1
2 t + t

1
2

)
‖ϕ‖1

+C
∫ t

0
(1+ s)−

n
2 (p−1)‖wj,εu(s)‖1ds

+C
∫ t

0

(
ε

1
2 (t− s)+ (t− s)

1
2

)
(1+ s)−

n
2 (p−1)ds

= ξε(t)+
∫ t

0
η(s)‖wj,εu(s)‖1ds,

where

ξε (t) := ‖x jϕ‖1 +C
(

ε
1
2 t + t

1
2

)
‖ϕ‖1 +C

∫ t

0

(
ε

1
2 (t − s)+ (t− s)

1
2

)
(1+ s)−

n
2 (p−1)ds,

η(t) := C(1+ t)−
n
2 (p−1).

Therefore, from the Grönwall lemma and ξε � ξ1 , we derive

‖wj,εu(t)‖1 � ξε (t)+
∫ t

0
ξε(s)η(s)exp

(∫ t

s
η(τ)dτ

)
ds

� ξ1(t)+
∫ t

0
ξ1(s)η(s)exp

(∫ t

s
η(τ)dτ

)
ds. (3.3)

In particular, since the right hand side on the last inequality in (3.3) is finite and in-
dependent of ε , it follows from Fatou’s lemma that x ju(t) ∈ L1(Rn) , which in turn
implies x j f (u(t)) ∈ L1(Rn) . Moreover, by (I) and Theorem 2.5, we obtain

x ju(t) = x je
tΔϕ +

∫ t

0
x je

(t−s)Δ f (u(s))ds

= etΔx jϕ −2t∂ je
tΔϕ +

∫ t

0
e(t−s)Δx j f (u(s))ds−2

∫ t

0
(t − s)∂ je

(t−s)Δ f (u(s))ds,

whence follows x ju ∈ C([0,+∞);L1(Rn)) . On the other hand, taking ε ↘ 0 in (3.3)
yields

‖x ju(t)‖1 � ξ0(t)+
∫ t

0
ξ0(s)η(s)exp

(∫ t

s
η(τ)dτ

)
ds,

where

ξ0(t) := ‖x jϕ‖1 +Ct
1
2 ‖ϕ‖1 +C

∫ t

0
(t− s)

1
2 (1+ s)−

n
2 (p−1)ds.
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Since p > pF(n) , the integral appearing in the definition of ξ0(t) is estimated as∫ t

0
(t− s)

1
2 (1+ s)−

n
2 (p−1)ds � t

1
2

∫ t

0
(1+ s)−

n
2 (p−1)ds � Ct

1
2 .

Therefore, we have∫ t

0
ξ0(s)η(s)exp

(∫ t

s
η(τ)dτ

)
ds

� Cexp

(∫ +∞

0
η(τ)dτ

)∫ t

0

(
1+ s

1
2

)
η(s)ds

� Cexp

(
C

∫ +∞

0
(1+ τ)−

n
2 (p−1)dτ

)(
1+ t

1
2

)∫ t

0
(1+ s)−

n
2 (p−1)ds

� C
(
1+ t

1
2

)
,

whence follows

‖x ju(t)‖1 � C
(
1+ t

1
2

)
.

Next, we assume that Theorem 1.2 holds for some m ∈ Z>0 . Let ϕ ∈ (L1
m+1 ∩

L∞)(Rn) , t > 0 and α ′ ∈ Zn
�0 with |α ′| = m + 1. Then, there exist α ∈ Zn

�0 with
|α| = m and j ∈ {1, . . . ,n} such that α ′ = α + e j . From the induction hypothesis and
Remark 2.4, it follows that

‖x jRα(t)ϕ‖1 � C
{
t

1
2 ‖|x|mϕ‖1 +

(
t

1
2 + t

m+1
2

)
‖ϕ‖1

}
, (3.4)

‖x jRα(t− s) f (u(s))‖1 � C
{
(t − s)

1
2 ‖|x|m f (u(s))‖1

+
(
(t− s)

1
2 +(t− s)

m+1
2

)
‖ f (u(s))‖1

}
(3.5)

for any s ∈ (0, t) , where C does not depend on s . Multiplying (I) by wj,εxα and
applying Theorem 2.5, we have

wj,εx
αu(t) = wj,εx

αetΔϕ +
∫ t

0
wj,εx

αe(t−s)Δ f (u(s))ds

= etΔwj,εx
α ϕ +

(
wj,εe

tΔxα ϕ − etΔwj,εx
α ϕ

)
+wj,εRα(t)ϕ

+
∫ t

0

(
wj,εe

(t−s)Δxα f (u(s))− e(t−s)Δwj,εx
α f (u(s))

)
ds

+
∫ t

0
e(t−s)Δwj,εx

α f (u(s))ds+
∫ t

0
wj,εRα(t− s) f (u(s))ds.

