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Abstract. We consider a second order singular nonlinear partial differential equation of the form
(t∂t)2u = F(t,x,u,∂xu,∂ 2

x u,t∂t u,t∂t∂xu) , where F is assumed to be continuous in t and holo-
morphic with respect to the other variables. Under certain conditions, we prove that the equation
has a unique solution that is continuous in t and holomorphic in x .

1. Introduction

Let (t,x) ∈ R×C and let T0,R0,R1 > 0. Consider the singular partial differential
equation

t∂t u = F(t,x,u,∂xu), (1.1)

where the nonlinear function F(t,x,u,v) has the following properties:

(A1) F(t,x,u,v) is continuous on [0,T0]×DR0 ×D2
R1

and is holomorphic with respect
to (x,u,v) for each fixed t ;

(A2) F(0,x,0,0) ≡ 0 on DR0 ;

(A3) ∂vF(0,x,0,0) = xγ(x) , with γ(0) �= 0.

Here, Ds is the open ball in C centered at the origin with radius s > 0. Bacani and
Tahara [2] studied this equation as the partially holomorphic version of totally charac-
teristic type equations that were introduced by Chen and Tahara [7, 8] in the late 1990s.
We are using the term partially holomorphic in the sense of Miyake [15] because only
continuity is assumed with respect to t . (In contrast, the term was also used in [18] and
[23] when referring to functions that are of class C∞ in one variable but are analytic
with respect to the other variables.)

The assumptions on F allow us to write it as

F(t,x,u,v) = a(t,x)+ λ (t,x)u+[b(t)+ xc(t,x)]v+G(t,x,u,v)
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where a(t,x) = F(t,x,0,0) , λ (t,x) = ∂uF(t,x,0,0) , b(t) + xc(t,x) = ∂vF(t,x,0,0) ,
and G(t,x,u,v) denotes all the nonlinear terms with respect to u and v . We will further
write λ (t,x) = λ (0,0) + λ̃ (t,x) and c(t,x) = γ(0)+ c̃(t,x) and introduce the linear
operator L1 = t∂t −λ (0,0)− γ(0)x∂x , thus allowing us to write (1.1) as:

L1u = a(t,x)+ λ̃(t,x)u+ d̃(t,x)∂xu+G(t,x,u,∂xu). (1.2)

From our assumptions, we know that c(0,x) = γ(x) with c(0,0) �= 0, the functions
a(t,x) and c(t,x) are continuous on [0,T0]×DR0 and holomorphic in x for each fixed
t , and the function b(t) is continuous on [0,T0] . Moreover, both a(t,x) and b(t) vanish
at t = 0, and so there exists a continuous increasing function ψ : [0,T0] → [0,∞) such
that ψ(0) = 0, and for any t ∈ [0,T0] , for any x ∈ DR0 , we have

|a(t,x)| � ψ(t) and |b(t)| � ψ(t). (1.3)

Ona and Lope [17] proved the following unique solvability result in the class of
partially holomorphic functions, which was a slight improvement of the existence and
uniqueness theorem given in [2].

THEOREM 1. If Reλ (0,0)< 0 and Reγ(0)< 0 , then there exist T > 0 and R > 0
such that (1.1) has a solution u(t,x) that is continuous on [0,T ]×DR , holomorphic in
x for each fixed t , and satisfies the estimates

|u(t,x)| � C∗ψ(t) and |∂xu(t,x)| � C∗

R
ψ(t) on [0,T ]×DR,

for some C∗ > 0. This solution is unique in the sense that if v(t,x) is another solution
of (1.1) having the same properties, then u(t,x) = v(t,x) on [0,T ∗]×DR for some
T ∗ ∈ (0,T ].

The above theorem is also said to be of Nagumo type because it assumes holomor-
phy with respect to the ‘space’ variable x but only continuity with respect to the ‘time’
variable t , as was the case in Nagumo’s seminal work [16]. Baouendi and Goulaouic’s
pioneer work on Fuchsian linear PDEs [4] present an existence and uniqueness theo-
rem of Nagumo type, as well as the generalizations that followed [21, 10, 11]. As for
nonlinear Fuchsian or Briot-Bouquet type equations, solvability in the class of partially
holomorphic solutions have been established in [5, 12, 1].

If the function F(t,x,u,v) is assumed to be holomorphic with respect to all its
variables, then the setting above corresponds to PDEs of totally characteristic type in-
troduced by Chen and Tahara [7, 8]. Further investigations on totally characteristic
equations have been done by Tahara [22] and Shirai [19, 20]. The case when the sin-
gularity at x = 0 is irregular, that is, when ∂vF(0,x,0,0) = xpγ(x) with γ(0) �= 0 and
p � 2, has also been explored [6, 14, 3].

