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ON THE STABILITY OF SYSTEMS OF TWO LINEAR

FIRST–ORDER ORDINARY DIFFERENTIAL EQUATIONS

GEORG A. GRIGORIAN

(Communicated by A. Domoshnitsky)

Abstract. The Riccati equation method is used to establish some new stability criteria for sys-
tems of two linear first-order ordinary differential equations. It is shown that two of these criteria
in the two dimensional case imply the Routh-Hurwitz’s criterion.

1. Introduction

Let a(t), b(t), c(t) and d(t) be complex-valued continuous functions on [t0,+) .
Consider the linear system

⎧⎨
⎩
 ′ = a(t) +b(t) ,

 ′ = c(t) +d(t) , t � t0.
(1.1)

DEFINITION 1.1. A normal linear system of ordinary differential equations (in
particular the system (1.1)) is called asymptotically stable if all its solutions tend to
zero for t tending to + .

Study of the stability behavior of the system (1.1), in general, of linear systems
of ordinary differential equations is an important problem of Qualitative theory of dif-
ferential equations, and many works are devoted to it (see [1] and cited works therein,
[2–4]). The fundamental thorem of R. Bellman (see [5], pp. 168, 169) reduces the
study of boundedness conditions of solutions of a wide class of nonlinear systems of
ordinary differential equations to the study of stability conditions of linear systems of
ordinary differential equations. There exist various methods of detection of stable and
(or) unstable linear systems of ordinary differential equations. Among them notice the
Lyapunov, Bogdanov, and Wazevski’s methods, the method involving estimates of solu-
tions in the Lozinski’s logarithmic norms, and the freezing method (see [1], pp. 40–98).
These and other methods (see e.g.; [6–10]) permit to carry out wide classes of stable
and (or) unstable linear systems.

In this paper on the basis of results of works [11] and [12] by the use of Riccati
equation method new stability criteria for the system (1.1) are obtained. It is shown that
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in the two dimensional case of linear systems the Routh-Hurwitz’s stability criterion is
a consequence of the obtained results.

REMARK 1.1. It should be noticed that the results of the paper [11] are based on
I. M. Sobol’s result from [10] (the work [10] is devoted specially to deep study of the
stability problem for second order linear ordinary differential equations). Notice also
that Theorems 3.1, 3.2 and 3.4 of this paper (see below) are based on the results of [11].
Hence, I. M. Sobol’s result underlies in mentioned theorems.

2. Auxiliary propositions

Let p(t) and q(t) be complex-valued continuous functions on [t0,+) . Consider
the second order linear ordinary differential equation

 ′′ + p(t) ′ +q(t) = 0, t � t0. (2.1)

The substitution  ′ =  in this equation reduces it into the linear system⎧⎨
⎩
 ′ =  ,

 ′ = −q(t) − p(t) , t � t0.
(2.2)

DEFINITION 2.1. Eq. (2.1) is called Lyapunov (asymptotically) stable if the cor-
responding system (2.2) is Lyapunov (asymptotically) stable.

REMARK 2.1. It follows from Definition 2.1 that Eq. (2.1) is Lyapunov (asymp-
totically) stable if and only if its all solutions (t) with  ′(t) are bounded (vanish at
+).

Set: G(t) ≡ q(t)− p′(t)
2 − p2(t)

4 , L0(t) ≡ 1
4
√

G(t)

t∫
t0

|(
√

G())′|
4
√

G()
d, t � t0. Hereafter

we will assume that p(t) and G(t) are continuously differentiable on [t0,+) , and
G(t) �= 0, t � t0.

THEOREM 2.1. Let the following conditions be satisfied.

G(t)> 0, t � t0, lim
t→+

G′(t)
G3/2(t)

=, ||< 4, L0(t) and Vart
t0

G′(t)
G3/2(t)

are bounded.

Then all solutions of Eq. (2.1) are bounded (vanish at +) if and only if

inf
t�t0

{ t∫
t0

Re p()d+
1
2

lnG(t)
}

>−
(

lim
t→+

{ t∫
t0

Re p()d+
1
2

lnG(t)
}

= +
)

.

See the proof in [11].

