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C –SYMMETRIC SECOND ORDER DIFFERENTIAL

OPERATORS WITH LARGE LEADING COEFFICIENT

HORST BEHNCKE AND DON HINTON ∗

(Communicated by M. Fečkan)

Abstract. We continue the spectral analysis of Sturm-Liouville operators with ccmplex coef-
ficients. By means of asymptotic integration the Titchmarsh-Weyl m -function is determined
without the nesting circle analysis. With it the resolvent is constructed. The primary case is
that of a dominant leading coefficient, but Euler type cases are also considered. This leads to
resolvents that are compact and even Hilbert-Schmidt.

1. Introduction

This paper is a continuation of our earlier work on second order linear differen-
tial operators with complex coefficients. Here we consider the singular second order
operator

L[y] =
1
w

[−(py′)′ +qy
]
, x ∈ I, (1.1)

where I = [a,∞) or I = (0,a] with one singular endpoint or I = (0,∞) or I = (−∞,∞)
with two singular endpoints. The coefficient w is continuous and positive and p =
p1 + ip2 �= 0, q = q1 + iq2 are complex valued. It is assumed that p is continuously
differentiable and that q is locally Lebesgue integrable. Further conditions on the func-
tions q and p will be made to obtain asymptotic solutions of L[y] = zy. The analysis is
similar, though different, to that of section 2.7 of the book by Eastham [11]. Eastham
is primarily concerned with asymptotic solutions, and he only applies his results to the
calculation of deficiency indices. We carry the spectral theory further calculating not
only deficiency indices, but also resolvents and determine if they are compact or even
Hilbert-Schmidt.

Following this approach one diagonalizes the systems version of (1.1). For asymp-
totic integration write (1.1) in systems form

Y ′ =
[

0 1/p
q− zw 0

]
Y, Y =

[
y

py′

]
. (1.2)
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In section 2 we utilize asymptotic theorems from [18] where p is always the dominant
term. To handle the case of Euler type operators the system (1.2) we diagonalize it in
section 6 with a transformation of the form

T =
[

1 1
(pq)1/2 −(pq)−1/2

]
and TZ = Y,

to obtain the system

Z′ =
([

(q/p)1/2 0
0 −(q/p)1/2

]
− r

[
1 −1
−1 1

])
Z, r =

(pq)′

4(pq)
. (1.3)

In [5, 7] the coefficient q was the dominant term in solving L[y] = zy asymp-
totically. Here we take a complementary case where p is the dominant term, and we
concentrate mainly on the case (q/p)1/2 = o(((pq)′/(pq)) . To illustrate this comple-
mentary, let I = [1,∞), p(x) = p0xα , w(x) = xβ , q(x) = q0xγ . Then the results of [5]
apply if γ > β � α −2, the results of [7] apply if γ > β and γ > α −2. The results in
section 2 apply if α > β + 2, α > γ + 2. It should be noted that the second matrix in
(1.3) is of rank one. Hence we expect a solution y of (1.1) with y(x) ∼ 1 in this case.

The second case, where both summands in (1.3) are comparable, the Euler case,
will be discussed in section 6. For the example above, the Euler like case at infinity is
α = β +2 and γ � β , or α = γ +2 and γ � β . A representative theorem of this case,
although with z dependent hypotheses, is Theorem 2.6.1 of Eastham [11, p. 75]. The
asymptotic solutions of an Euler like case at a finite singularity can often be found by
applying Frobenius theory as in the Bessel equation.

It turns out in the theory developed here that the singular endpoints can be either of
the limit point or limit circle type which is in contrast to the limit point type only of [5,
7]. Further the resolvent in the application of Theorems 2.1 and 2.2 is always of Hilbert-
Schmidt type. In section 6 Euler type equations are studied where the resolvent may
not be of Hilbert-Schmidt type. There are a number of applications given of Theorems
2.1 and 2.2 especially when the singular point is finite. Several examples are given in
section 2.

The study of spectral theory of differential operators with complex coefficients
has a long but sporadic history. The text by Glazman [16] contains a number of results.
A more recent text that deals with complex coefficients is that of Edmunds and Evans
[12]. Earlier Sims [31] extended the nesting circle analysis for the Titchmarsh-Weyl
m-function to L[y] = −y”+ q(x)y with q complex valued, but with a sign restriction
on Im q which implies the numerical range of the minimal operator lies in a half-
plane. The method of Sims was further developed by Brown, McCormack, Evans,
and Plum [8], and later extended to J -symmetric Hamiltonian systems by Brown,
Evans, and Plum [9] and Muzzolini [25]. A characterization of the boundary conditions
for J -symmetric extensions of the minimal operator have been given by Knowles
[21] and Race [30]. The point spectra are studied by Knowles and Race in [22], and
the location of the essential spectrum has been investigated by Race [27, 29]. Race
has also studied the Titchmarsh-Weyl m-function for second order equations [28]. A
survey article on the general theory of complex symmetric ooperators has been given
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by Garcia, Prodan, and Putinar [15]. C -symmetric Hamiltonian systems with almost
constant coefficients have be studied by Behncke and Hinton in [6]. The results there
for the essential spectrum somewhat parallel those of selfadjoint systems and equations
[3, 4].