In this article, we extend the work of Ona and Lope [17] to the second-order case.
Specifically, we shall consider the second-order singular partial differential equation

(t∂t)2u = F(t,x,u,∂xu,∂ 2
x u,t∂tu, t∂t∂xu) (1.4)

where the nonlinear function F(t,x,u,v,w,y,z) has the following properties:
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(B1) F(t,x,u,v) is continuous on [0,T0]×DR0 ×DR1 ×D4
R1

and is holomorphic with
respect to (x,u,v) for each fixed t where v = (v01,v02,v10,v11) ;

(B2) F(0,x,0,0) ≡ 0 on DR0 ;

(B3) ∂vi jF(0,x,0,0) = x jγi j(x) for 0 � i � j.

Under these assumptions, we can write

F(t,x,u,v) = a(t,x)+g00(t,x)u+[b01(t)+ xg01(t,x)]∂xu+[b02(t)+ x2g02(t,x)]∂ 2
x u

+g10(t,x)t∂t u+[b11(t)+ xg11(t,x)]t∂t∂xu+G(t,x,u,v) (1.5)

where the coefficients are given by a(t,x) = F(t,x,0,0) , g00(t,x) = ∂uF(t,x,0,0) ,
g10(t,x) = ∂v10F(t,x,0,0) , bi j(t)+x jgi j(t,x) = ∂vi jF(t,x,0,0) for (i, j) = (0,1) , (0,2)
or (1,1) , and G(t,x,u,v) denotes all the nonlinear terms with respect to (u,v) .

Finally, putting a11 = −g11(0,0) , a02 = −g02(0,0) , a10 = −g10(0,0) , a01 =
g02(0,0)− g01(0,0) , a00 = −g00(0,0) , and introducing the second order linear op-
erator

L2 = (t∂t)2 +a11t∂tx∂x +a02(x∂x)2 +a10t∂t +a01x∂x +a00 (1.6)

with constant coefficients, we see that (1.4) can now be written as:

L2u = a(t,x)+b01(t)∂xu+b02(t)∂ 2
x u+b11(t)t∂t∂xu+ c00(t,x)u

+ c01(t,x)x∂xu+ c02(t,x)(x∂x)2u+ c10(t,x)t∂t u

+ c11(t,x)t∂t x∂xu+G(t,x,u,∂xu,∂ 2
x u,t∂tu,t∂t∂xu) (1.7)

where all the functions ci j(t,x) vanish at (0,0). This rewriting of the linear part is
being done because it is easier to handle the operator (x∂x)2 compared to the operator
x2∂ 2

x .
Observe that a(t,x) and bi j(t,x) for (i, j) = (0,1) , (0,2) or (1,1) vanish at t =

0, and so there exists a continuous increasing function ψ : [0,T0] → [0,∞) such that
ψ(0) = 0, and for any (t,x) ∈ [0,T0]×DR0 ,

|a(t,x)| � ψ(t) and |bi j(t)| � ψ(t). (1.8)

Let a,b,c, and d be positive real numbers satisfying: 1− a2− 4c � 0, 1− b2−
4d � 0, b−2c � 0, a−2d � 0, (1−b2−4d)2 +(b−2c)2 < 1. We shall assume that
the coefficients ai j in (1.6) satisfy the following inequalities:

(C1) Rea11,Rea10 > 0;

(C2) a <
Ima1k

Rea1k
< b for k = 0,1;

(C3) c <
Ima0k(2

k

)
(Rea11)k(Rea10)2−k

,
Rea0k(2

k

)
(Rea11)k(Rea10)2−k

< d for k = 0,1,2.
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These three inequalities are a bit technical but are being assumed to ensure the invert-
ibility of an ordinary differential operator derived from L2 , as can be seen later in the
proof.

Here is our main result:

THEOREM 2. Assume that (B1)–(B3) and (C1)–(C3) are all satisfied. Then
there exist T > 0 and R > 0 such that (1.4) has a solution u(t,x) that is continuous on
[0,T ]×DR , holomorphic in x for each fixed t , and satisfies the estimates

|u(t,x)| � Cψ(t) and |∂xu(t,x)| � C
R

ψ(t) on [0,T ]×DR,

for some C > 0. This solution is unique in the sense that if v(t,x) is another solution
of (1.4) having the same properties, then u(t,x) = v(t,x) on [0,T ∗]×DR∗ for some
T ∗ ∈ (0,T ] and R∗ ∈ (0,R) .

2. Preliminaries

Given two formal power series f (z) = ∑α fα zα and g(z) = ∑α gαzα , we say that
f � g if | fα | � gα for all multi-indices α . We also recall Lax’s [9] majorant function

φ(x) =
1
4S

∞

∑
n=0

xn

(n+1)2 (2.1)

where S = π2/6. The constant 1/4S is introduced in [13] to facilitate computations.
Let us note that the power series converges for all |x| < 1. Moreover, it satisfies the
following majorant relations:

φ2(x) � φ(x) and xφ(x) � 4φ(x). (2.2)

Given a convergent series f (t,x) = ∑i�0 fi(t)xi , whose coefficients fi depend continu-
ously on a parameter t , and a positive real number ρ we define the formal norm

||| f (t)|||ρ =
∞

∑
i=0

| fi(t)|ρ i. (2.3)

We list down some properties of the ρ -norm which are useful in estimating the norms
of complicated expressions.