THEOREM 2.2. Let the conditions of Theorem 2.1 be satisfied. Then Eq. (2.1) is
Lyapunov (asymptotically) stable if and only if⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

inf
t�t0

{
t∫

t0
Re p()d−2ln(1+ |p(t)|)+ 1

2 lnG(t)
}

> −

inf
t�t0

{
t∫

t0
Re p()d− 1

2 lnG(t)
}

> −
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⎛
⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
t→+

{
t∫

t0
Re p()d−2ln(1+ |p(t)|)+ 1

2 lnG(t)
}

= +

lim
t→+

{
t∫

t0
Re p()d− 1

2 lnG(t)
}

= +

⎞
⎟⎟⎟⎟⎠

See the proof in [11].
For any positive and continuously differentiable on [t0,+) function x(t) denote

Rx(t1; t) ≡ 1+
√

x(t0)(t1− t0)
1+

√
x(t0)(t − t0)

exp

{
−

t∫
t1

√
x(s)ds

}
sup

∈[t0,t1]

|(√x( ))′|√
x( )

+ sup
∈[t1,t]

|(√x( ))′|√
x( )

,

t0 � t1 � t. Set x(t) ≡ inf
t1∈[t0,t]

Rx(t1;t), t � t0.

THEOREM 2.3. Let the conditions
A) G(t) < 0, t � t0, p(t) and G(t) are continuously differentiable,

and one of the following groups of conditions

B) G(t) is non increasing; for some  > 0 the function G′(t)
|G(t)|3/2− is bounded;

C) −G(t) �  > 0 ; the function G′(t)
G(t) is bounded and

+∫
t0
|G|()

|G′()|
|G()|3/2 d < +

be satisfied. Then all solutions of Eq. (2.1) are bounded (tend to zero for t tending to
+) if and only if

inf
t�t0

[ t∫
t0

(
Re p()−2

√
|G()|

)
+

1
2

ln |G(t)|
]

> −

(
lim

t→+

[ t∫
t0

(
Re p()−2

√
|G()|

)
+

1
2

ln |G(t)|
]

= +
)

.

See the proof in [12].

THEOREM 2.4. Let the conditions A) and the group of conditions C) or the group
of conditions

D) G(t) is non increasing, G′(t)
G(t) is bounded

be satisfied. Then Eq. (2.1) is Lyapunov (asymptotically) stable if and only if

inf
t�t0

[ t∫
t0

(
Re p()−2

√
|G()|

)
d +

1
2

ln |G(t)|−2ln(1+ |p(t)−2
√
|G(t)| |)

]
> −

(
lim

t→+

[ t∫
t0

(
Re p()−2

√
|G()|

)
d+

1
2

ln |G(t)|−2ln(1+|p(t)−2
√
|G(t)| |)

]
= +

)
.

See the proof in [12].
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COROLLARY 2.1. Assume −G(t) �  > 0, t � t0;
|G′(t)
|G(t) | � M

(1+t−t0)
, t � t0,

M > 0,  > 0,
+∫
t0

d√
|G()|(1+−t0)2

< + and let the conditions A) be satisfied. Then

the following statements are valid.
A1) All solutions of Eq. (2.1) are bounded (tend to zero for t tending to +) if

and only if

inf
t�t0

[ t∫
t0

(
Re p()−2

√
|G()|

)
+

1
2

ln |G(t)|
]

> −

(
lim

t→+

[ t∫
t0

(
Re p()−2

√
|G()|

)
+

1
2

ln |G(t)|
]

= +
)

;

B1) Eq. (2.1) is Lyapunov (asymptotically) stable if and only if

inf
t�t0

[ t∫
t0

(
Re p()−2

√
|G()|

)
d+

1
2

ln |G(t)|−2ln(1+|p(t)−2
√
|G(t)| |)

]
> −

(
lim

t→+

[ t∫
t0

(
Re p()−2

√
|G()|

)
d+

1
2

ln |G(t)|−2ln(1+|p(t)−2
√
|G(t)| |)

]
= +

)
.

