ON THE STABILITY OF SYSTEMS OF TWO LINEAR FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS

Georg A. Grigorian

(Communicated by A. Domoshnitsky)

Abstract

The Riccati equation method is used to establish some new stability criteria for systems of two linear first-order ordinary differential equations. It is shown that two of these criteria in the two dimensional case imply the Routh-Hurwitz's criterion.

1. Introduction

Let $a(t), b(t), c(t)$ and $d(t)$ be complex-valued continuous functions on $\left[t_{0},+\infty\right)$. Consider the linear system

$$
\left\{\begin{array}{l}
\phi^{\prime}=a(t) \phi+b(t) \psi \tag{1.1}\\
\psi^{\prime}=c(t) \phi+d(t) \psi, \quad t \geqslant t_{0}
\end{array}\right.
$$

DEfinition 1.1. A normal linear system of ordinary differential equations (in particular the system (1.1)) is called asymptotically stable if all its solutions tend to zero for t tending to $+\infty$.

Study of the stability behavior of the system (1.1), in general, of linear systems of ordinary differential equations is an important problem of Qualitative theory of differential equations, and many works are devoted to it (see [1] and cited works therein, [2-4]). The fundamental thorem of R. Bellman (see [5], pp. 168, 169) reduces the study of boundedness conditions of solutions of a wide class of nonlinear systems of ordinary differential equations to the study of stability conditions of linear systems of ordinary differential equations. There exist various methods of detection of stable and (or) unstable linear systems of ordinary differential equations. Among them notice the Lyapunov, Bogdanov, and Wazevski's methods, the method involving estimates of solutions in the Lozinski's logarithmic norms, and the freezing method (see [1], pp. 40-98). These and other methods (see e.g.; [6-10]) permit to carry out wide classes of stable and (or) unstable linear systems.

In this paper on the basis of results of works [11] and [12] by the use of Riccati equation method new stability criteria for the system (1.1) are obtained. It is shown that

[^0]in the two dimensional case of linear systems the Routh-Hurwitz's stability criterion is a consequence of the obtained results.

REMARK 1.1. It should be noticed that the results of the paper [11] are based on I. M. Sobol's result from [10] (the work [10] is devoted specially to deep study of the stability problem for second order linear ordinary differential equations). Notice also that Theorems 3.1, 3.2 and 3.4 of this paper (see below) are based on the results of [11]. Hence, I. M. Sobol's result underlies in mentioned theorems.

2. Auxiliary propositions

Let $p(t)$ and $q(t)$ be complex-valued continuous functions on $\left[t_{0},+\infty\right)$. Consider the second order linear ordinary differential equation

$$
\begin{equation*}
\phi^{\prime \prime}+p(t) \phi^{\prime}+q(t) \phi=0, \quad t \geqslant t_{0} \tag{2.1}
\end{equation*}
$$

The substitution $\phi^{\prime}=\psi$ in this equation reduces it into the linear system

$$
\left\{\begin{array}{l}
\phi^{\prime}=\psi \tag{2.2}\\
\psi^{\prime}=-q(t) \phi-p(t) \psi, t \geqslant t_{0}
\end{array}\right.
$$

DEFINITION 2.1. Eq. (2.1) is called Lyapunov (asymptotically) stable if the corresponding system (2.2) is Lyapunov (asymptotically) stable.

REMARK 2.1. It follows from Definition 2.1 that Eq. (2.1) is Lyapunov (asymptotically) stable if and only if its all solutions $\phi(t)$ with $\phi^{\prime}(t)$ are bounded (vanish at $+\infty)$.

Set: $G(t) \equiv q(t)-\frac{p^{\prime}(t)}{2}-\frac{p^{2}(t)}{4}, \quad \mathscr{L}_{0}(t) \equiv \frac{1}{\sqrt[4]{G(t)}} \int_{t_{0}}^{t} \frac{\left|(\sqrt{G(\tau)})^{\prime}\right|}{\sqrt[4]{G(\tau)}} d \tau, t \geqslant t_{0}$. Hereafter we will assume that $p(t)$ and $G(t)$ are continuously differentiable on $\left[t_{0},+\infty\right)$, and $G(t) \neq 0, t \geqslant t_{0}$.

THEOREM 2.1. Let the following conditions be satisfied.
$G(t)>0, t \geqslant t_{0}, \lim _{t \rightarrow+\infty} \frac{G^{\prime}(t)}{G^{3 / 2}(t)}=\alpha,|\alpha|<4, \mathscr{L}_{0}(t)$ and $\operatorname{Var}_{t_{0}}^{t} \frac{G^{\prime}(t)}{G^{3 / 2}(t)}$ are bounded. Then all solutions of Eq. (2.1) are bounded (vanish at $+\infty$) if and only if
$\inf _{t \geqslant t_{0}}\left\{\int_{t_{0}}^{t} \mathfrak{R e} p(\tau) d \tau+\frac{1}{2} \ln G(t)\right\}>-\infty \quad\left(\lim _{t \rightarrow+\infty}\left\{\int_{t_{0}}^{t} \mathfrak{R e} p(\tau) d \tau+\frac{1}{2} \ln G(t)\right\}=+\infty\right)$.
See the proof in [11].
THEOREM 2.2. Let the conditions of Theorem 2.1 be satisfied. Then Eq. (2.1) is Lyapunov (asymptotically) stable if and only if

$$
\left\{\begin{array}{l}
\inf _{t \geqslant t_{0}}\left\{\int_{t_{0}}^{t} \mathfrak{R e} p(\tau) d \tau-2 \ln (1+|p(t)|)+\frac{1}{2} \ln G(t)\right\}>-\infty \\
\inf _{t \geqslant t_{0}}\left\{\int_{t_{0}}^{t} \mathfrak{R e} p(\tau) d \tau-\frac{1}{2} \ln G(t)\right\}>-\infty
\end{array}\right.
$$

$$
\left(\left\{\begin{array}{l}
\lim _{t \rightarrow+\infty}\left\{\int_{t_{0}}^{t} \mathfrak{R e} p(\tau) d \tau-2 \ln (1+|p(t)|)+\frac{1}{2} \ln G(t)\right\}=+\infty \\
\lim _{t \rightarrow+\infty}\left\{\int_{t_{0}}^{t} \mathfrak{R e} p(\tau) d \tau-\frac{1}{2} \ln G(t)\right\}=+\infty
\end{array}\right)\right.
$$