LEMMA 1. Suppose f (t,x) , g(t,x) , and h(t,x,θ ) are continuous in t and holo-
morphic in the other variables for each fixed t , and ρ is a positive real number. The
following hold:

(i) ||| f (t)g(t)|||ρ � ||| f (t)|||ρ |||g(t)|||ρ
(ii)

∣∣∣∣∣∣∂ρ f (t)
∣∣∣∣∣∣

ρ � ∂ρ ||| f (t)|||ρ
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(iii)
∣∣∣∣∣∣∣∣∣∫ 1

0 h(t,x,θ )dθ
∣∣∣∣∣∣∣∣∣

ρ
� ∫ 1

0 |||h(t,x,θ )|||ρ dθ

We can use φ to majorize the norm of a function g(t,x) that is continuous in t
and holomorphic in x for each fixed t . If g(t,x) is bounded by M on [0,T0]×DR0 and
ρ ∈ (0,R0). Then for all t ∈ [0,T0],

|||g(t)|||ρ � M
1−ρ/R0

. (2.4)

Since 4Sφ � 1 and if we restrict R � 1
2R0 , we obtain

|||g(t)|||ρ �CR0φ
(ρ

R

)
, (2.5)

where the constant CR0 > 0 depends on M and R0 but not on R .
The existence and uniqueness theorem for the solution of (1.1) is proved by first

considering the following first-order linear equation:

L1u = f (t,x) (2.6)

where L1 is the operator in (1.2) and f (t,x) is continuous on [0,T0]×DR0 , holomor-
phic in x for each fixed t. It is shown in [17] that:

LEMMA 2. Suppose that max{Reλ (0,0),Reγ(0)} � −L for some positive con-
stant L. If ||| f (t)|||ρ � Mψ(t)φ(ρ/R), where ψ(t) is the one in (1.3) and R ∈ (0,R0) ,
then (2.6) has a unique solution u(t,x) that is continuous on [0,T0]×DR0 , holomorphic
in x for each fixed t, and satisfies

{|||u(t,x)|||ρ ,R|||∂xu(t,x)|||ρ , |||x∂xu(t,x)|||ρ
} � Mψ(t)φ

(ρ
R

)
.

This is the key lemma in solving (1.1) using the method of successive approxi-
mations. Thus, to solve (1.4), we need to formulate a second order version of this key
lemma. The assumptions on the real parts of the coefficients are essential. In the second
order case, this translates to the concept of stability of polynomials, i.e., polynomials
whose roots have negative real parts.

We consider the second-order partial differential equation

L2u = f (t,x), (2.7)

where the operator L2 is the one defined in (1.6). Since the functions above are as-
sumed to be holomorphic in x , we can expand both sides with respect to x . Writing
f (t,x) = ∑n�0 fn(t)xn , u(t,x) = ∑n�0 un(t)xn , and comparing the coefficient of xn on
both sides of (2.7), we obtain this family of equations:

(tDt)2un(t)+ (a11n+a10)tDtun(t)+ (a02n
2 +a01n+a00)un(t) = fn(t). (2.8)

Note that for all n � 0, (2.8) is an ordinary second-order differential equation of Fuchs
type, and we want this to be uniquely solvable so that (2.7) is uniquely solvable as well.
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To this end, let us now consider the quadratic polynomials in the variable p :

En(p) = p2 +(a11n+a10)p+(a02n
2 +a01n+a00) for all n � 0. (2.9)

Put αn = a11n+a10 and βn = a02n2 +a01n+a00 . We now present the following lemma
which gives estimates for the real and imaginary parts of αn , βn , and α2

n −4βn , respec-
tively.

LEMMA 3. Assume that (C1)–(C3) are satisfied. The following inequalities hold:

(i) aReαn < Imαn < bReαn .

(ii) c(Reαn)2 < Reβn < d(Reαn)2 .

(iii) c(Reαn)2 < Imβn < d(Reαn)2 .

(iv) (2a−4d)(Reαn)2 < Im(α2
n −4βn) < (2b−4c)(Reαn)2 .

(v) (1−b2−4d)(Reαn)2 < Re(α2
n −4βn) < (1−a2−4c)(Reαn)2 .

Proof. Since Imαn = nIma11 + Ima10 , the first inequality immediately follows
from (C2) . Now note that Reβn = n2Rea02 +nRea01 +Rea00 and Imβn = n2Ima02 +
nIma01 + Ima00 . Multiplying both sides of the inequalities in (C3) by nk , we see that

c

(
2
k

)
(nRea11)k(Rea10)2−k < nkRea0k, nkIma0k < d

(
2
k

)
(nRea11)k(Rea10)2−k,

for k = 0,1,2. Adding these inequalities (for k = 0,1,2), we obtain the inequalities in
(ii) and (iii).

Let us note that

α2
n −4βn = (Reαn)2 − (Imαn)2 −4Reβn + i

[
2ReαnImαn −4Im βn

]
.