By a computation similar to that in the case where m = 1 with (1.1), (3.1), (3.2), (3.4),
(3.5), Proposition 1.1, and Lemma 2.7, we can derive

‖wj,εx
αu(t)‖1 � ξ̃ε(t)+

∫ t

0
η(s)‖wj,εx

αu(s)‖1ds,
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where

ξ̃ε(t) :=C
(
1+ t

1
2 + ε

1
2 t + t

m+1
2

)
+C

∫ t

0

(
ε

1
2 (t− s)+ (t− s)

1
2

)
(1+ s)−

n
2 (p−1)

(
1+ s

m
2

)
ds

+C
∫ t

0

(
(t− s)

1
2 +(t− s)

m+1
2

)
(1+ s)−

n
2 (p−1)ds.

Therefore, from the Grönwall lemma and ξ̃ε � ξ̃1 , we have

‖wj,εx
αu(t)‖1 � ξ̃ε(t)+

∫ t

0
ξ̃ε (s)η(s)exp

(∫ t

s
η(τ)dτ

)
ds

� ξ̃1(t)+
∫ t

0
ξ̃1(s)η(s)exp

(∫ t

s
η(τ)dτ

)
ds. (3.6)

In particular, since the right hand side on the last inequality in (3.6) is finite and inde-
pendent of ε , it follows from Fatou’s lemma that xα ′

u(t) = x jxαu(t) ∈ L1(Rn) , which
in turn implies xα ′

f (u(t)) ∈ L1(Rn) . Furthermore, by (I) and Theorem 2.5, we obtain

xα ′
u(t) = xα ′

etΔϕ +
∫ t

0
xα ′

e(t−s)Δ f (u(s))ds

= etΔxα ′
ϕ +Rα ′(t)ϕ +

∫ t

0
e(t−s)Δxα ′

f (u(s))ds+
∫ t

0
Rα ′(t − s) f (u(s))ds,

whence follows xα ′
u ∈C([0,+∞);L1(Rn)) . On the other hand, taking ε ↘ 0 in (3.6)

yields

‖xα ′
u(t)‖1 � ξ̃0(t)+

∫ t

0
ξ̃0(s)η(s)exp

(∫ t

s
η(τ)dτ

)
ds,

where

ξ̃0(t) := C
(
1+ t

1
2 + t

m+1
2

)
+C

∫ t

0
(t− s)

1
2 (1+ s)−

n
2 (p−1)

(
1+ s

m
2

)
ds

+C
∫ t

0

(
(t − s)

1
2 +(t− s)

m+1
2

)
(1+ s)−

n
2 (p−1)ds.

Since p > pF(n) , the integrals appearing in the definition of ξ̃0(t) are estimated as∫ t

0
(t − s)

1
2 (1+ s)−

n
2 (p−1)

(
1+ s

m
2

)
ds � t

1
2

(
1+ t

m
2

)∫ t

0
(1+ s)−

n
2 (p−1)ds

� C
(
t

1
2 + t

m+1
2

)
,∫ t

0

(
(t− s)

1
2 +(t− s)

m+1
2

)
(1+ s)−

n
2 (p−1)ds �

(
t

1
2 + t

m+1
2

)∫ t

0
(1+ s)−

n
2 (p−1)ds

� C
(
t

1
2 + t

m+1
2

)
.
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Therefore, we have∫ t

0
ξ̃0(s)η(s)exp

(∫ t

s
η(τ)dτ

)
ds

� Cexp

(∫ +∞

0
η(τ)dτ

)∫ t

0

(
1+ s

1
2 + s

m+1
2

)
η(s)ds

� Cexp

(
C

∫ +∞

0
(1+ τ)−

n
2 (p−1)dτ

)(
1+ t

1
2 + t

m+1
2

)∫ t

0
(1+ s)−

n
2 (p−1)ds

� C
(
1+ t

1
2 + t

m+1
2

)
,

whence follows

‖xα ′
u(t)‖1 � C

(
1+ t

1
2 + t

m+1
2

)
� C

(
1+ t

m+1
2

)
.