See the proof in [11].
For any positive and continuously differentiable on $\left[t_{0},+\infty\right)$ function $x(t)$ denote

$$
\begin{aligned}
R_{x}\left(t_{1} ; t\right) \equiv & \frac{1+\sqrt{x\left(t_{0}\right)}\left(t_{1}-t_{0}\right)}{1+\sqrt{x\left(t_{0}\right)\left(t-t_{0}\right)}} \exp \left\{-\int_{t_{1}}^{t} \sqrt{x(s)} d s\right\} \sup _{\xi \in\left[t_{0}, t_{1}\right]} \frac{\left|(\sqrt{x(\xi)})^{\prime}\right|}{\sqrt{x(\xi)}} \\
& +\sup _{\xi \in\left[t_{1}, t\right]} \frac{\left|(\sqrt{x(\xi)})^{\prime}\right|}{\sqrt{x(\xi)}}
\end{aligned}
$$

$t_{0} \leqslant t_{1} \leqslant t$. Set $\rho_{x}(t) \equiv \inf _{t_{1} \in\left[t_{0}, t\right]} R_{x}\left(t_{1} ; t\right), t \geqslant t_{0}$.
THEOREM 2.3. Let the conditions
A) $G(t)<0, t \geqslant t_{0}, p(t)$ and $G(t)$ are continuously differentiable, and one of the following groups of conditions
B) $G(t)$ is non increasing; for some $\varepsilon>0$ the function $\frac{G^{\prime}(t)}{|G(t)|^{3 / 2-\varepsilon}}$ is bounded;
C) $-G(t) \geqslant \varepsilon>0$; the function $\frac{G^{\prime}(t)}{G(t)}$ is bounded and $\int_{t_{0}}^{+\infty} \rho_{|G|}(\tau) \frac{\left|G^{\prime}(\tau)\right|}{|G(\tau)|^{3 / 2}} d \tau<+\infty$ be satisfied. Then all solutions of Eq. (2.1) are bounded (tend to zero for tending to $+\infty)$ if and only if

$$
\begin{gathered}
\inf _{t \geqslant t_{0}}\left[\int_{t_{0}}^{t}(\mathfrak{R e} p(\tau)-2 \sqrt{|G(\tau)|})+\frac{1}{2} \ln |G(t)|\right]>-\infty \\
\left(\lim _{t \rightarrow+\infty}\left[\int_{t_{0}}^{t}(\mathfrak{R e} p(\tau)-2 \sqrt{|G(\tau)|})+\frac{1}{2} \ln |G(t)|\right]=+\infty\right) .
\end{gathered}
$$

See the proof in [12].
THEOREM 2.4. Let the conditions A) and the group of conditions C) or the group of conditions
D) $G(t)$ is non increasing, $\frac{G^{\prime}(t)}{G(t)}$ is bounded
be satisfied. Then Eq. (2.1) is Lyapunov (asymptotically) stable if and only if

$$
\begin{aligned}
& \inf _{t \geqslant t_{0}}\left[\int_{t_{0}}^{t}(\mathfrak{R e} p(\tau)-2 \sqrt{|G(\tau)|}) d \tau+\frac{1}{2} \ln |G(t)|-2 \ln (1+|p(t)-2 \sqrt{|G(t)|}|)\right]>-\infty \\
& \left(\lim _{t \rightarrow+\infty}\left[\int_{t_{0}}^{t}(\mathfrak{R e} p(\tau)-2 \sqrt{|G(\tau)|}) d \tau+\frac{1}{2} \ln |G(t)|-2 \ln (1+|p(t)-2 \sqrt{|G(t)|}|)\right]=+\infty\right)
\end{aligned}
$$

See the proof in [12].

COROLLARY 2.1. Assume $-G(t) \geqslant \varepsilon>0, t \geqslant t_{0} ; \quad\left|\frac{\mid G^{\prime}(t)}{\mid G(t)}\right| \leqslant \frac{M}{\left(1+t-t_{0}\right)^{\alpha}}, t \geqslant t_{0}$, $M>0, \quad \alpha>0, \quad \int_{t_{0}}^{+\infty} \frac{d \tau}{\sqrt{|G(\tau)|}\left(1+\tau-t_{0}\right)^{2 \alpha}}<+\infty$ and let the conditions $\left.A\right)$ be satisfied. Then the following statements are valid.
A_{1}) All solutions of Eq. (2.1) are bounded (tend to zero for tending to $+\infty$) if and only if

$$
\begin{gathered}
\inf _{t \geqslant t_{0}}\left[\int_{t_{0}}^{t}(\mathfrak{R e} p(\tau)-2 \sqrt{|G(\tau)|})+\frac{1}{2} \ln |G(t)|\right]>-\infty \\
\left(\lim _{t \rightarrow+\infty}\left[\int_{t_{0}}^{t}(\mathfrak{R e} p(\tau)-2 \sqrt{|G(\tau)|})+\frac{1}{2} \ln |G(t)|\right]=+\infty\right)
\end{gathered}
$$

B_{1}) Eq. (2.1) is Lyapunov (asymptotically) stable if and only if

$$
\begin{gathered}
\inf _{t \geqslant t_{0}}\left[\int_{t_{0}}^{t}(\mathfrak{R e} p(\tau)-2 \sqrt{|G(\tau)|}) d \tau+\frac{1}{2} \ln |G(t)|-2 \ln (1+|p(t)-2 \sqrt{|G(t)|}|)\right]>-\infty \\
\left(\lim _{t \rightarrow+\infty}\left[\int_{t_{0}}^{t}(\mathfrak{R e} p(\tau)-2 \sqrt{|G(\tau)|}) d \tau+\frac{1}{2} \ln |G(t)|-2 \ln (1+|p(t)-2 \sqrt{|G(t)|}|)\right]=+\infty\right)
\end{gathered}
$$