Applying (i)–(iii) above, we have

Im(α2
n −4βn) = 2ReαnImαn −4Imβn

< 2(Reαn)(bReαn)−4c(Reαn)2

= (2b−4c)(Reαn)2,

and similarly,

Im(α2
n −4βn) > 2(Reαn)(aReαn)−4d(Reαn)2

= (2a−4d)(Reαn)2,

which proves the fourth inequality.
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Finally, applying (i) and (ii), we obtain these estimates for the real part of
α2

n −4βn :

Re (α2
n −4βn) < (Reαn)2 −a2(Reαn)2 −4c(Reαn)2

= (1−a2−4c)(Reαn)2

and

Re(α2
n −4βn) > (Reαn)2−b2(Reαn)2−4d(Reαn)2

= (1−b2−4d)(Reαn)2,

which completes the proof. �

The following lemma provides a sufficient condition for the stability of En for all
n .

LEMMA 4. Assume that (C1)–(C3) hold. Then the polynomial En(p) is stable
for all n � 0. More precisely, if its roots are denoted by −cn and −dn , then there exists
a constant L > 0 such that

Recn, Redn > L(n+1). (2.10)

Proof. Let us note that cn = 1
2(αn +

√
α2

n −4βn) and dn = 1
2 (αn −

√
α2

n −4βn) .
To estimate the real parts of cn and dn , we shall use the estimates in Lemma 3. Let us
recall that for any nonzero complex number ω , we have

Re
√

ω = ±
√

1
2 (|ω |+Reω). (2.11)

Set A = min{Rea11,Rea10} > 0, in view of (C1) . We first consider the positive
square root in (2.11). By Lemma 3(iv), we have

Re
√

α2
n −4βn =

√
1
2

[|α2
n −4βn|+Re(α2

n −4βn)
]

�
√

Re(α2
n −4βn)

>
√

1−b2−4d Reαn,

and consequently, because αn = a11n+a10 ,

Recn > 1
2

(
Reαn +

√
1−b2−4dReαn

)
> 1

2

[
A(n+1)+A(n+1)

√
1−b2−4d

]
= k1(n+1),

where k1 = A
2

(
1+

√
1−b2−4d

)
> 0.
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To estimate the negative square root in (2.11), we apply (iv) and (v) of Lemma 3.
We have

Re
√

α2
n −4βn � −

√
|α2

n −4βn|

= − 4
√[

Re(α2
n −4βn)

]2 +
[
Im(α2

n −4βn)
]2

> − 4
√

(1−b2−4c)2 +(2b−4c)2 Re(αn)

and so,

Recn = 1
2

(
Reαn +Re

√
α2

n −4βn
)

>
1
2

[
1− 4

√
(1−b2−4d)2 +(b−2c)2

]
A(n+1)

= k2(n+1),

where k2 = A
2

(
1− 4

√
(1−b2−4d)2 +(b−2c)2

)
> 0. The estimates for Redn can be

shown in a similar manner. Finally, we simply take L = min{k1,k2} > 0. �
Without loss of generality, we may assume that the positive constant L in Lemma 4

is less than 1. We now state and prove the existence and uniqueness of the solution of
the second-order linear differential equation (2.7).

LEMMA 5. Assume that (C1)–(C3) hold and ||| f (t)|||ρ � Mψ(t)φ(ρ/R) . Then
L2u = f (t,x) has a unique solution u(t,x) that is continuous on [0,T0]×DR0 and
holomorphic in x for each fixed t . Moreover, there exists a constant K > 0 such that
the solution u(t,x) satisfies the following estimates:

(i)
∣∣∣∣∣∣∣∣∣∂ j

x u(t)
∣∣∣∣∣∣∣∣∣

ρ
� M

L2Rk ψ(t)φ
(ρ

R

)
for j=0,1,2;

(ii)
∣∣∣∣∣∣(x∂x) ju(t)

∣∣∣∣∣∣
ρ � M

L2 ψ(t)φ
(ρ

R

)
for j=1,2;

(iii)
∣∣∣∣∣∣(t∂t)(x∂x) ju(t)

∣∣∣∣∣∣
ρ � KM

L2 ψ(t)φ
(ρ

R

)
for j=0,1; and

(iv) |||t∂t∂xu(t)|||ρ � KM
L2R

ψ(t)φ
(ρ

R

)
.

Proof. Let us note that we can write (2.8) as

(tDt + cn)(tDt +dn)un(t) = fn(t). (2.12)

From the theory of Fuchsian linear differential equations, this has a unique solution if
the characteristic exponents have negative real parts, which is guaranteed by Lemma 4.
The unique solution of (2.12) is given by:

un(t) =
∫ t

0

( s
t

)dn
(∫ s

0

(σ
s

)cn
fn(σ)

dσ
σ

)
ds
s

.
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To simplify the calculation of the estimate for un(t) , let us first call the inner integral
above as

wn(s) =
∫ s

0

(σ
s

)cn
fn(σ)

dσ
σ

.