This completes the induction argument. �

4. Proofs of Theorems 1.3 and 1.4

We first prove Theorem 1.3 in the case where N = 1.

PROPOSITION 4.1. Under the same assumptions as in Theorem 1.3, for any q ∈
[1,+∞] , there exists Cq > 0 such that the estimates

t
n
2

(
1− 1

q

)
‖u(t)− etΔϕ1‖q �

⎧⎪⎨⎪⎩
Cqt

−σ if 0 < σ < 1,

Cqt
−1 log(1+ t) if σ = 1,

Cqt
−1 if σ > 1

hold for all t > 1 , where

σ :=
n
2
(p−1)−1 > 0,

ϕ1 := ϕ +
∫ +∞

0
f (u(s))ds.

Proof. Let q ∈ [1,+∞] and let t > 1. We divide the difference u(t)− etΔϕ1 into
three parts by using (I):

u(t)− etΔϕ1

=
∫ t/2

0

(
e(t−s)Δ − etΔ)

f (u(s))ds+
∫ t

t/2
e(t−s)Δ f (u(s))ds− etΔ

∫ +∞

t/2
f (u(s))ds

=
∫ t/2

0

∫ 1

0

d
dθ

(
e(t−sθ)Δ f (u(s))

)
dθds+

∫ t

t/2
e(t−s)Δ f (u(s))ds− etΔ

∫ +∞

t/2
f (u(s))ds

= −
∫ t/2

0

∫ 1

0
sΔe(t−sθ)Δ f (u(s))dθds+

∫ t

t/2
e(t−s)Δ f (u(s))ds− etΔ

∫ +∞

t/2
f (u(s))ds.
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We note that since p > pF(n) ⇔ σ > 0, we have

np
2

− n
2q

−1 = σ +
n
2

(
1− 1

q

)
> 0.

Therefore, from (1.1), Proposition 1.1, and Lemma 2.1, we obtain∥∥∥∥∫ t

t/2
e(t−s)Δ f (u(s))ds

∥∥∥∥
q
� C

∫ t

t/2
‖u(s)‖p

pqds

� C
∫ t

t/2
s−

n
2

(
1− 1

pq

)
pds

� Ct−σ− n
2

(
1− 1

q

)
,∥∥∥∥etΔ

∫ +∞

t/2
f (u(s))ds

∥∥∥∥
q
� C

∫ +∞

t/2
‖u(s)‖p

pqds

� C
∫ +∞

t/2
s−

n
2

(
1− 1

pq

)
pds

� Ct−σ− n
2

(
1− 1

q

)
.

In the same way, we have∥∥∥∥∫ t/2

0

∫ 1

0
sΔe(t−sθ)Δ f (u(s))dθds

∥∥∥∥
q

� C
∫ t/2

0

∫ 1

0
s(t − sθ )−

n
2

(
1− 1

q

)
−1‖u(s)‖p

pdθds

� C
∫ t/2

0

∫ 1

0
s(t − sθ )−

n
2

(
1− 1

q

)
−1(1+ s)−

n
2 (p−1)dθds

� Ct−
n
2

(
1− 1

q

)
−1

∫ t/2

0
(1+ s)−σds.

The integral appearing on the right hand side of the last inequality is estimated as

∫ t/2

0
(1+ s)−σds �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
1−σ

(
1+

t
2

)1−σ
� 1

1−σ

(
3t
2

)1−σ
, 0 < σ < 1,

log

(
1+

t
2

)
� log(1+ t), σ = 1,

1
σ −1

, σ > 1.

As a consequence, we can deduce that

t
n
2

(
1− 1

q

)
‖u(t)− etΔϕ1‖q �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ct−σ , 0 < σ < 1,

C
(
t−1 + t−1 log(1+ t)

)
� Ct−1 log(1+ t), σ = 1,

C
(
t−σ + t−1

)
� Ct−1, σ > 1. �
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Before we prove Theorem 1.3 in the case where N � 2, we prepare the following
lemma:

LEMMA 4.2. Under the same assumptions as in Theorem 1.3, for any N ∈ Z>0

and q ∈ [1,+∞] , there exists AN,q > 0 such that the estimate

‖uN(t)‖q � AN,q(1+ t)−
n
2

(
1− 1

q

)
holds for all t > 0 .