See the proof in [12].
Consider the Riccati equations

$$
\begin{array}{ll}
y^{\prime}+b(t) y^{2}+A(t) y-c(t)=0, & t \geqslant t_{0} \\
z^{\prime}+c(t) z^{2}-A(t) z-a(t)=0, & t \geqslant t_{0} \tag{2.4}
\end{array}
$$

where $A(t) \equiv a(t)-d(t), t \geqslant t_{0}$. It is not difficult to verify that the solutions $y(t)(z(t))$ of Eq. (2.3) (Eq. (2.4)), existing on an interval $\left[t_{1}, t_{2}\right)\left(t_{0} \leqslant t_{1}<t_{2} \leqslant+\infty\right)$ are connected with solutions $(\phi(t), \psi(t))$ of the system (1.1) by relations (see e.g.; [2])

$$
\begin{align*}
& \phi(t)=\phi\left(t_{1}\right) \exp \left\{\int_{t_{1}}^{t}[b(\tau) y(\tau)+a(\tau)] d \tau\right\}, \phi\left(t_{1}\right) \neq 0, \quad \psi(t)=y(t) \phi(t), \quad t \in\left[t_{1}, t_{2}\right) \\
& \left(\psi(t)=\psi\left(t_{1}\right) \exp \left\{\int_{t_{1}}^{t}[c(\tau) z(\tau)+d(\tau)] d \tau\right\}, \quad \psi\left(t_{1}\right) \neq 0, \quad \phi(t)=z(t) \psi(t),\right) \tag{2.5}
\end{align*}
$$

$t \in\left[t_{1}, t_{2}\right)$. Hereafter we will assume that $a(t), b(t), c(t)$ and $d(t)$ are continuously differentiable on $\left[t_{0},+\infty\right)$ and $a(t) \neq 0, c(t) \neq 0, t \geqslant t_{0}$. Set:

$$
\begin{aligned}
& D_{1}(t) \equiv \frac{a(t) b^{\prime}(t)-a^{\prime}(t) b(t)}{b(t)}+a(t) d(t)-b(t) c(t) \\
& D_{2}(t) \equiv \frac{d(t) c^{\prime}(t)-d^{\prime}(t) c(t)}{c(t)}+a(t) d(t)-b(t) c(t), \quad t \geqslant t_{0}
\end{aligned}
$$

The substitution

$$
\begin{equation*}
u=b(t) y+a(t), \quad t \geqslant t_{0} \tag{2.7}
\end{equation*}
$$

in Eq. (2.3) transforms that into the equation

$$
\begin{equation*}
u^{\prime}+u^{2}-\left[S(t)+\frac{b^{\prime}(t)}{b(t)}\right] u+D_{1}(t)=0, \quad t \geqslant t_{0} \tag{2.8}
\end{equation*}
$$

where $S(t) \equiv a(t)+d(t), t \geqslant t_{0}$. Analogously the substitution

$$
\begin{equation*}
v=c(t) z+d(t), \quad t \geqslant t_{0} \tag{2.9}
\end{equation*}
$$

in Eq. (2.4) transforms that into the equation

$$
\begin{equation*}
v^{\prime}+v^{2}-\left[S(t)+\frac{c^{\prime}(t)}{c(t)}\right] v+D_{2}(t)=0, \quad t \geqslant t_{0} \tag{2.10}
\end{equation*}
$$

Consider the second order linear ordinary differential equations

$$
\begin{align*}
& \phi^{\prime \prime}-\left[S(t)+\frac{b^{\prime}(t)}{b(t)}\right] \phi^{\prime}+D_{1}(t) \phi=0, \quad t \geqslant t_{0} \tag{2.11}\\
& \psi^{\prime \prime}-\left[S(t)+\frac{c^{\prime}(t)}{c(t)}\right] \psi^{\prime}+D_{2}(t) \psi=0, \quad t \geqslant t_{0} \tag{2.12}
\end{align*}
$$

It is not difficult to verify that the solutions $u(t)(v(t))$ of Eq. (2.8) (Eq. (2.10)), existing on $\left[t_{1}, t_{2}\right)$, are connected with solutions $\phi_{0}(t),\left(\psi_{0}(t)\right)$ of Eq. (2.11) (Rq. (2.12)) by relations

$$
\begin{align*}
& \phi_{0}(t)=\phi_{0}\left(t_{1}\right) \exp \left\{\int_{t_{1}}^{t} u(\tau) d \tau\right\}, \quad \phi_{0}\left(t_{1}\right) \neq 0, \quad t \in\left[t_{1}, t_{2}\right) \tag{2.13}\\
& \psi_{0}(t)=\psi_{0}\left(t_{1}\right) \exp \left\{\int_{t_{1}}^{t} v(\tau) d \tau\right\}, \quad \psi_{0}\left(t_{1}\right) \neq 0, \quad t \in\left[t_{1}, t_{2}\right), \tag{2.14}
\end{align*}
$$

On the other hand by (2.5)-(2.7) and (2.9) the same solutions $u(t)$ and $v(t)$ are connected with solutions $(\phi(t), \psi(t))$ of the system (1.1) by relations

$$
\begin{equation*}
\phi(t)=\phi\left(t_{1}\right) \exp \left\{\int_{t_{1}}^{t} u(\tau) d \tau\right\}, \quad \psi(t)=\psi\left(t_{1}\right) \exp \left\{\int_{t_{1}}^{t} v(\tau) d \tau\right\}, \quad t \in\left[t_{1}, t_{2}\right) \tag{2.15}
\end{equation*}
$$

$\phi\left(t_{1}\right) \neq 0, \psi\left(t_{1}\right) \neq 0, \frac{u\left(t_{1}\right)-a\left(t_{1}\right)}{b\left(t_{1}\right)} \frac{v\left(t_{1}\right)-d\left(t_{1}\right)}{c\left(t_{1}\right)}=1$. By (2.5)-(2.7) and (2.9) the last equality is equivalent to the following one

$$
\begin{equation*}
\left[\frac{\phi^{\prime}\left(t_{1}\right)}{\phi\left(t_{1}\right)}-a\left(t_{1}\right)\right]\left[\frac{\psi^{\prime}\left(t_{1}\right)}{\psi\left(t_{1}\right)}-d\left(t_{1}\right)\right]=b\left(t_{1}\right) c\left(t_{1}\right) \tag{2.16}
\end{equation*}
$$