See the proof in [12].
Consider the Riccati equations

y′ +b(t)y2 +A(t)y− c(t) = 0, t � t0, (2.3)

z′ + c(t)z2−A(t)z−a(t) = 0, t � t0, (2.4)

where A(t)≡ a(t)−d(t), t � t0 . It is not difficult to verify that the solutions y(t) (z(t))
of Eq. (2.3) (Eq. (2.4)), existing on an interval [t1,t2) (t0 � t1 < t2 � +) are con-
nected with solutions ((t),(t)) of the system (1.1) by relations (see e.g.; [2])

(t) = (t1)exp

{ t∫
t1

[
b()y()+a()

]
d

}
, (t1) �= 0, (t) = y(t)(t), t ∈ [t1, t2)

(2.5)(
(t) = (t1)exp

{ t∫
t1

[
c()z()+d()

]
d

}
, (t1) �= 0, (t) = z(t)(t),

)
(2.6)

t ∈ [t1, t2) . Hereafter we will assume that a(t), b(t), c(t) and d(t) are continuously
differentiable on [t0,+) and a(t) �= 0, c(t) �= 0, t � t0 . Set:

D1(t) ≡ a(t)b′(t)−a′(t)b(t)
b(t)

+a(t)d(t)−b(t)c(t),

D2(t) ≡ d(t)c′(t)−d′(t)c(t)
c(t)

+a(t)d(t)−b(t)c(t), t � t0.
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The substitution
u = b(t)y+a(t), t � t0 (2.7)

in Eq. (2.3) transforms that into the equation

u′ +u2−
[
S(t)+

b′(t)
b(t)

]
u+D1(t) = 0, t � t0, (2.8)

where S(t)≡ a(t)+d(t), t � t0 . Analogously the substitution

v = c(t)z+d(t), t � t0 (2.9)

in Eq. (2.4) transforms that into the equation

v′ + v2−
[
S(t)+

c′(t)
c(t)

]
v+D2(t) = 0, t � t0, (2.10)

Consider the second order linear ordinary differential equations

 ′′ −
[
S(t)+

b′(t)
b(t)

]
 ′ +D1(t) = 0, t � t0, (2.11)

 ′′ −
[
S(t)+

c′(t)
c(t)

]
 ′ +D2(t) = 0, t � t0. (2.12)

It is not difficult to verify that the solutions u(t) (v(t)) of Eq. (2.8) (Eq. (2.10)),
existing on [t1, t2) , are connected with solutions 0(t), (0(t)) of Eq. (2.11) (Rq.
(2.12)) by relations

0(t) = 0(t1)exp

{ t∫
t1

u()d
}

, 0(t1) �= 0, t ∈ [t1,t2), (2.13)

0(t) = 0(t1)exp

{ t∫
t1

v()d
}

, 0(t1) �= 0, t ∈ [t1,t2), (2.14)

On the other hand by (2.5)–(2.7) and (2.9) the same solutions u(t) and v(t) are con-
nected with solutions ((t),(t)) of the system (1.1) by relations

(t) = (t1)exp

{ t∫
t1

u()d
}

, (t) = (t1)exp

{ t∫
t1

v()d
}

, t ∈ [t1,t2),

(2.15)
(t1) �= 0, (t1) �= 0, u(t1)−a(t1)

b(t1)
v(t1)−d(t1)

c(t1)
= 1. By (2.5)–(2.7) and (2.9) the last equal-

ity is equivalent to the following one[
 ′(t1)
(t1)

−a(t1)
][

 ′(t1)
(t1)

−d(t1)
]

= b(t1)c(t1). (2.16)

By the uniqueness theorem from (2.13)–(2.16) we immediately get
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LEMMA 2.1. Let 0(t) and 0(t) be solutions of Eq. (2.11) and (2.12) respec-

tively such that 0(t) �= 0, 0(t) �= 0, t ∈ [t1,t2),
[
 ′0(t1)
0(t1) − a(t1)

][
 ′

0(t1)
0(t1) − d(t1)

]
=

b(t1)c(t1). Then (0(t),0(t)) is a solution of the system (1.1) on [t1, t2) .