Since Recn > L(n+1) , the function ψ(t) is increasing, and | fn(σ)| � Mψ(σ)
Rn(n+1)2 for

all n � 0 by assumption, we see that wn(s) satisfies the estimate

|wn(s)| � Mψ(s)
Rn(n+1)2

∫ s

0

(σ
s

)L(n+1) dσ
σ

=
Mψ(s)

RnL(n+1)3 .

Likewise, since Redn > L(n+1) , the above estimate for wn(s) implies

|un(t)| �
∫ t

0

( s
t

)L(n+1)|wn(s)| ds
s

� Mψ(t)
RnL(n+1)3

1
L(n+1)

� Mψ(t)
L2

1
Rn(n+1)2 ,

which proves (i) for j = 0. Since ∂xu(t,x) = ∑n�0(n + 1)un+1(t)xn and ∂ 2
x u(t,x) =

∑n�0(n+1)(n+2)un+2(t)xn , the sharper estimate for |un(t)| implies that (i) also holds
for j = 1 and 2. Similarly, by applying (x∂x) j (for j = 1,2) on the expansion of u(t,x) ,
we see that the estimates in (ii) also follow.

We now prove (iii) and (iv). Setting B = max{|a11|, |a10|} > 0, then from (iv) and
(v) in Lemma 3, we have the following estimates:

|dn| � 1
2

(
|αn|+

√
|α2

n −4βn|
)

=
1
2

(
|αn|+ 4

√[
Re (α2

n −4βn)
]2 +

[
Im(α2

n −4βn)
]2

)
<

|αn|
2

(
1+ 4

√
(1−a2−4c)2 +(2b−4c)2

)
<

B(n+1)
2

(
1+ 4

√
(1−a2−4c)2 +(2b−4c)2

)
= C′(n+1),

where C′ = B
2

[
1+ 4

√
(1−a2−4c)2 +(2b−4c)2

]
.

Let us note that t∂t u(t,x) = ∑n�0 tu′n(t)xn . Applying the Leibniz integral rule, we
see that

tu′n(t) = t

(
wn(t)

t
−dn

∫ t

0

(s
t

)dn−1 s
t2

wn (s)
s

ds

)

= wn (t)−dn

∫ t

0

( s
t

)dn wn (s)
s

ds.
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Letting K = 1+C′ , then the estimates for dn and wn(s) computed earlier imply that

|tu′n(t)| �
Mψ(t)

LRn(n+1)3 +C′(n+1)
Mψ(t)

LRn(n+1)3

1
L(n+1)

�
( M

L2 +
C′M
L2

)
ψ (t)

1
Rn(n+1)3

� KM
L2 ψ(t)

1
Rn(n+1)3 ,

since L � 1. This shows that (iii) holds for j = 0. The rest of the estimates can be
shown by applying ∂x and x∂x on t∂t u(t,x) , as was done in (i) and (ii).

The majorant relation in (i) for j = 0 implies that u(t,x) converges absolutely
and uniformly on [0,T0]×DR0 . Consequently, u(t,x) is continuous on [0,T0]×DR0 .
Finally, u(t,x) being a power series in x is holomorphic in x for each fixed t . �

3. Proof of the main result

We recall that the function ci j(t,x) is holomorphic in x for each fixed t and van-
ishes at (0,0) for all i and j . These allow as to expand ci j(t,x) as

ci j(t,x) = ci j(t,0)+ xc̃i j(t,x) for 0 � i+ j � 2, i < 2,

where ci j(t,0) and c̃i j(t,x) are continuous in the variable t , and c̃i j(t,x) is holomor-
phic in x for each fixed t . We can now write (1.7) as

L2u = a(t,x)+b01(t)∂xu+b02(t)∂ 2
x u+b11(t)t∂t∂xu+[c01(t,0)+ xc̃01(t,x)]u

+[c00(t,0)+ xc̃00(t,x)]x∂xu+[c02(t,0)+ xc̃02(t,x)](x∂x)2u

+[c10(t,0)+ xc̃10(t,x)]t∂t u+[c11(t,0)+ xc̃11(t,x)]t∂t x∂xu

+G(t,x,u,∂xu,∂ 2
x u,t∂tu,t∂t∂xu).

We shall use successive approximations to establish the existence of the solution of
(1.4). We define the sequence of approximate solutions {un(t,x}∞

n=0 by the recursion:

L2u0 = a(t,x)

L2un = a(t,x)+
{
b01(t)∂x +b02(t)∂ 2

x +b11(t)t∂t∂x +[c01(t,0)+ xc̃01(t,x)]

+ [c00(t,0)+ xc̃00(t,x)]x∂x +[c02(t,0)+ xc̃02(t,x)](x∂x)2

+[c10(t,0)+ xc̃10(t,x)]t∂t +[c11(t,0)+ xc̃11(t,x)]t∂tx∂x
}
un−1

+G(t,x,un−1,∂xun−1,∂ 2
x un−1,t∂t un−1,t∂t∂xun−1), for n � 1. (3.1)

We shall now show that {un(t,x)}∞
n=0 converges to some function u(t,x) which is a

solution of (1.4). To achieve this goal, we define a new sequence {vn(t,x)}∞
n=0 as

follows:

v0(t,x) = u0(t,x) and vn(t,x) = un(t,x)−un−1(t,x), for n � 1. (3.2)
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It is easily seen that un(t,x) = ∑n
k=0 vk(t,x). Thus, the convergence of {un(t,x)}∞

n=0 is
equivalent to the convergence of the series ∑∞

k=0 vk(t,x) . We will follow the technique
in [24] and in [17] to estimate each vn(t,x) . Let us define σ : [0,T0] → [0,∞) by

σ(t) = max
τ∈[0,t]

{|ci j(τ,0)| : 0 � i+ j � 2, i < 2}.