By the uniqueness theorem from (2.13)-(2.16) we immediately get

Lemma 2.1. Let $\phi_{0}(t)$ and $\psi_{0}(t)$ be solutions of Eq. (2.11) and (2.12) respectively such that $\phi_{0}(t) \neq 0, \psi_{0}(t) \neq 0, t \in\left[t_{1}, t_{2}\right),\left[\frac{\phi_{0}^{\prime}\left(t_{1}\right)}{\phi_{0}\left(t_{1}\right)}-a\left(t_{1}\right)\right]\left[\frac{\psi_{0}^{\prime}\left(t_{1}\right)}{\psi_{0}\left(t_{1}\right)}-d\left(t_{1}\right)\right]=$ $b\left(t_{1}\right) c\left(t_{1}\right)$. Then $\left(\phi_{0}(t), \psi_{0}(t)\right)$ is a solution of the system (1.1) on $\left[t_{1}, t_{2}\right)$.

Hereafter we will assume that $S(t)+\frac{b^{\prime}(t)}{b(t)}$ and $S(t)+\frac{c^{\prime}(t)}{c(t)}$ are continuously differentiable on $\left[t_{0},+\infty\right)$. Set:

$$
\begin{array}{ll}
G_{1}(t) \equiv D_{1}(t)+\frac{1}{2}\left[S(t)+\frac{b^{\prime}(t)}{b(t)}\right]^{\prime}-\frac{1}{4}\left[S(t)+\frac{b^{\prime}(t)}{b(t)}\right]^{2}, & t \geqslant t_{0} \\
G_{2}(t) \equiv D_{2}(t)+\frac{1}{2}\left[S(t)+\frac{c^{\prime}(t)}{c(t)}\right]^{\prime}-\frac{1}{4}\left[S(t)+\frac{c^{\prime}(t)}{c(t)}\right]^{2}, & t \geqslant t_{0}
\end{array}
$$

LEMMA 2.2. Assume $\mathfrak{I m} G_{1}(t) \equiv 0\left(\mathfrak{I m} G_{2}(t) \equiv 0\right), t \geqslant t_{0}$, and $\mathfrak{I m}\left[\lambda-\frac{1}{2}\left(S\left(t_{0}\right)\right.\right.$ $\left.\left.+\frac{b^{\prime}\left(t_{0}\right)}{b\left(t_{0}\right)}\right)\right] \neq 0\left(\mathfrak{I m}\left[\lambda-\frac{1}{2}\left(S\left(t_{0}\right)+\frac{c^{\prime}\left(t_{0}\right)}{c\left(t_{0}\right)}\right)\right] \neq 0\right)$ for some complex λ. Then Eq. (2.8) (Eq. (2.10)) has a solution $u(t)(v(t))$ on $\left[t_{0},+\infty\right)$ with $u\left(t_{0}\right)=\lambda\left(v\left(t_{0}\right)=\lambda\right)$.

Proof. In Eq. (2.8) substitute

$$
\begin{equation*}
u=w+\frac{1}{2}\left(S(t)+\frac{b^{\prime}(t)}{b(t)}\right), \quad t \geqslant t_{0} \tag{2.17}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
w^{\prime}+w^{2}+G_{1}(t)=0, \quad t \geqslant t_{0} \tag{2.18}
\end{equation*}
$$

Show that this equation has a solution $w(t)$ on $\left[t_{0},+\infty\right)$ with $w\left(t_{0}\right)=\lambda+\frac{1}{2}\left[S\left(t_{0}\right)+\right.$ $\left.\frac{b^{\prime}\left(t_{0}\right)}{b\left(t_{0}\right)}\right]$. Consider the second order linear ordinary differential equation

$$
\chi^{\prime \prime}+G_{1}(t) \chi=0, \quad t \geqslant t_{0}
$$

Let $\chi_{1}(t)$ and $\chi_{2}(t)$ be the solutions of this equation on $\left[t_{0},+\infty\right)$ with $\chi_{k}\left(t_{0}\right)=1, k=$ $1,2, \quad \chi_{1}^{\prime}\left(t_{0}\right)=\lambda_{1}-\lambda_{2}, \quad \chi_{2}^{\prime}\left(t_{0}\right)=\lambda_{1}+\lambda_{2}$, where $\lambda_{1} \equiv \mathfrak{R e}\left[\lambda-\frac{1}{2}\left(S\left(t_{0}\right)+\frac{b^{\prime}\left(t_{0}\right)}{b\left(t_{0}\right)}\right)\right], \lambda_{2} \equiv$ $\mathfrak{I m}\left[\lambda-\frac{1}{2}\left(S\left(t_{0}\right)+\frac{b^{\prime}\left(t_{0}\right)}{b\left(t_{0}\right)}\right)\right] \neq 0$. Since $G_{1}(t)$ is a real-valued function $\chi_{k}(t), \quad k=1,2$ are also real-valued ones. Moreover, obviously, $\chi_{k}(t), k=1,2$ are linearly independent. Consequently $\chi(t) \equiv \chi_{1}(t)+i \chi_{2}(t) \neq 0, t \geqslant t_{0}$ and $w(t) \equiv \frac{\chi^{\prime}(t)}{\chi(t)}$ is a solution of Eq. (2.18) on $\left[t_{0},+\infty\right)$ with $w\left(t_{0}\right)=\lambda-\frac{1}{2}\left(S\left(t_{0}\right)+\frac{b^{\prime}\left(t_{0}\right)}{b\left(t_{0}\right)}\right)$. Then by (2.17) $u(t) \equiv v(t)+\frac{1}{2}\left(S(t)+\frac{b^{\prime}(t)}{b(t)}\right)$ is a solution of Eq. (2.8) on $\left[t_{0},+\infty\right)$ with $u\left(t_{0}\right)=\lambda .$. Existence of $v(t)$ can be proved by analogy. The lemma is proved.