Hereafter we will assume that S(t)+ b′(t)
b(t) and S(t)+ c′(t)

c(t) are continuously differ-

entiable on [t0,+) . Set:

G1(t) ≡ D1(t)+
1
2

[
S(t)+

b′(t)
b(t)

]′
− 1

4

[
S(t)+

b′(t)
b(t)

]2

, t � t0,

G2(t) ≡ D2(t)+
1
2

[
S(t)+

c′(t)
c(t)

]′
− 1

4

[
S(t)+

c′(t)
c(t)

]2

, t � t0.

LEMMA 2.2. Assume Im G1(t)≡ 0 (Im G2(t)≡ 0), t � t0 , and Im

[
− 1

2

(
S(t0)

+ b′(t0)
b(t0)

)]
�= 0

(
Im

[
 − 1

2

(
S(t0) + c′(t0)

c(t0)

)]
�= 0

)
for some complex  . Then Eq.

(2.8) (Eq. (2.10)) has a solution u(t) (v(t)) on [t0,+) with u(t0) =  (v(t0) =  ) .

Proof. In Eq. (2.8) substitute

u = w+
1
2

(
S(t)+

b′(t)
b(t)

)
, t � t0. (2.17)

We obtain
w′ +w2 +G1(t) = 0, t � t0.. (2.18)

Show that this equation has a solution w(t) on [t0,+) with w(t0) =  + 1
2

[
S(t0)+

b′(t0)
b(t0)

]
. Consider the second order linear ordinary differential equation

 ′′ +G1(t) = 0, t � t0.

Let 1(t) and 2(t) be the solutions of this equation on [t0,+) with k(t0) = 1, k =

1,2,  ′
1(t0)= 1−2,  ′

2(t0)= 1+2, where 1 ≡Re

[
− 1

2

(
S(t0)+

b′(t0)
b(t0)

)]
, 2 ≡

Im

[
 − 1

2

(
S(t0)+ b′(t0)

b(t0)

)]
�= 0. Since G1(t) is a real-valued function k(t), k = 1,2

are also real-valued ones. Moreover, obviously, k(t), k = 1,2 are linearly indepen-

dent. Consequently (t) ≡ 1(t) + i2(t) �= 0, t � t0 and w(t) ≡  ′(t)
(t) is a solu-

tion of Eq. (2.18) on [t0,+) with w(t0) =  − 1
2

(
S(t0)+ b′(t0)

b(t0)

)
. Then by (2.17)

u(t) ≡ v(t)+ 1
2

(
S(t)+ b′(t)

b(t)

)
is a solution of Eq. (2.8) on [t0,+) with u(t0) =  . .

Existence of v(t) can be proved by analogy. The lemma is proved. �
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THEOREM 2.5. The following statements are valid.
I. The system (1.1) is Lyapunov (asymptotically) stable if and only if all solutions

of Eq. (2.11) and Eq. (2.12) are bounded (vanish at +).
II. Assume a(t), b(t) and 1

b(t) are bounded. Then the system (1.1) is Lyapunov

(asymptotically) stable if and only if Eq. (2.11) is Lyapunov (asymptotically) stable.

Proof. Obviously there exist 1 �= 2 such that Im

[
k − 1

2

(
S(t0)+ b′(t0)

b(t0)

)]
�=

0, Im

[
b(t0)c(t0)
k−a(t0)

+d(t0)− 1
2

(
S(t0)+

c′(t0)
c(t0)

)]
�= 0, k = 1,2. Let uk(t) (vk(t)), k = 1,2

be solutions of Eq. (3.8) (Eq. (2.10)) with uk(t0) = k (vk(t0) = b(t0)c(t0)
k−a(t0)

+d(t0)), k =
1,2. Then by Lemma 2.2 uk(t) (vk(t))), k = 1,2 exist on [t0,+) ; moreover

[uk(t0)−a(t0)][vk(t0)−d(t0)] = b(t0)c(t0), k = 1,2. (2.19)

Set: k(t) ≡ exp

{
t∫

t0
uk()d

}
, k(t) ≡ exp

{
t∫

t0
vk()d

}
, t � t0, k = 1,2. By (2.13)

(by (2.14)) k(t) (k(t)), k = 1,2 are solutions of Eq. (2.11) (of Eq. (2.12)) on
[t0,+) and by (2.19) we have[

 ′
k(t0)
k(t0)

−a(t0)
][

 ′
k(t0)

k(t0)
−d(t0)

]
= b(t0)c(t0), k = 1,2.