Proof. We prove the assertion by induction on N ∈ Z>0 . For the case where
N = 1, it follows from (1.1), Proposition 1.1, and Lemma 2.2 that

‖etΔϕ1‖q � ‖etΔϕ‖q +
∥∥∥∥etΔ

∫ +∞

0
f (u(s))ds

∥∥∥∥
q

� C(1+ t)−
n
2

(
1− 1

q

)
(‖ϕ‖1 +‖ϕ‖∞)

+C(1+ t)−
n
2

(
1− 1

q

) ∫ +∞

0
‖u(s)‖p−1

∞ (‖u(s)‖1 +‖u(s)‖∞)ds

� C(1+ t)−
n
2

(
1− 1

q

)
(‖ϕ‖1 +‖ϕ‖∞)+C(1+ t)−

n
2

(
1− 1

q

) ∫ +∞

0
(1+ s)−

n
2 (p−1)ds

� C(1+ t)−
n
2

(
1− 1

q

)
for any q ∈ [1,+∞] and t > 0.

Next, we assume that Lemma 4.2 holds for some N ∈ Z>0 and show that it is also
true when we replace N by N + 1. To do this, it suffices to consider the cases where
q = 1 and q = +∞ . In fact, if we can prove these cases, Hölder’s inequality implies

‖uN+1(t)‖q � ‖uN+1(t)‖
1
q
1 ‖uN+1(t)‖

1− 1
q

∞

� (AN+1,1)
1
q (AN+1,∞)1− 1

q (1+ t)−
n
2

(
1− 1

q

)
for any q ∈ (1,+∞) and t > 0. Now, let t > 0. We note that

uN+1(t) = etΔ
(

ϕ +
∫ +∞

0
( f (u(s))− f (uN(s)))ds

)
+

∫ t

0
e(t−s)Δ f (uN(s))ds

= etΔϕ1 − etΔ
∫ +∞

0
f (uN(s))ds+

∫ t

0
e(t−s)Δ f (uN(s))ds.

By (1.1) and Lemmas 2.1 and 2.2, we have

‖uN+1(t)‖1 � ‖etΔϕ1‖1 +
∥∥∥∥etΔ

∫ +∞

0
f (uN(s))ds

∥∥∥∥
1
+

∫ t

0

∥∥e(t−s) f (uN(s))
∥∥

1ds

� C+C
∫ +∞

0
‖uN(s)‖p

pds+C
∫ t

0
‖uN(s)‖p

pds

� C+C
∫ +∞

0
(1+ s)−

n
2 (p−1)ds � C,
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‖uN+1(t)‖∞ � ‖etΔϕ1‖∞ +
∥∥∥∥etΔ

∫ +∞

0
f (uN(s))ds

∥∥∥∥
∞

+
(∫ t/2

0
+

∫ t

t/2

)∥∥e(t−s) f (uN(s))
∥∥

∞ds

� C(1+ t)−
n
2 +C(1+ t)−

n
2

∫ +∞

0
‖uN(s)‖p−1

∞ (‖uN(s)‖1 +‖uN(s)‖∞)ds

+C
∫ t/2

0
(1+ t− s)−

n
2 ‖uN(s)‖p−1

∞ (‖uN(s)‖1 +‖uN(s)‖∞)ds

+C
∫ t

t/2
‖uN(s)‖p

∞ds

� C(1+ t)−
n
2 +C(1+ t)−

n
2

∫ +∞

0
(1+ s)−

n
2 (p−1)ds

+C
∫ t/2

0
(1+ t− s)−

n
2 (1+ s)−

n
2 (p−1)ds+C

∫ t

t/2
(1+ s)−

np
2 ds

� C(1+ t)−
n
2 +C(1+ t)−

n
2

∫ +∞

0
(1+ s)−

n
2 (p−1)ds

+C(1+ t)−
n
2

∫ t

0
(1+ s)−

n
2 (p−1)ds

� C(1+ t)−
n
2 .

This completes the proof. �

Proof of Theorem 1.3. We regard Theorem 1.3 as the assertion with respect to
N ∈ Z>0 :

(B)N For any q ∈ [1,+∞] , there exists CN,q > 0 such that the estimate

t
n
2

(
1− 1

q

)
‖u(t)−uN(t)‖q � CN,qζN(t)

holds for all t > 2N−1 , where

ζN(t) :=

⎧⎪⎨⎪⎩
t−Nσ , 0 < Nσ < 1,

t−1 log(1+ t), Nσ = 1,

t−1, Nσ > 1.