THEOREM 2.5. The following statements are valid.
I. The system (1.1) is Lyapunov (asymptotically) stable if and only if all solutions of Eq. (2.11) and Eq. (2.12) are bounded (vanish at $+\infty$).
II. Assume $a(t), b(t)$ and $\frac{1}{b(t)}$ are bounded. Then the system (1.1) is Lyapunov (asymptotically) stable if and only if Eq. (2.11) is Lyapunov (asymptotically) stable.

Proof. Obviously there exist $\lambda_{1} \neq \lambda_{2}$ such that $\mathfrak{I m}\left[\lambda_{k}-\frac{1}{2}\left(S\left(t_{0}\right)+\frac{b^{\prime}\left(t_{0}\right)}{b\left(t_{0}\right)}\right)\right] \neq$ $0, \quad \mathfrak{I m}\left[\frac{b\left(t_{0}\right) c\left(t_{0}\right)}{\lambda_{k}-a\left(t_{0}\right)}+d\left(t_{0}\right)-\frac{1}{2}\left(S\left(t_{0}\right)+\frac{c^{\prime}\left(t_{0}\right)}{c\left(t_{0}\right)}\right)\right] \neq 0, \quad k=1,2$. Let $u_{k}(t) \quad\left(v_{k}(t)\right), \quad k=1,2$ be solutions of Eq. (3.8) (Eq. (2.10)) with $u_{k}\left(t_{0}\right)=\lambda_{k}\left(v_{k}\left(t_{0}\right)=\frac{b\left(t_{0}\right) c\left(t_{0}\right)}{\lambda_{k}-a\left(t_{0}\right)}+d\left(t_{0}\right)\right), \quad k=$ 1,2. Then by Lemma $\left.2.2 u_{k}(t)\left(v_{k}(t)\right)\right), \quad k=1,2$ exist on $\left[t_{0},+\infty\right)$; moreover

$$
\begin{equation*}
\left[u_{k}\left(t_{0}\right)-a\left(t_{0}\right)\right]\left[v_{k}\left(t_{0}\right)-d\left(t_{0}\right)\right]=b\left(t_{0}\right) c\left(t_{0}\right), \quad k=1,2 \tag{2.19}
\end{equation*}
$$

Set: $\phi_{k}(t) \equiv \exp \left\{\int_{t_{0}}^{t} u_{k}(\tau) d \tau\right\}, \psi_{k}(t) \equiv \exp \left\{\int_{t_{0}}^{t} v_{k}(\tau) d \tau\right\}, t \geqslant t_{0}, \quad k=1,2$. By (2.13) (by (2.14)) $\phi_{k}(t)\left(\psi_{k}(t)\right), \quad k=1,2$ are solutions of Eq. (2.11) (of Eq. (2.12)) on $\left[t_{0},+\infty\right)$ and by (2.19) we have

$$
\left[\frac{\phi_{k}^{\prime}\left(t_{0}\right)}{\phi_{k}\left(t_{0}\right)}-a\left(t_{0}\right)\right]\left[\frac{\psi_{k}^{\prime}\left(t_{0}\right)}{\psi_{k}\left(t_{0}\right)}-d\left(t_{0}\right)\right]=b\left(t_{0}\right) c\left(t_{0}\right), \quad k=1,2
$$

In virtue of Lemma 2.1 from here it follows that $\left(\phi_{k}(t), \psi_{k}(t)\right), k=1,2$ are solutions of the system (1.1) on $\left[t_{0},+\infty\right)$. Let us prove statement I. Assume all solutions of Eq. (2.11) and (2.12) are bounded (vanish at $+\infty$). Then the linearly independent solutions $\left(\phi_{k}(t), \psi_{k}(t)\right), k=1,2$ are bounded (vanish at $+\infty$). Consequently the system (1.1) is Lyapunov (asymptotically) stable. Assume now the system (1.1) is Lyapunov (asymptotically) stable. Then the linearly independent solutions $\phi_{k}(t) \quad\left(\psi_{k}(t)\right), \quad k=1,2$ of Eq. (2.11) (of Eq. (2.12)) are bounded (vanish at $+\infty$). Therefore all solutions of Eq. (2.11) and Eq. (2.12) are bounded (vanish at $+\infty$). The statement I is proved. Prove statement II. Assume Eq. (2.11) is Lyapunov (asymptotically) stable. Then the functions $\phi_{k}(t), \phi_{k}^{\prime}(t), k=1,2$ are bounded (vanish at $+\infty$). Since by (1.1) $\psi_{k}(t)=-\frac{a(t)}{b(t)} \phi_{k}(t)+\frac{1}{b(t)} \phi_{k}^{\prime}(t), k=1,2$ and $\frac{a(t)}{b(t)}, \frac{1}{b(t)}$ are bounded the functions $\psi_{k}(t), k=1,2$ are bounded (vanish at $+\infty$) as well. So the linearly independent solutions $\left(\phi_{k}(t), \psi_{k}(t)\right), k=1,2$ of the system (1.1) are bounded (vanish at $+\infty$). Therefore the system (1.1) is Lyapunov (asymptotically) stable. Let now the system (1.1) be Lyapunov (asymptotically) stable. Then the functions $\phi_{k}(t), \psi_{k}(t), k=1,2$ are bounded (vanish at $+\infty$). Since by (1.1) $\phi_{k}^{\prime}(t)=a(t) \phi_{k}(t)+b(t) \psi_{k}(t), t \geqslant t_{0}$ and the functions $a(t)$ and $b(t)$ are bounded the functions $\phi_{k}^{\prime}(t), k=1,2$ are also bounded (vanish at $+\infty$). Thus all solutions $\phi(t)$ of Eq. (2.11) with $\phi^{\prime}(t)$ are bounded (vanish at $+\infty$). Therefore Eq. (2.11) is Lyapunov (asymptotically) stable. The theorem is proved.

REMARK 2.2. From the proof of statement II is seen that the restrictions on $c(t)$ for that statement are not obligatory.

3. Main results

In this section we study the stability behavior of the system (1.1) in the following cases
I. $G_{1}(t)>0, \quad G_{2}(t)>0, \quad t \geqslant t_{0} ;$
II. $G_{1}(t)>0, \quad G_{2}(t)<0, \quad t \geqslant t_{0}$;
III. $G_{1}(t)<0, \quad G_{2}(t)<0, \quad t \geqslant t_{0}$;
IV. $G_{1}(t)>0, \quad t \geqslant t_{0}$;
V. $G_{2}(t)<0, \quad t \geqslant t_{0}$.