Evidently, σ(t) is an increasing, continuous function, and limt→0 σ(t) = 0 since each
ci j(t,x) vanishes at (0,0) . Let 0 < ρ < R � 1

2R0 . Since we are only constructing a
local solution, we may assume that R < 1. In view of (2.5), we can choose C > 0 large
enough such that for all t ∈ [0,T0] ,

∣∣∣∣∣∣c̃i j(t)
∣∣∣∣∣∣

ρ �Cφ
(ρ

R

)
and |||a(t)|||ρ � 1

2
Cψ(t)φ

(ρ
R

)
. (3.3)

In dealing with the nonlinear term in (3.1), we shall use the following lemma, which
follows from properties of φ (see also [24, 17]).

LEMMA 6. Let G(t,x,Z) = ∑α�2 Gα(t,x)Zα , with Z = (z1,z2,z3,z4,z5) be con-
vergent for t ∈ [0,T ] , x ∈ DR0 and Z ∈ D5

R1
. Suppose that 0 < ρ < R < R0 , T > 0 is

small enough so that Qψ(T ) < R1
2 , and for all i we have

|||zi(t)|||ρ � Qψ(t)φ
(ρ

R

)
,

then there exists C0 > 0 independent of T and Q such that for all t ∈ [0,T ] we have:

(i) |||G(t,X)|||ρ �C0[Qψ(t)]2φ
(ρ

R

)

(ii) |||∂xiG(t,X)|||ρ �C0Qψ(t)φ
(ρ

R

)
.

To avoid repeatedly writing long sums, we introduce the index sets Δ2 = {(i, j) ∈
N2 : 0 � i+ j � 2, i < 2} and Δ0 = Δ2−{(0,0),(1,0)} . We now present the following
proposition which gives estimates concerning vn and the approximate solutions as well.

PROPOSITION 1. Let D = max{K,C} , where the constants K and C are the ones
in Lemma 5 and in (3.3), respectively. Then there exist T,R > 0 such that for all n � 0,
the following majorant relations hold on [0,T ]×DR :

(i)
∣∣∣∣∣∣∣∣∣(t∂t)i∂ j

x vn(t)
∣∣∣∣∣∣∣∣∣

ρ
� Di+1

2n+1L2Rj ψ(t)φ
(ρ

R

)
for all (i, j) ∈ Δ0 ;

(ii)
∣∣∣∣∣∣(t∂t)i(x∂x) jvn(t)

∣∣∣∣∣∣
ρ � Di+1

2n+1L2 ψ(t)φ
(ρ

R

)
for all (i, j) ∈ Δ2 ;

(iii)
∣∣∣∣∣∣∣∣∣(t∂t)i∂ j

x un(t)
∣∣∣∣∣∣∣∣∣

ρ
�

(
1− 1

2n+1

)
Di+1

L2Rj ψ(t)φ
(ρ

R

)
for all (i, j) ∈ Δ0 ;
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(iv)
∣∣∣∣∣∣(t∂t)i(x∂x) jun(t)

∣∣∣∣∣∣
ρ �

(
1− 1

2n+1

)
Di+1

L2 ψ(t)φ
(ρ

R

)
for all (i, j) ∈ Δ2 .

Proof. We shall prove these estimates by induction. First note that |||a(t)|||ρ �
1
2Cψ(t)φ(ρ

R ) , and so by Lemma 5, the equation L2u0 = a(t,x) has a unique solution
u0(t,x) that is continuous on [0,T0]×DR0 , holomorphic in x for each fixed t . More-
over, there exists K > 0 such that u0 satisfies the following estimates:

1.
∣∣∣∣∣∣∣∣∣(t∂t)i∂ j

x u0(t)
∣∣∣∣∣∣∣∣∣

ρ
� KiC

2L2Rj ψ(t)φ
(ρ

R

)
for all (i, j) ∈ Δ0 ;

2.
∣∣∣∣∣∣(t∂t)i(x∂x) ju0(t)

∣∣∣∣∣∣
ρ � KiC

2L2 ψ(t)φ
(ρ

R

)
for all (i, j) ∈ Δ2.