We mention some notation for the operator (1.1). It will act in the weighted Hilbert
space L 2

w(I) . The norm and inner product will be denoted by ‖ · ‖ , 〈·, ·〉 , respectively.
We now give some definitions and quote some basic results. With only the con-

ditions w is continuous and 1/p, q are locally Lebesgue integrable, the differential
expression L determines a maximal operator T and an unclosed minimal operator T ′

0
defined by the action of L on the domain,

D(T ) = {y ∈ L 2
w [a,∞) : y, py′ ∈ ACloc and L[y] ∈ L 2

w(I)}
and

D(T ′
0) = {y ∈ D(T ) : y has compact support in the interior of I}

where ACloc means locally absolutely continuous. The operator T is closed and T ′
0 has

a closure T0 and both are densely defined. For a discussion of these properties we refer
to the paper of Knowles [21].

The formal adjoint of L is given by

L+[y] =
1
w

[
(−py′)′ + qy

]
, (1.4)

and we define the maximal operator T+ and minimal operator T+
0 for L+ analogous

to those for L . We have the adjoint relations Goldberg [17, p. 130] or Kauffman, Read,
and Zettl [20, p. 14].

T ∗
0 = T+, T = T+∗

0 , T0 = T+∗, T ∗ = T+
0 .

For a closed, densely defined operator S in a Hilbert space, the regularity field,
Π(S), is defined by

Π(S) = {z ∈ C : ‖(S− z)(x)‖ � kz‖x‖, x ∈ D(S), for some kz > 0.}
By definition C -symmetric, respectively, C -selfadjoint means for S ,

S ⊆ C S∗C , respectively , S = C S∗C .

The type of C -symmetry we use is conjugation, i.e., J (y) = y. Note T0 is C -
symmetric as T0 ⊆ J T ∗

0 J = J T+J . In general a conjugation map C on a Hilbert
space is one that is conjugate linear, involutive, and isometric. Thus our C -symmetry
is J -symmetry. If S has a compact resolvent, then S has no eigenvalues of infinite
algebraic multiplicity.

The resolvent set ρ(S) of S is the set of all z in Π(S) such that the range of S−z is
H. The spectrum σ(S) of S is the complement of ρ(S). The set σ(S) is the union three
sets: the eigenvalues of S, σp(S) , the residual spectrum σr(S) which is the set of values
of z /∈ σp(S) for which the range of S− z is closed but �= H (a C -selfadjoint operator
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has no residual spectrum), and finally, the essential spectrum of S , σess(S) which is
the set of z such that the range of S− z is not closed. Glazman [16, p. 9] proves
that this is equivalent (when there are no eigenvalues of infinite geometric multiplicity)
to there being a singular sequence for z , i.e., a bounded noncompact sequence { fn}
such that (S− z)( fn) → 0 as n → ∞. In general then, σ(S) = σp(S)∪σr(S)∪σess(S)
and σ(S) = σp(S)∪σess(S) if S is a C -selfadjoint operator. Let N (S), respectively,
R(S) , denote the nullspace and the range of S . Then we have the well known relations,
Kato [19, p. 267],

N (T+− z) = (R(T0− z))⊥, N (T − z) = (R(T+
0 − z))⊥.

The conjugation map y → y shows that dim N (T+ − z) = dim N (T − z).
Recall that the numerical range N(S) of a linear operator S acting in a Hilbert

space with inner product 〈·, ·〉 is defined by

N(S) = {〈S f , f 〉 : f ∈ D(S),‖ f‖ = 1}.

In the general case studied here the numerical range of T0 may be C.
For z /∈ N(T0), we have from Kato [19, p. 268] that T0 − z has a closed range,

nullity T0 − z = 0, and the defect of T0 − z is constant on each connected component

of N(T0)
C
. Thus one has σess(T0) ⊆ N(T0).

If z /∈ σess(T0) and σp(T0) = /0 , then by the closed graph theorem, z ∈ Π(T0) ;
hence

C = Π(T0)∪σess(T0), σess(T0)∩Π(T0) = /0. (1.5)

Further, for the one singular endpoint case, σp(T0) = /0 since y∈D(T0) implies y(a) =
y′(a) = 0. Thus (1.5) holds in this case. Race [27] has proved in general in the limit
circle one singular endpoint case that σess(T0) = /0 and thus Π(T0) = C . This result has
been extended by Niessen [26] to operators of order 2n.