The case VI. $G_{1}(t)<0, G_{2}(t)>0, t \geqslant t_{0}$ is reducible to the case III by simple transformation $\phi \rightarrow-\phi$.

REMARK 3.1. It is easy to study the trivial case $G_{1}(t)=G_{2}(t) \equiv 0, t \geqslant t_{0}$ separately.

Set:

$$
\mathscr{L}_{k}(t) \equiv \frac{1}{\sqrt[4]{G_{k}(t)}} \int_{t_{0}}^{t} \frac{\left|\left(\sqrt{G_{k}(\tau)}\right)^{\prime}\right|}{\sqrt[4]{G_{k}(\tau)}} d \tau, \quad k=1,2, \quad t \geqslant t_{0}
$$

THEOREM 3.1. Let the following conditions be satisfied

1) $G_{k}(t)>0, \quad t \geqslant t_{0}, \quad \lim _{t \rightarrow+\infty} \frac{G_{k}^{\prime}(t)}{G_{k}^{3 / 2}(t)}=\alpha_{k}, \quad\left|\alpha_{k}\right|<4, \quad k=1,2 ;$
2) $\mathscr{L}_{k}(t)$ and $\operatorname{Var}_{t_{0}}^{t} \frac{G_{k}^{\prime}(t)}{G_{k}^{3 / 2}(t)}$ are bounded $k=1,2$.

Then the system (1.1) is Lyapunov (asymptotically) stable if and only if

$$
\begin{gather*}
\left\{\begin{array}{l}
\sup _{t \geqslant t_{0}}\left[\int_{t_{0}}^{t} \mathfrak{R e} S(\tau) d \tau-\ln |b(t)|-\frac{1}{2} \ln G_{1}(t)\right]<+\infty \\
\sup _{t \geqslant t_{0}}\left[\int_{t_{0}}^{t} \Re \mathfrak{R e} S(\tau) d \tau-\ln |c(t)|-\frac{1}{2} \ln G_{2}(t)\right]<+\infty
\end{array}\right. \tag{3.1}\\
\left(\left\{\begin{array}{l}
\lim _{t \rightarrow+\infty}\left[\int_{t_{0}}^{t} \mathfrak{R e} S(\tau) d \tau-\ln |b(t)|-\frac{1}{2} \ln G_{1}(t)\right]=-\infty, \\
\lim _{t \rightarrow+\infty}\left[\int_{t_{0}}^{t} \mathfrak{R e} S(\tau) d \tau-\ln |c(t)|-\frac{1}{2} \ln G_{2}(t)\right]=-\infty .
\end{array}\right)\right. \tag{3.2}
\end{gather*}
$$

Proof. By virtue of Theorem 2.1 from conditions 1) ,2) it follows that the solutions of Eq. (2.11) and (2.12) are bounded (vanish at $+\infty$) if and only if the inequalities (3.1) (the equalities (3.2)) are satisfied. Then by statement I of Theorem 2.5 the system (1.1) is Lyapunov (asymptotically) stable if and only if the inequalities (3.1) (the equalities (3.2)) are fulfilled. The theorem is proved.

THEOREM 3.2. Let the following conditions be satisfied
3) $G_{1}(t)>0, t \geqslant t_{0}, \quad \lim _{t \rightarrow+\infty} \frac{G_{1}^{\prime}(t)}{G_{1}^{3 / 2}(t)}=\alpha_{1},\left|\alpha_{1}\right|<4$;
4) $\mathscr{L}_{1}(t)$ and $\operatorname{Var}_{t_{0}}^{t} \frac{G_{1}^{\prime}(t)}{G_{1}^{3 / 2}(t)}$ are bounded;
5) $G_{2}(t)<0, t \geqslant t_{0}$, and is non increasing, $\frac{G_{2}^{\prime}(t)}{\left|G_{2}(t)\right|^{\mid / 2-\varepsilon}}$ is bounded for some $\varepsilon>0$, or
51) $\left|G_{2}(t)\right| \geqslant \varepsilon>0, \frac{G_{2}^{\prime}(t)}{G_{2}(t)}$ is bounded and $\int_{t_{0}}^{+\infty} \rho_{\left|G_{2}\right|}(\tau) \frac{\left|G_{2}^{\prime}(\tau)\right|}{\left|G_{2}(\tau)\right|^{3 / 2}} d \tau<+\infty$.

Then the system (1.1) is Lyapunov (asymptotically) stable if and only if

$$
\begin{gather*}
\left\{\begin{array}{l}
\sup _{t \geqslant t_{0}}\left[\int_{t_{0}}^{t} \mathfrak{R e} S(\tau) d \tau-\ln |b(t)|-\frac{1}{2} \ln G_{1}(t)\right]<+\infty, \\
\sup _{t \geqslant t_{0}}\left[\int_{t_{0}}^{t}\left(\mathfrak{R e} S(\tau)+\sqrt{\left|G_{2}(\tau)\right|}\right) d \tau-\ln |c(t)|-\frac{1}{2} \ln \left|G_{2}(t)\right|\right]<+\infty .
\end{array}\right. \tag{3.3}\\
\left(\left\{\begin{array}{l}
\lim _{t \rightarrow+\infty}\left[\int_{t_{0}}^{t} \mathfrak{R e} S(\tau) d \tau-\ln |b(t)|-\frac{1}{2} \ln G_{1}(t)\right]=-\infty, \\
\lim _{t \rightarrow+\infty}\left[\int_{t_{0}}^{t}\left(\mathfrak{R e} S(\tau)+\sqrt{\left|G_{2}(\tau)\right|}\right) d \tau-\ln |c(t)|-\frac{1}{2} \ln \left|G_{2}(t)\right|\right]=-\infty .
\end{array}\right)\right. \tag{3.4}
\end{gather*}
$$

Proof. By Theorem 2.1 from conditions 3), 4) it follows that the solutions of Eq. (2.11) are bounded (tend to zero for t tending to $+\infty$) if and only if the first of the inequalities (3.3) (the first of the equalities (3.4)) is satisfied. By Theorem 2.3 from conditions 5) or 5_{1}) it follows that the solutions of Eq. (2.12) are bounded (tend to zero for t tending to $+\infty$) if and only if the second of the inequalities(3.3) (of the equalities (3.4)) is satisfied. Then by Theorem 2.5 the system (1.1) is Lyapunov (asymptotically) stable if and only if the inequalities (3.3) (the equalities (3.4)) are satisfied. The theorem is proved.