In virtue of Lemma 2.1 from here it follows that (k(t),k(t)), k = 1,2 are solu-
tions of the system (1.1) on [t0,+) . Let us prove statement I. Assume all solu-
tions of Eq. (2.11) and (2.12) are bounded (vanish at +). Then the linearly in-
dependent solutions (k(t),k(t)), k = 1,2 are bounded (vanish at +). Conse-
quently the system (1.1) is Lyapunov (asymptotically) stable. Assume now the sys-
tem (1.1) is Lyapunov (asymptotically) stable. Then the linearly independent solutions
k(t) (k(t)), k = 1,2 of Eq. (2.11) (of Eq. (2.12)) are bounded (vanish at +).
Therefore all solutions of Eq. (2.11) and Eq. (2.12) are bounded (vanish at +). The
statement I is proved. Prove statement II. Assume Eq. (2.11) is Lyapunov (asymptoti-
cally) stable. Then the functions k(t),  ′

k(t), k = 1,2 are bounded (vanish at +).

Since by (1.1) k(t) = − a(t)
b(t)k(t)+ 1

b(t)
′
k(t), k = 1,2 and a(t)

b(t) ,
1

b(t) are bounded the

functions k(t), k = 1,2 are bounded (vanish at +) as well. So the linearly indepen-
dent solutions (k(t),k(t)), k = 1,2 of the system (1.1) are bounded (vanish at +).
Therefore the system (1.1) is Lyapunov (asymptotically) stable. Let now the system
(1.1) be Lyapunov (asymptotically) stable. Then the functions k(t), k(t), k = 1,2
are bounded (vanish at +) . Since by (1.1)  ′

k(t) = a(t)k(t)+b(t)k(t), t � t0 and
the functions a(t) and b(t) are bounded the functions  ′

k(t), k = 1,2 are also bounded
(vanish at +). Thus all solutions (t) of Eq. (2.11) with  ′(t) are bounded (vanish
at +). Therefore Eq. (2.11) is Lyapunov (asymptotically) stable. The theorem is
proved. �

REMARK 2.2. From the proof of statement II is seen that the restrictions on c(t)
for that statement are not obligatory.
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3. Main results

In this section we study the stability behavior of the system (1.1) in the following
cases

I. G1(t) > 0, G2(t) > 0, t � t0;
II. G1(t) > 0, G2(t) < 0, t � t0;
III. G1(t) < 0, G2(t) < 0, t � t0;
IV. G1(t) > 0, t � t0;
V. G2(t) < 0, t � t0.
The case VI. G1(t) < 0, G2(t) > 0, t � t0 is reducible to the case III by simple

transformation  →− .

REMARK 3.1. It is easy to study the trivial case G1(t) = G2(t) ≡ 0, t � t0 sepa-
rately.

Set:

Lk(t) ≡ 1
4
√

Gk(t)

t∫
t0

|(√Gk())′|
4
√

Gk()
d, k = 1,2, t � t0.

THEOREM 3.1. Let the following conditions be satisfied

1) Gk(t) > 0, t � t0, lim
t→+

G′
k(t)

G3/2
k (t)

= k, |k| < 4, k = 1,2;

2) Lk(t) and Vart
t0

G′
k(t)

G3/2
k (t)

are bounded k = 1,2.

Then the system (1.1) is Lyapunov (asymptotically) stable if and only if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
t�t0

[
t∫

t0
Re S()d− ln |b(t)|− 1

2 lnG1(t)
]

< +,

sup
t�t0

[
t∫

t0
Re S()d− ln |c(t)|− 1

2 lnG2(t)
]

< +.

(3.1)

⎛
⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
t→+

[
t∫

t0
Re S()d− ln |b(t)|− 1

2 lnG1(t)
]

= −,

lim
t→+

[
t∫

t0
Re S()d− ln |c(t)|− 1

2 lnG2(t)
]

= −.