Since D = max{K,C} and u0 = v0 , the estimates in (1) and (2) above imply that
(i)–(iv) hold for n = 0. We now show that the proposition above holds for n = 1. By
definition and linearity of L2 , we see that v1 satisfies

L2v1 = ∑
(i, j)∈Δ0

bi j(t)(t∂t)i∂ j
x v0 + ∑

(i, j)∈Δ2

[ci j(t,0)+ xc̃i j(t,x)](t∂t)i(x∂x) jv0 (3.4)

+G
(
t,x,{(t∂t)i∂ j

x v0 (t)}(i, j)∈Δ2

)
To obtain the estimates for v1 , we first need to find the estimate for the nonlinear term
above. Since L,R < 1 and D > 1, the estimates for v0 we obtained earlier imply that
for (i, j) ∈ Δ2 ,

∣∣∣∣∣∣(t∂t)i∂ j
x v0(t)

∣∣∣∣∣∣
ρ � D2

2L2R2 ψ(t)φ
(ρ

R

)
.

Because of Lemma 6(i) , there exists C0 > 0 such that the nonlinear term in (3.4)
satisfies the majorant relation

∣∣∣∣∣∣G(
t,x,{(t∂t)i∂ j

x v0}(i, j)∈Δ2

)∣∣∣∣∣∣
ρ � C0D4

4L4R4 ψ2(t)φ
(ρ

R

)
.

Now we need to find T,R > 0 so that on [0,T ]×DR , the estimate in the proposition
above holds for each n . To do this, we first choose R small enough such that

20D2R
L2 <

1
8
.

We then fix this R and choose T small enough such that these are satisfied:

( 3D
L2R2 +

5C0D3

L4R4

)
ψ(T ) <

1
8

5D
L2 σ(T ) <

1
4

D2

2L2R2 ψ(T ) <
R1

2
.
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If we denote the right-hand side of (3.4) by I1 . Then by (1.3), (2.2), Lemma 1 (i), and
the fact that the functions ψ(t),σ(t) are increasing, we obtain the following estimates:

|||I1|||ρ � ∑
(i, j)∈Δ0

Di+1

2L2Rj ψ2(t)φ
(ρ

R

)
+ ∑

(i, j)∈Δ2

{
σ(t)+ ρDφ

(ρ
R

)}Di+1

2L2 ψ(t)φ
(ρ

R

)

+
C0D4

4L4R4 ψ2(t)φ
(ρ

R

)

� D
2

ψ(t)φ
(ρ

R

){
∑

(i, j)∈Δ0

Diψ(T )
L2Rj + ∑

(i, j)∈Δ2

Diσ(T )
L2

+ ∑
(i, j)∈Δ2

4Di+1R
L2 +

C0D3

2L4R4 ψ(T )

}

� D
2

ψ(t)φ
(ρ

R

){ 3D
L2R2 ψ(T )+

5D
L2 σ(T )+

20D2R
L2 +

C0D3

2L4R4 ψ(T )
}

=
D
2

ψ(t)φ
(ρ

R

){20D2R
L2 +

( 3D
L2R2 +

C0D3

2L4R4

)
ψ(T )+

5D
L2 σ(T )

}
� D

22 ψ(t)φ
(ρ

R

)
.

By Lemma 5, we see that the estimates in (i)–(ii) hold for v1 . Applying the triangle
inequality on u1 = v0 + v1 , we see that the estimates in (iii)–(iv) clearly hold for u1 .

Let us note that by definition, for n � 2, vn satisfies

L2vn = ∑
(i, j)∈Δ0

bi j(t)(t∂t)i∂ j
x vn−1 + ∑

(i, j)∈Δ2

[ci j(t,0)+ xc̃i j(t,x)](t∂t)i(x∂x) jvn−1

+G
(
t,x,{(t∂t)i∂ j

x vn−1(t)}(i, j)∈Δ2

)−G
(
t,x,{(t∂t)i∂ j

x vn−2(t)}(i, j)∈Δ2

)
. (3.5)

Suppose now that for n � 3, the functions u2, ...,un−1 and v2, ...,vn−1 satisfy the induc-
tion hypothesis. To estimate the right-hand side of (3.5), we first provide an estimate
for the difference of the nonlinear terms above. Note that we can write

H = G
(
t,x,{(t∂t)i∂ j

x vn−1(t)}(i, j)∈Δ2

)−G
(
t,x,{(t∂t)i∂ j

x vn−2(t)}(i, j)∈Δ2

)
= ∑

(i, j)∈Δ2

(t∂t)i∂ j
x vn−1

∫ 1

0
∂wi jG

(
t,x,{wi j}(i, j)∈Δ2

)
dθ ,

where, wi j = (t∂t)i∂ j
x (θvn−1 +un−2) for all (i, j)∈Δ2 and θ ∈ (0,1) . By the induction

hypothesis, we obtain the following estimates:∣∣∣∣∣∣wi j
∣∣∣∣∣∣

ρ =
∣∣∣∣∣∣(t∂t)i∂ j

x (θvn−1 +un−2)
∣∣∣∣∣∣

ρ

� Di+1

2nL2Rj ψ(t)φ
(ρ

R

)
+

(
1− 1

2n−1

)Di+1

L2Rj ψ(t)φ
(ρ

R

)
� Di+1

L2Rj ψ(t)φ
(ρ

R

)
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for all (i, j) ∈ Δ2. Since D > 1 and the function ψ(t) is increasing, then by (2.2),
Lemma 1(iii), Lemma 6(ii), and the induction hypothesis, the norm of H satisfies

|||H|||ρ � ∑
(i, j)∈Δ2

ψ(t)
Di+1

2nL2Rj ψ(t)φ
(ρ

R

)C0Di+1

L2Rj ψ(t)φ
(ρ

R

)