We show that (B)N is true for any N ∈ Z>0 by induction on N . We have already
proved the case where N = 1 in Proposition 4.1. We assume that (B)N holds for some
N ∈ Z>0 . Let q ∈ [1,+∞] and let t > 2N . We divide the difference u(t)−uN+1(t) into
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three parts by using (I):

u(t)−uN+1(t) =
∫ t/2

0

(
e(t−s)Δ − etΔ)

( f (u(s))− f (uN(s)))ds

+
∫ t

t/2
e(t−s)Δ( f (u(s))− f (uN(s)))ds

− etΔ
∫ +∞

t/2
( f (u(s))− f (uN(s)))ds

= −
∫ t/2

0

∫ 1

0
sΔe(t−sθ)Δ( f (u(s))− f (uN(s)))dθds

+
∫ t

t/2
e(t−s)Δ( f (u(s))− f (uN(s)))ds

− etΔ
∫ +∞

t/2
( f (u(s))− f (uN(s)))ds.

From (1.1), (B)N , Proposition 1.1, and Lemma 4.2, it follows that∥∥∥∥∫ t

t/2
e(t−s)Δ( f (u(s))− f (uN(s)))ds

∥∥∥∥
q

� C
∫ t

t/2

(‖u(s)‖p−1
∞ +‖uN(s)‖p−1

∞
)‖u(s)−uN(s)‖qds

� C
∫ t

t/2
(1+ s)−

n
2 (p−1)s−

n
2

(
1− 1

q

)
ζN(s)ds

� Ct−
n
2

(
1− 1

q

) ∫ t

t/2
s−1−σ ζN(s)ds,∥∥∥∥etΔ

∫ +∞

t/2
( f (u(s))− f (uN(s)))ds

∥∥∥∥
q

� C
∫ +∞

t/2

(‖u(s)‖p−1
∞ +‖uN(s)‖p−1

∞
)‖u(s)−uN(s)‖qds

� C
∫ +∞

t/2
(1+ s)−

n
2 (p−1)s−

n
2

(
1− 1

q

)
ζN(s)ds

� Ct−
n
2

(
1− 1

q

) ∫ +∞

t/2
s−1−σ ζN(s)ds.

In the same way, we obtain∥∥∥∥∫ t/2

0

∫ 1

0
sΔe(t−sθ)Δ( f (u(s))− f (uN(s)))dθds

∥∥∥∥
q

� C
∫ t/2

0

∫ 1

0
s(t− sθ )−

n
2

(
1− 1

q

)
−1(‖u(s)‖p−1

∞ +‖uN(s)‖p−1
∞

)‖u(s)−uN(s)‖1dθds

� Ct−
n
2

(
1− 1

q

)
−1

(∫ 2N−1

0
+

∫ t/2

2N−1

)
s
(‖u(s)‖p−1

∞ +‖uN(s)‖p−1
∞

)‖u(s)−uN(s)‖1ds
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� Ct−
n
2

(
1− 1

q

)
−1

(∫ 2N−1

0
(1+ s)−

n
2 (p−1)ds+

∫ t/2

2N−1
s(1+ s)−

n
2 (p−1)ζN(s)ds

)
� Ct−

n
2

(
1− 1

q

)
−1

(
1+

∫ t/2

2N−1
s−σ ζN(s)ds

)
.

Now, let 0 < ε � 1. Then, by simple calculations, we have∫ t

t/2
s−1−σ ζN(s)ds �

∫ +∞

t/2
s−1−σ ζN(s)ds

�

⎧⎪⎪⎨⎪⎪⎩
Ct−(N+1)σ , 0 < Nσ < 1,

Ct−1− 1
N +ε , Nσ = 1,

Ct−1−σ , Nσ > 1,

1+
∫ t/2

2N−1
s−σ ζN(s)ds �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1+
∫ t/2

2N−1
s−(N+1)σ ds, 0 < Nσ < 1,

1+C
∫ t/2

2N−1
s−1− 1

N +εds, Nσ = 1,

1+
∫ t/2

2N−1
s−1−σ ds, Nσ > 1,

�

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1+Ct1−(N+1)σ � Ct1−(N+1)σ , 0 < (N +1)σ < 1,

1+ log
t
2

� 2log(1+ t), (N +1)σ = 1,

C, Nσ < 1 < (N +1)σ ,

C, Nσ = 1,

C, Nσ > 1.