⎞
⎟⎟⎟⎟⎠ (3.2)

Proof. By virtue of Theorem 2.1 from conditions 1) ,2) it follows that the solutions
of Eq. (2.11) and (2.12) are bounded (vanish at +) if and only if the inequalities (3.1)
(the equalities (3.2)) are satisfied. Then by statement I of Theorem 2.5 the system (1.1)
is Lyapunov (asymptotically) stable if and only if the inequalities (3.1) (the equalities
(3.2)) are fulfilled. The theorem is proved. �
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THEOREM 3.2. Let the following conditions be satisfied

3) G1(t) > 0, t � t0, lim
t→+

G′
1(t)

G
3/2
1 (t)

= 1, |1| < 4;

4) L1(t) and Vart
t0

G′
1(t)

G
3/2
1 (t)

are bounded;

5) G2(t) < 0, t � t0, and is non increasing,
G′

2(t)
|G2(t)|3/2− is bounded for some

 > 0 , or

51) |G2(t)| �  > 0,
G′

2(t)
G2(t)

is bounded and
+∫
t0
|G2|()

|G′
2()|

|G2()|3/2 d < + .

Then the system (1.1) is Lyapunov (asymptotically) stable if and only if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
t�t0

[
t∫

t0
Re S()d− ln |b(t)|− 1

2 lnG1(t)
]

< +,

sup
t�t0

[
t∫

t0

(
Re S()+

√|G2()|
)

d− ln |c(t)|− 1
2 ln |G2(t)|

]
< +.

(3.3)

⎛
⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
t→+

[
t∫

t0
Re S()d− ln |b(t)|− 1

2 lnG1(t)
]

= −,

lim
t→+

[
t∫

t0

(
Re S()+

√|G2()|
)

d− ln |c(t)|− 1
2 ln |G2(t)|

]
= −.

⎞
⎟⎟⎟⎟⎠ (3.4)

Proof. By Theorem 2.1 from conditions 3), 4) it follows that the solutions of Eq.
(2.11) are bounded (tend to zero for t tending to +) if and only if the first of the
inequalities (3.3) (the first of the equalities (3.4)) is satisfied. By Theorem 2.3 from
conditions 5) or 51 ) it follows that the solutions of Eq. (2.12) are bounded (tend to zero
for t tending to +) if and only if the second of the inequalities(3.3) ( of the equalities
(3.4)) is satisfied. Then by Theorem 2.5 the system (1.1) is Lyapunov (asymptotically)
stable if and only if the inequalities (3.3) (the equalities (3.4)) are satisfied. The theorem
is proved. �

By analogy can be proved

THEOREM 3.3. Let the following conditions be satisfied
6) Gk(t) < 0, t � t0, Gk(t) is non increasing k = 1,2

7) G′
k(t)

|Gk(t)|3/2− is bounded for some  > 0, k = 1,2 or

71 ) |Gk(t)| �  > 0, t � t0,
G′

k(t)
Gk(t)

is bounded and

+∫
t0

|Gk|()
|G′

k()|
|Gk()|3/2

d < +, k = 1,2.
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Then the system (1.1) is Lyapunov (asymptotically) stable if and only if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
t�t0

[
t∫

t0

(
Re S()d +

√|G1()|
)
− ln |b(t)|− 1

2 ln |G1(t)|
]

< +,

sup
t�t0

[
t∫

t0

(
Re S()+

√|G2()|
)

d− ln |c(t)|− 1
2 ln |G2(t)|

]
< +.

⎛
⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
t→+

[
t∫

t0

(
Re S()+

√|G1()|
)

d− ln |b(t)|− 1
2 ln |G1(t)|

]
= −,

lim
t→+

[
t∫

t0

(
Re S()+

√|G2()|
)

d− ln |c(t)|− 1
2 ln |G2(t)|

]
= −.

⎞
⎟⎟⎟⎟⎠

THEOREM 3.4. Let the following conditions be satisfied
8) a(t), b(t) and 1

b(t) are bounded;

9) G1(t) > 0, t � t0, lim
t→+

G′
1(t)

G3/2
1 (t)

= 1, |1| < 4 ;

10) L1(t) and Vari
t0

G′
1(t)

G
3/2
1 (t)

are bounded.