� ∑
(i, j)∈Δ2

C0D2i+2

2nL4R2 j ψ2(t)φ
(ρ

R

)

� 5C0D5

2nL4R4 ψ2(t)φ
(ρ

R

)
� D

2n ψ(t)φ
(ρ

R

) 5C0D4

L4R4 ψ(T ).

We can now obtain the estimate for the right-hand side of (3.5) which we shall denote
by In . Since D > 1 and the functions ψ(t),σ(t) are increasing, then by (1.3), (2.2),
Lemma 1(i), and the induction hypothesis we get the following estimates:

|||In|||ρ � ∑
(i, j)∈Δ0

Di+1

2nL2Rj ψ2(t)φ
(ρ

R

)
+ ∑

(i, j)∈Δ2

{
σ(t)+ ρDφ

(ρ
R

)}Di+1

2nL2 ψ(t)φ
(ρ

R

)

+
D
2n ψ(t)φ

(ρ
R

) 5C0D4

L4R4 ψ(T )

� D
2n ψ(t)φ

(ρ
R

){
∑

(i, j)∈Δ0

Diψ(T )
L2Rj + ∑

(i, j)∈Δ2

Diσ(T )
L2

+ ∑
(i, j)∈Δ2

4Di+1R
L2 +

5C0D3

L4R4 ψ(T )

}

� D
2n ψ(t)φ

(ρ
R

){ 3D
L2R2 ψ(T )+

5D
L2 σ(T )+

20D2R
L2 +

5C0D3

L4R4 ψ(T )
}

=
D
2n ψ(t)φ

(ρ
R

){20D2R
L2 +

( 3D
L2R2 +

5C0D3

L4R4

)
ψ(T )+

5D
L2 σ(T )

}
� D

2n+1 ψ(t)φ
(ρ

R

)
for all t ∈ [0,T ] . Thus, by Lemma 5, we see that the estimates (i)–(ii) hold for vn .
Using the fact that un = ∑n

k=0 vk , the estimates (iii)–(iv) hold for un . This completes
the induction and the proof of Proposition 1. �

The estimates in Proposition 1 imply the convergence of the approximate solutions
to the desired solution u(t,x) on [0,T ]×DR . Moreover, this function u(t,x) satisfies

|(t∂t)i∂ j
x u(t,x)| � A

Rj ψ(t) for all (i, j) ∈ Δ0,

|(t∂t)i(x∂x) ju(t,x)| � Aψ(t) for all (i, j) ∈ Δ2

for some constant A > 0. This completes the existence part of the proof.
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4. Uniqueness of the solution

We now show the uniqueness of the solution. Let v be another solution of (1.4)
having the same properties as the solution u we have constructed earlier. Putting w =
u− v and using the estimates satisfied by u and v , we obtain

∣∣∣∣∣∣(t∂t)i∂ j
x u(t)

∣∣∣∣∣∣
ρ � A∗

Rj ψ(t) for all (i, j) ∈ Δ0,∣∣∣∣∣∣(t∂t)i(x∂x) ju(t)
∣∣∣∣∣∣

ρ � A∗ψ(t) for all (i, j) ∈ Δ2

on [0,T ] for some A∗ > 0. Now, by definition and the linearity of L2 , we see that w
satisfies

L2w = ∑
(i, j)∈Δ0

bi j(t)(t∂t)i∂ j
x w+ ∑

(i, j)∈Δ2

[ci j(t,0)+ xc̃i j(t,x)](t∂t)i(x∂x) jw (4.1)

+G
(
t,x,{(t∂t)i∂ j

x u(t)}(i, j)∈Δ2

)−G
(
t,x,{(t∂t)i∂ j

x v(t)}(i, j)∈Δ2

)
,

which is of the same form as (3.5). Thus, if we also apply the steps and techniques used
earlier in obtaining the estimates for vn , we can find B > 0, T ∗ ∈ (0,T ) and R∗ ∈ (0,R)
such that

∣∣∣∣∣∣(t∂t)i(x∂x) jw(t)
∣∣∣∣∣∣

ρ � Bi+1

2n+1L2Rj ψ(t)φ
(ρ

R

)
for (i, j) ∈ Δ2 and for all n ∈ N

on [0,T ∗]×DR∗ . Taking (i, j) = (0,0) , we see that w satisfies the majorant relation

|||w(t)|||ρ � B
2n+1L2 ψ(t)φ

(ρ
R

)
for all n ∈ N.

Letting n → ∞ , we conclude that w(t,x) ≡ 0, or equivalently, u ≡ v on [0,T ∗]×DR∗ .
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