Combining these estimates yields

t
n
2

(
1− 1

q

)
‖u(t)−uN+1(t)‖q

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ct−(N+1)σ , 0 < (N +1)σ < 1,

C
(
t−1 + t−1 log(1+ t)

)
� Ct−1 log(1+ t), (N +1)σ = 1,

C
(
t−(N+1)σ + t−1

)
� Ct−1, Nσ < 1 < (N +1)σ ,

C
(
t−1− 1

N +ε + t−1
)

� Ct−1, Nσ = 1,

C
(
t−1−σ + t−1

)
� Ct−1, Nσ > 1.

This completes the proof. �

Proof of Theorem 1.4. Let q ∈ [1,+∞] . We note that

p > 1+
3+m

n
⇐⇒ −n

2
(p−1)+

m+1
2

< −1.
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By (1.1), Proposition 1.1, and Theorem 1.2, we have

‖xα ϕ1‖1 � ‖xαϕ‖1 +
∫ +∞

0
‖xα f (u(s))‖1ds

� ‖xαϕ‖1 +C
∫ +∞

0
‖u(s)‖p−1

∞ ‖xαu(s)‖1ds

� ‖xαϕ‖1 +C
∫ +∞

0
(1+ s)−

n
2 (p−1)+ |α|

2 ds � C

for all α ∈ Z
n
�0 with |α| � m + 1, whence follows ϕ1 ∈ L1

m+1(R
n) . Therefore, it

follows from Proposition 2.4 that

t
n
2

(
1− 1

q

)∥∥∥∥etΔϕ1 −
m

∑
k=0

2−kt−
k
2 ∑
|α |=k

cα δt(hαG1)
∥∥∥∥

q

� 2−(m+1)t−
m+1

2 ∑
|α |=m+1

1
α!

‖hαG1‖q‖xα ϕ1‖1 (4.1)

holds for any t > 0, where

cα :=
1

α!

∫
Rn

yα ϕ1(y)dy.

On the other hand, by Theorem 1.3 with N = 1, there exists C1,q > 0 such that

t
n
2

(
1− 1

q

)
‖u(t)− etΔϕ1‖q �

{
C1,qt

− 1
2 , m = 0,

C1,qt
−1, m = 1

(4.2)

hold for any t > 1. Here, we remark that

σ :=
n
2
(p−1)−1 >

m+1
2

=

⎧⎨⎩
1
2
, m = 0,

1, m = 1.

Combining (4.1) and (4.2), we can deduce the desired result. �

REMARK 4.1. In the same way as in the proof of Theorem 1.4, we see that if
m ∈ Z�0 , p > 1 + (3 + m)/n and ϕ ∈ (L1

m+1 ∩ L∞)(Rn) , then for any q ∈ [1,+∞] ,
there exists Cq > 0 such that the estimates

t
n
2

(
1− 1

q

)∥∥∥∥u(t)−
m

∑
k=0

2−kt−
k
2 ∑
|α |=k

cα δt(hαG1)
∥∥∥∥

q
�

{
Cqt

− 1
2 , m = 0,

Cqt
−1, m � 1

hold for all t > 1, where

cα :=
1

α!

∫
Rn

yα ϕ1(y)dy,
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ϕ1 := ϕ +
∫ +∞

0
f (u(s))ds.

When m � 2, it is not suitable to consider the above estimates as higher order asymp-
totic expansions of the global solution since some terms in the asymptotic profiles decay
faster than the remainders as t → +∞ . See also Corollary B.2 in Appendix B.

A. Proof of Proposition 1.1

Let ε0 > 0 and let ϕ ∈ (L1 ∩L∞)(Rn) with ‖ϕ‖1 + ‖ϕ‖∞ � ε0 . First, we prove
the existence of global solutions to (P). For each M > 0, we define

XM := {u ∈ X ; ‖u‖X � M},
‖u‖X := sup

t�0

(
‖u(t)‖1 +(1+ t)

n
2 ‖u(t)‖∞

)
,

d(u,v) := ‖u− v‖X.

Then, we can see that (XM,d) is a complete metric space. In addition, we define a
mapping Φ : XM → X by

(Φu)(t) = etΔϕ +
∫ t

0
e(t−s)Δ f (u(s))ds.