By analogy can be proved
THEOREM 3.3. Let the following conditions be satisfied
6) $G_{k}(t)<0, t \geqslant t_{0}, G_{k}(t)$ is non increasing $k=1,2$
7) $\frac{G_{k}^{\prime}(t)}{\left|G_{k}(t)\right|^{3 / 2-\varepsilon}}$ is bounded for some $\varepsilon>0, k=1,2$ or
$\left.7_{1}\right)\left|G_{k}(t)\right| \geqslant \varepsilon>0, t \geqslant t_{0}, \frac{G_{k}^{\prime}(t)}{G_{k}(t)}$ is bounded and

$$
\int_{t_{0}}^{+\infty} \rho_{\left|G_{k}\right|}(\tau) \frac{\left|G_{k}^{\prime}(\tau)\right|}{\left|G_{k}(\tau)\right|^{3 / 2}} d \tau<+\infty, \quad k=1,2
$$

Then the system (1.1) is Lyapunov (asymptotically) stable if and only if

$$
\begin{gathered}
\left\{\begin{array}{l}
\sup _{t \geqslant t_{0}}\left[\int_{t_{0}}^{t}\left(\mathfrak{R e} S(\tau) d \tau+\sqrt{\left|G_{1}(\tau)\right|}\right)-\ln |b(t)|-\frac{1}{2} \ln \left|G_{1}(t)\right|\right]<+\infty, \\
\sup _{t \geqslant t_{0}}\left[\int_{t_{0}}^{t}\left(\mathfrak{R e} S(\tau)+\sqrt{\left|G_{2}(\tau)\right|}\right) d \tau-\ln |c(t)|-\frac{1}{2} \ln \left|G_{2}(t)\right|\right]<+\infty
\end{array}\right. \\
\left\{\begin{array}{l}
\lim _{t \rightarrow+\infty}\left[\int_{t_{0}}^{t}\left(\mathfrak{R e} S(\tau)+\sqrt{\left|G_{1}(\tau)\right|}\right) d \tau-\ln |b(t)|-\frac{1}{2} \ln \left|G_{1}(t)\right|\right]=-\infty, \\
\lim _{t \rightarrow+\infty}\left[\int_{t_{0}}^{t}\left(\mathfrak{R e} S(\tau)+\sqrt{\left|G_{2}(\tau)\right|}\right) d \tau-\ln |c(t)|-\frac{1}{2} \ln \left|G_{2}(t)\right|\right]=-\infty .
\end{array}\right)
\end{gathered}
$$

THEOREM 3.4. Let the following conditions be satisfied
8) $a(t), b(t)$ and $\frac{1}{b(t)}$ are bounded;
9) $G_{1}(t)>0, t \geqslant t_{0}, \lim _{t \rightarrow+\infty} \frac{G_{1}^{\prime}(t)}{G_{1}^{3 / 2}(t)}=\alpha_{1},\left|\alpha_{1}\right|<4$;
10) $\mathscr{L}_{1}(t)$ and $\operatorname{Var}_{t_{0}}^{i} \frac{G_{1}^{\prime}(t)}{G_{1}^{3 / 2}(t)}$ are bounded.

Then the system (1.1) is Lyapunov (asymptotically) stable if and only if

$$
\begin{align*}
& \left\{\begin{array}{l}
\sup _{t \geqslant t_{0}}\left[\int_{t_{0}}^{t} \mathfrak{R e} S(\tau) d \tau+\ln |b(t)|-\frac{1}{2} \ln G_{1}(t)+2 \ln \left(1+\left|S(t)+\frac{b^{\prime}(t)}{b(t)}\right|\right)\right]<+\infty, \\
\sup _{t \geqslant t_{0}}\left[\int_{t_{0}}^{t} \mathfrak{R e} S(\tau) d \tau+\ln |b(t)|+\frac{1}{2} \ln G_{1}(t)\right]<+\infty .
\end{array}\right. \tag{3.5}\\
& \left\{\begin{array}{l}
\lim _{t \rightarrow+\infty}\left[\int_{t_{0}}^{t} \mathfrak{R e} S(\tau) d \tau+\ln |b(t)|-\frac{1}{2} \ln G_{1}(t)+2 \ln \left(1+\left|S(t)+\frac{b^{\prime}(t)}{b(t)}\right|\right)\right]=-\infty, \\
\lim _{t \rightarrow+\infty}\left[\int_{t_{0}}^{t} \mathfrak{R e} S(\tau) d \tau+\ln |b(t)|+\frac{1}{2} \ln G_{1}(t)\right]=-\infty .
\end{array}\right. \tag{3.6}
\end{align*}
$$

Proof. By virtue of Theorem 2.2 it follows from the conditions 9), 10) that Eq. (2.11) is Lyapunov (asymptotically) stable if and only if the inequalities (3.5) (the equalities (3.6)) hold. Then by Theorem 2.5 (statement II) from 8) it follows that the system (1.1) is Lyapunov (asymptotically) stable if and only if the inequalities (3.5) (the equalities (3.6)) are satisfied. The theorem is proved.

By analogy can be proved

THEOREM 3.5. Let the condition 8) of Theorem 3.4 and the following conditions be satisfied
11) $G_{1}(t)<0, t \geqslant t_{0}, S(t)+\frac{b^{\prime}(t)}{b(t)}$ and $G_{1}(t)$ are continuously differentiable on $\left[t_{0},+\infty\right)$;
12) $G_{1}(t)$ is non increasing and for some $\varepsilon>0$ the function $\frac{G_{1}^{\prime}(t)}{\left|G_{1}(t)\right|^{3 / 2-\varepsilon}}$ is bounded or
$\left.12_{1}\right)-G_{1}(t) \geqslant \varepsilon>0$, the function $\frac{G_{1}^{\prime}(t)}{G_{1}(t)}$ is bounded and $\int_{t_{0}}^{+\infty} \rho_{\left|G_{1}\right|}(\tau) \frac{\left|G_{1}^{\prime}(\tau)\right|}{\left|G_{1}(\tau)\right|^{3 / 2}} d \tau<$ $+\infty$.