Define
s = dim (D(T )/D(T0)). (1.6)

In the one singular endpoint case s � 2 since one can construct compactly sup-
ported independent functions y1, y2 in D(T )/D(T0) with initial values given by y1(a)=
1, (py1)′(a) = 0, y2(a) = 0, (py2)′(a) = 1. Further it follows in the one singular end-
point case from Kauffman, Read, and Zettl [20, p. 16], that when T0 − z has a closed
range,

s = nul (T − z)+ nul (T+ − z) = 2 nul (T − z). (1.7)

From these we get in the one singular endpoint case and for all z /∈ σess(T0),

def (T0− z) := dim (R(T0 − z))⊥ � 1, and also def (T+
0 − z) � 1. (1.8)

For a C -symmetric operator these defect numbers are independent of z /∈σess(T0) [21],
and we refer to them as def T0 and def T+

0 . Following the notation of the self-adjoint
case where a limiting circle analysis is used, we will call a singular endpoint limit point
if def T0 = 1 and limit circle if def T0 = 2.
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Under the hypotheses of Theorem 2.1 or 2.2 plus an additional mild hypothesis, it
will follow in all four cases of I that T0 has an extension whose resolvent is Hilbert-
Schmidt. Thus σess(T0) = /0 here. Hence T0 − z has a closed range for all z ∈ C,
and we also have that T − z, T+

0 − z , T+ − z all have a closed range Goldberg [17, p.
130] or Kauffman, Read, and Zettl [20, p. 15]. The results here then imply that all
the resolvents for (1.1) are Hilbert-Schmidt. This is in contrast to [5, 6, 7], where the
singular endpoints are always limit point, and the resolvents are not always Hilbert-
Schmidt.

EXAMPLE 1.1. McLeod [24] has given the example of the equation

−y′′ −2iexp(2(1+ i)x)y = zy, 0 � x < ∞,

whose solutions can be expressed in terms of Bessel functions, and no nontrivial so-
lution is in L 2([0,∞)). If z /∈ σess(T0) = σess(T ) for some z ∈ C , then (1.7) yields
that nul (T − z) � 1 which is a contradiction. Thus σess(T0) = C which also implies
N(T0) = C as σess(T0) ⊆ N(T0).

With nonselfadjoint problems the possibility of eigenvalues of infinite algebraic
multiplicity occurs. This may happen even with simple boundary value problems. The
examples in [23, p. 85] and Coddington and Levinson [10, p. 300] for the operator
L[y] = −y′′ on a compact interval show that some extensions of the minimal operator
T0 have every z ∈ C as an eigenvalue while other extensions have no eigenvalues. Of
course the selfadjoint extensions of T0 for L[y] = −y′′ have a countable set of eigen-
values. Since the minimal operator T0 is bounded below by zero in these examples,
they show that even a two dimensional extension of a bounded below symmetric op-
erator may not be bounded below in contrast to the selfadjoint extensions. Clearly an
operator cannot have eigenvalues outside its numerical range. Using this property it
is proved in [7] that a C-symmetric operator generated by (1.1) on a compact interval
with separated boundary conditions has no eigenvalue of infinite algebraic multiplicity
if either the real part or the imaginary part of p does not vanish on the interval. This
was extended to I = [a,∞) in the limit point case with the possible exception of a single
initial point a and a single boundary condition. Thus the occurrence of an eigenvalue
of infinite algebraic multiplicity is an anomaly in the singular case. However, it is an
open problem if it ever occurs, and we must allow for it.

2. Asymptotic theorems

The system (1.3) is not yet in Levinson form so more diagonalizations are needed.
The conditions for this to be successful may be rather complex. However, we recall
a special case of an asymptotic theorem from [18]. We say a nonvanishing complex
valued function Ω on [a,∞) is essentially decreasing (ED) if for some number M > 0,

∣∣Ω(x)/Ω(s)
∣∣ � M for a � s � x � ∞ and lim

x→∞
Ω(x) = 0,
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and we say Ω is essentially increasing (EI) if for some number M > 0,∣∣Ω(x)/Ω(s)
∣∣ � M for a � x � s � ∞.

The conditions on Ω are just the dichotomy conditions of the Levinson asymptotic
theorem [10, p. 92] or Eastham [11, p. 8]. Theorem 2.1 below, which follows from
Theorem 1 of [18], is similar to Theorem 2.7.1 of [11] where the ρ there is the Ω here.
Our theorem allows some oscillatory behavior of q not covered by Theorem 2.7.1. As
applied to the case of power coefficients in Example 2.2 below, the two theorems give
the same results with the choice Ω = ρ = [p(x)w(x)]1/2. By strengthening the hypothe-
ses, Eastham obtains more precise asymptotic results in other theorems in section 2.7
of [11].