We show that Φ is a contraction on XM by choosing M > 0 and ε0 > 0 sufficiently
small. If we can prove this assertion, by applying the Banach fixed point theorem, we
obtain a global solution u ∈ XM to (P) as a fixed point of Φ . Furthermore, Hölder’s
inequality implies

‖u(t)‖q � ‖u(t)‖
1
q
1 ‖u(t)‖1− 1

q
∞ � M(1+ t)−

n
2

(
1− 1

q

)
for any q ∈ [1,+∞] and t � 0.

We first show that Φ(XM) ⊂ XM for appropriate M > 0 and ε0 > 0. Let u ∈ XM

and let t > 0. Then, by (1.1) and Lemmas 2.1 and 2.2, we have

‖(Φu)(t)‖1 � ‖etΔϕ‖1 +
∫ t

0

∥∥e(t−s)Δ f (u(s))
∥∥

1ds

� ‖ϕ‖1 +C
∫ t

0
‖u(s)‖p−1

∞ ‖u(s)‖1ds

� ε0 +C‖u‖p
X

∫ t

0
(1+ s)−

n
2 (p−1)ds

� ε0 +CMp,

‖(Φu)(t)‖∞ � ‖etΔϕ‖∞ +
(∫ t/2

0
+

∫ t

t/2

)∥∥e(t−s)Δ f (u(s))
∥∥

∞ds

� C(1+ t)−
n
2 (‖ϕ‖1 +‖ϕ‖∞)+C

∫ t

t/2
‖u(s)‖p

∞ds

+C
∫ t/2

0
(1+ t− s)−

n
2 ‖u(s)‖p−1

∞ (‖u(s)‖1 +‖u(s)‖∞)ds



264 R. KUSABA AND T. OZAWA

� C(1+ t)−
n
2 ε0 +C‖u‖p

X

∫ t

t/2
(1+ s)−

np
2 ds

+C‖u‖p
X

∫ t/2

0
(1+ t− s)−

n
2 (1+ s)−

n
2 (p−1)ds

� C(1+ t)−
n
2 ε0 +CMp(1+ t)−

n
2

∫ t

t/2
(1+ s)−

n
2 (p−1)ds

+CMp(1+ t)−
n
2

∫ t/2

0
(1+ s)−

n
2 (p−1)ds

� C(1+ t)−
n
2 ε0 +CMp(1+ t)−

n
2 .

Combining these estimates yields

‖Φu‖X � C′ε0 +C′Mp.

Therefore, by taking M > 0 and ε0 > 0 to satisfy

C′Mp−1 � 1
4
, ε0 � M

2C′ ,

we obtain ‖Φu‖X � M , whence follows Φu ∈ XM . In the same way, we can derive

‖Φu−Φv‖X � 2C′Mp−1‖u− v‖X � 1
2
‖u− v‖X

for any u,v ∈ XM , which implies that the mapping Φ : XM → XM is a contraction.
Finally, we show the uniqueness of global solutions to (P). Let u,v ∈ X be global

solutions to (P) and set

M′ := ‖u‖L∞(0,+∞;L∞) +‖v‖L∞(0,+∞;L∞).

Then, u and v satisfy the following integral equations, respectively:

u(t) = etΔϕ +
∫ t

0
e(t−s)Δ f (u(s))ds,

v(t) = etΔϕ +
∫ t

0
e(t−s)Δ f (v(s))ds.

Furthermore, by (1.1) and Lemma 2.1, we have

‖u(t)− v(t)‖1 � C
∫ t

0

(‖u(s)‖p−1
∞ +‖v(s)‖p−1

∞
)‖u(s)− v(s)‖1ds

� CM′p−1
∫ t

0
‖u(s)− v(s)‖1ds

for any t > 0. Applying the Grönwall lemma, we obtain

‖u(t)− v(t)‖1 = 0,

whence follows u = v .
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B. Convergence to the asymptotic expansions

We are not able to apply Proposition 2.4 for ϕ ∈ L1
m(Rn) to obtain the m-th order

asymptotic expansion with a bound of the remainder with decay rate in t . For ϕ ∈
L1

m(Rn) , we show that the remainder vanishes with higher order than −(n/2)(1−1/q)
as t → +∞ .

PROPOSITION B.1. Let m ∈ Z�0 , ϕ ∈ L1
m(Rn) and q ∈ [1,+∞] . Then,

lim
t→+∞

t
n
2

(
1− 1

q

)∥∥∥∥etΔϕ −
m

∑
k=0

2−kt−
k
2 ∑
|α |=k

cαδt(hαG1)
∥∥∥∥

q
= 0,

where

cα :=
1

α!