Then the system (1.1) is Lyapunov (asymptotically) stable if and only if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
t�t0

[
t∫

t0
Re S()d + ln |b(t)|− 1

2 lnG1(t)+2ln
(
1+

∣∣∣S(t)+ b′(t)
b(t)

∣∣∣)
]

< +,

sup
t�t0

[
t∫

t0
Re S()d + ln |b(t)|+ 1

2 lnG1(t)
]

< +.

(3.5)

⎛
⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
t→+

[
t∫

t0
Re S()d + ln |b(t)|− 1

2 lnG1(t)+2ln
(
1+

∣∣∣S(t)+ b′(t)
b(t)

∣∣∣)
]

= −,

lim
t→+

[
t∫

t0
Re S()d + ln |b(t)|+ 1

2 lnG1(t)
]

= −.

⎞
⎟⎟⎟⎟⎠

(3.6)

Proof. By virtue of Theorem 2.2 it follows from the conditions 9), 10) that Eq.
(2.11) is Lyapunov (asymptotically) stable if and only if the inequalities (3.5) (the
equalities (3.6)) hold. Then by Theorem 2.5 (statement II) from 8) it follows that the
system (1.1) is Lyapunov (asymptotically) stable if and only if the inequalities (3.5)
(the equalities (3.6)) are satisfied. The theorem is proved. �

By analogy can be proved



Differ. Equ. Appl. 15, No. 3 (2023), 285–296. 295

THEOREM 3.5. Let the condition 8) of Theorem 3.4 and the following conditions
be satisfied

11) G1(t) < 0, t � t0, S(t)+ b′(t)
b(t) and G1(t) are continuously differentiable on

[t0,+);
12) G1(t) is non increasing and for some  > 0 the function

G′
1(t)

|G1(t)|3/2− is bounded
or

121 ) −G1(t) �  > 0 , the function
G′

1(t)
G1(t)

is bounded and
+∫
t0
|G1|()

|G′
1()|

|G1()|3/2 d <

+.
Then the system (1.1) is Lyapunov (asymptotically) stable if and only if

sup
t�t0

[ t∫
t0

(
Re S()+2

√
|G1()

)
d + ln |b(t)|

+2ln
[
1+

∣∣∣S(t)+
b′(t)
b(t)

+2
√
|G1(t)|

∣∣∣]− 1
2

ln |G1(t)|
]

< +

(
lim

t→+

[ t∫
t0

(
Re S()+2

√
|G1()

)
d+ ln |b(t)|

+2ln
[
1+

∣∣∣S(t)+
b′(t)
b(t)

+2
√
|G1(t)|

∣∣∣]− 1
2

ln |G1(t)|
]

= −.

)

REMARK 3.2. On the basis of Corollary 2.1 and Theorem 2.6 one can conclude
that the conditions 7) and 71) of Theorem 3.3 can be replaced by the following simple
ones.

−Gk(t) �  > 0, t � t0,
|G′

k(t)|
|Gk(t)| � M

(1+ t− t0)
k, t � t0, k > 0,

+∫
t0

d√|Gk()|(1+ − t0)2k
< +, k = 1,2.

Similar conclusions are valid with respect to the conditions of Theorem 3.2, Theorem
3.4 and Theorem 3.5.

REMARK 3.3. Let a0, b0, c0 and d0 be real constants. Consider the linear sys-
tem ⎧⎨

⎩
 ′ = a0 +b0 ,

 ′ = c0 +d0 , t � t0.

According to the Routh-Hurwitz’s criterion (see [1], pp. 105, 106) this system is asymp-
totically stable if and only if

a0 +d0 < 0 and a0d0−b0c0 > 0.
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Then it is not difficult to verify that (except the trivial cases G1(t) = G2(t) ≡ 0 and
b(t) = c(t) ≡ 0) in the two dimensional case the Routh-Hurwitz’s criterion is a conse-
quence of the group of Theorem 3.4 and Theorem 3.5 (in these theorems the restrictions
on c(t) are not obligatory [see Remark 2.2]).

It should be noted that the obtained results can be used to study the stability of
plane oscillation of a feathered rocket about its center of gravity (see [13], pp. 32, 33).

Acknowledgements. The author is grateful to Professors V. V. Malygina and Alexan-
der Domoshnitsky for their valuable remarks.
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