Then the system (1.1) is Lyapunov (asymptotically) stable if and only if

$$
\begin{aligned}
& \sup _{t \geqslant t_{0}}\left[\int_{t_{0}}^{t}\left(\mathfrak{R e} S(\tau)+2 \sqrt{\mid G_{1}(\tau)}\right) d \tau+\ln |b(t)|\right. \\
& \left.\quad+2 \ln \left[1+\left|S(t)+\frac{b^{\prime}(t)}{b(t)}+2 \sqrt{\left|G_{1}(t)\right|}\right|\right]-\frac{1}{2} \ln \left|G_{1}(t)\right|\right]<+\infty \\
& \left(\begin{array}{l}
\lim _{t \rightarrow+\infty}\left[\int_{t_{0}}^{t}(\right.
\end{array}\left(\mathfrak{R e} S(\tau)+2 \sqrt{\mid G_{1}(\tau)}\right) d \tau+\ln |b(t)|\right. \\
& \left.\left.\quad+2 \ln \left[1+\left|S(t)+\frac{b^{\prime}(t)}{b(t)}+2 \sqrt{\left|G_{1}(t)\right|}\right|\right]-\frac{1}{2} \ln \left|G_{1}(t)\right|\right]=-\infty .\right)
\end{aligned}
$$

REMARK 3.2. On the basis of Corollary 2.1 and Theorem 2.6 one can conclude that the conditions 7) and 7_{1}) of Theorem 3.3 can be replaced by the following simple ones.

$$
\begin{aligned}
&-G_{k}(t) \geqslant \varepsilon>0, t \geqslant t_{0}, \frac{\left|G_{k}^{\prime}(t)\right|}{\left|G_{k}(t)\right|} \leqslant \frac{M}{\left(1+t-t_{0}\right)} \alpha_{k}, t \geqslant t_{0}, \quad \alpha_{k}>0 \\
& \int_{t_{0}}^{+\infty} \frac{d \tau}{\sqrt{\left|G_{k}(\tau)\right|}\left(1+\tau-t_{0}\right)^{2 \alpha_{k}}}<+\infty, \quad k=1,2 .
\end{aligned}
$$

Similar conclusions are valid with respect to the conditions of Theorem 3.2, Theorem 3.4 and Theorem 3.5.

REMARK 3.3. Let a_{0}, b_{0}, c_{0} and d_{0} be real constants. Consider the linear system

$$
\left\{\begin{array}{l}
\phi^{\prime}=a_{0} \phi+b_{0} \psi \\
\psi^{\prime}=c_{0} \phi+d_{0} \psi, \quad t \geqslant t_{0}
\end{array}\right.
$$

According to the Routh-Hurwitz's criterion (see [1], pp. 105, 106) this system is asymptotically stable if and only if

$$
a_{0}+d_{0}<0 \quad \text { and } \quad a_{0} d_{0}-b_{0} c_{0}>0
$$

Then it is not difficult to verify that (except the trivial cases $G_{1}(t)=G_{2}(t) \equiv 0$ and $b(t)=c(t) \equiv 0$) in the two dimensional case the Routh-Hurwitz's criterion is a consequence of the group of Theorem 3.4 and Theorem 3.5 (in these theorems the restrictions on $c(t)$ are not obligatory [see Remark 2.2]).

It should be noted that the obtained results can be used to study the stability of plane oscillation of a feathered rocket about its center of gravity (see [13], pp. 32, 33).

Acknowledgements. The author is grateful to Professors V. V. Malygina and Alexander Domoshnitsky for their valuable remarks.

REFERENCES

[1] L. Y. Adrianova, Introduction to the theory of linear systems of differential equations, Publishers of St. Petersburg University, S. Peterburg, 1992.
[2] G. A. Grigorian, On the Stability of Systems of Two First - Order Linear Ordinary Differential Equations, Differ. Uravn., 2015, vol. 51, no. 3, pp. 283-292.
[3] G. A. Grigorian, Necessary Conditions and a Test for the Stability of a System of Two Linear Ordinary Differential Equations of the First Order, Differ. Uravn., 2016, vol. 52, no. 3, pp. 292-300.
[4] G. A. Grigoryan, Stability Criterion for Systems of Two First-Order Linear Ordinary Differential Equations, Mat. Zametki, 2018, vol. 103 no. 6, pp. 831-840.
[5] L. CEZARY, Asymptotic behavior and stability of solutions of ordinary differential equations, Mir, Moscow, 1964.
[6] V. A. Yakubovich, V. M. Starzhinsky, Linear differential equations with periodic coefficients and their applications, Nauka, Moscow, 1972.
[7] Ph. Hartman, Ordinary differential Equations, sec. ed., SIAM, 2002.
[8] R. Bellman, Stability theory of differential equations, Foreign Literature Publishers, Moscow, 1954.
[9] M. V. Fedoriuk, Asymptotic methods for linear ordinary differential equations, Nauka, Moscow, 1983.
[10] I. M. Sobol, Study of the asymptotic behaviour of the solutions of the linear second order differential equations with the aid of polar coordinates, Matematicheskij sbornik, 1951, vol. 28 (70), no. 3, pp. 707-714.
[11] G. A. Grigorian, Boundedness and stability criteria for linear ordinary differential equations of the second order, Izvestia VUZov, Matematika, 2013, no. 12, pp. 11-18.
[12] G. A. Grigorian, Stability criteria for second order linear ordinary differential equations, Sarajevo J. Math., 2020, vol. 16 (29), no. 1, pp. 123-135.
[13] N. N. Moiseev, Asymptotic methods of nonlinear mechanics, Nauka, Moscow, 1969.

[^0]: Mathematics subject classification (2020): 34D20.
 Keywords and phrases: Riccati equation, linear systems of ordinary differential equations, Lyapunov stability, asymptotic stability.