∫
Rn

yα ϕ(y)dy.

REMARK B.1. Proposition 1.1 in [18] follows from Proposition B.1 with m = 0
and n = q = 2. The authors in [18] showed the result with the aid of the Fourier
transform. More generally, for any ϕ ∈ L1(Rn) and q ∈ [1,+∞] , Proposition B.1 with
m = 0 implies

lim
t→+∞

t
n
2

(
1− 1

q

)
‖etΔϕ‖q = |c0|‖G1‖q

=

⎧⎨⎩|c0|(4π)−
n
2

(
1− 1

q

)
q−

n
2q , 1 � q < +∞,

|c0|(4π)−
n
2 , q = +∞,

where

c0 :=
∫

Rn
ϕ(y)dy.

Proof of Proposition B.1. To begin with, Cc(Rn) denotes the set of continuous
real-valued functions on Rn with compact support. Since ϕ ∈ L1(Rn) and Cc(Rn) is
dense in L1(Rn) , there exists a sequence (ϕ j; j ∈ Z>0) in Cc(Rn) such that ‖ϕ j −
ϕ‖1 → 0 as j → +∞ . In particular, ϕ j ∈ L1

m+1(R
n) for any j ∈ Z>0 . Here, we set

c j,α :=
1

α!

∫
Rn

yα ϕ j(y)dy

for each j ∈ Z>0 and α ∈ Zn
�0 with |α| � m . Then, by Lemma 2.1 and Proposition

2.4, we have

t
n
2

(
1− 1

q

)∥∥∥∥etΔϕ −
m

∑
k=0

2−kt−
k
2 ∑
|α |=k

cα δt(hαG1)
∥∥∥∥

q

� t
n
2

(
1− 1

q

)
‖etΔ(ϕ −ϕ j)‖q + t

n
2

(
1− 1

q

)∥∥∥∥etΔϕ j −
m

∑
k=0

2−kt−
k
2 ∑
|α |=k

c j,α δt(hαG1)
∥∥∥∥

q

+ t
n
2

(
1− 1

q

) m

∑
k=0

2−kt−
k
2 ∑
|α |=k

|c j,α − cα |‖δt(hαG1)‖q
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� ‖G1‖q‖ϕ −ϕ j‖1 +2−(m+1)t−
m+1

2 ∑
|α |=m+1

1
α!

‖hαG1‖q‖xα ϕ j‖1

+‖G1‖q‖ϕ j −ϕ‖1

+
m

∑
k=1

2−kt−
k
2 ∑
|α |=k

1
α!

(‖xαϕ j‖1 +‖xαϕ‖1
)‖hαG1‖q

for any t > 0, whence follows

limsup
t→+∞

t
n
2

(
1− 1

q

)∥∥∥∥etΔϕ −
m

∑
k=0

2−kt−
k
2 ∑
|α |=k

cα δt(hαG1)
∥∥∥∥

q

� 2‖G1‖q‖ϕ j −ϕ‖1.

Furthermore, since ‖ϕ j −ϕ‖1 → 0 as j → +∞ , we can deduce that

lim
t→+∞

t
n
2

(
1− 1

q

)∥∥∥∥etΔϕ −
m

∑
k=0

2−kt−
k
2 ∑
|α |=k

cα δt(hαG1)
∥∥∥∥

q
= 0. �

By using Proposition B.1 instead of Proposition 2.4 in the proof of Theorem 1.4,
we have the following corollary:

COROLLARY B.2. Let m ∈ Z�0 and let p > 1 + (2 + m)/n. Let ϕ ∈ (L1
m ∩

L∞)(Rn) satisfy ‖ϕ‖1 +‖ϕ‖∞ � ε0 and let u ∈ X be the global solution to (P) given in
Proposition 1.1. Then,

lim
t→+∞

t
n
2

(
1− 1

q

)∥∥∥∥u(t)−
m

∑
k=0

2−kt−
k
2 ∑
|α |=k

cα δt(hαG1)
∥∥∥∥

q
= 0

holds for any q ∈ [1,+∞] , where

cα :=
1

α!

∫
Rn

yα ϕ1(y)dy,

ϕ1 := ϕ +
∫ +∞

0
f (u(s))ds.
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