To apply Theorem 1 of [18] to L[y] = zy , we choose in the notation of [18]: n = 2,
p0 = q− zw , p1 = 0, r1 = p , r2 = 1, Ω1 = Ω , and Ω2 = 1. Then following the
application as discussed in section 3 of [18], we have the following asymptotic theorem
given by equation (3.2) of [18].

THEOREM 2.1. Assume I = [a,∞) and there is a function Ω on [a,∞) that is
(ED) or (EI), and that

∫ ∞

a

∣∣∣Ω
p

∣∣∣ds < ∞, Q0(x) :=
∫ ∞

x

(q− zw
Ω

)
ds exists and

∫ ∞

a

∣∣∣Ω′

Ω
Q0

∣∣∣ds < ∞. (2.1)

Then there are solutions y1, y2 of L[y] = zy for I = [a,∞) such that

y1(x) → 1,
(py′1)(x)

Ω(x)
→ 0 as x → ∞ and (py′2)(x) → 1, y2(x)Ω(x) → 0 as x → ∞.

(2.2)

In our applications of Theorem 2.1, we want the hypotheses to be independent of
the spectral parameter z. This is accomplished by replacing (2.1) by

∫ ∞

a

∣∣∣Ω
p

∣∣∣ds < ∞,

∫ ∞

a

w
|Ω| ds < ∞ and

∫ ∞

a

∣∣∣Ω′

Ω

∣∣∣(
∫ ∞

x

w
|Ω| ds

)
dx < ∞, (2.3)

and

Q0(x) :=
∫ ∞

x

q
Ω

ds exists and
∫ ∞

a

∣∣Ω′

Ω
Q0

∣∣ds < ∞. (2.4)

Two choices of Ω which are useful are:

Ω(x) =
p(x)
x1+ε for some ε > 0, (2.5)

and
Ω(x) = (p(x)w(x))1/2 . (2.6)

EXAMPLE 2.1. In the case p(x) = xα and w(x) = xβ , both (2.5) and (2.6) imply
(2.3) if Re(α)−β > 2. In the case p(x) = xα (lnx)β and w(x) = xα−2(lnx)γ , both Ω =
xα−1(lnx)β−δ and (2.6) imply (2.3) if Re(β )− γ > 2 with δ > 1 satisfying Re(β )−
γ > 1+ δ .
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Another approach to examples like these is a change of variable which is discussed
in section 6.

For a discussion of boundary conditions, we will use the Lagrange form or Wron-
skian defined by

[ f ,g] := (pg′) f − (p f ′)g = det

[
f g

p f ′ pg′

]
(2.7)

for differentiable functions f and g . Note that in the work of Knowles and Race, g is
replaced by g in the definition of [·, ·] on the right hand side of (2.7). In the case of
Theorem 2.1 we have

[y1,y2] := (py′2)y1− (py′1)y2 ≡ 1 (2.8)

since the Wronskian is constant for solutions of L[y] = zy.
For the construction of the resolvents we need to know sufficient conditions for

y1, y2 ∈ L 2
w([a.∞)). For y1 , it is clear that

y1 ∈ L 2
w([a.∞)) ⇔

∫ ∞

a
wds < ∞. (2.9)

For y2 , we see that |y2|= o(|pw|−1/2) in case of (2.5) and that |y2(x)|= o(x1+ε/|p(x)|)
in case of (2.6). This leads to in case of (2.5),

∫ ∞

a

1
|p| dx < ∞ ⇒ y2 ∈ L 2

w ([a.∞)), (2.10)

and in case of (2.6)

∫ ∞

a

wx2+2ε

|p|2 dx < ∞ ⇒ y2 ∈ L 2
w ([a.∞)), (2.11)

EXAMPLE 2.2. Assume p(x) = xα and w(x) = xβ with the condition Re(α)−
β > 2 holding so Theorem 2.1 applies. Then (2.9) holds if β < −1, (2.10) holds if
Reα > 1, and (2.11) holds if β < 2 Re α −3 with ε > 0 satisfying β +2ε < 2 Re α −
3.

The next example shows that the term q can be large if highly oscillatory.

EXAMPLE 2.3. Again assume p(x) = xα and w(x) = 1 with the condition Re(α)
> 2 holding so Theorem 2.1 applies. With Ω as in (2.5) the conditions on q are

Q0(x) :=
∫ ∞

x
q(s)s1+ε/p(s)ds exists and

∫ ∞

a

∣∣Q0(s)/s
∣∣ds < ∞. (2.12)

For q(x) = cxδ sinxγ , c ∈ C, γ > 0, calculations show that (2.12) holds if γ + Re α >
2+ δ .

In case p is real, we can apply L’Hospital’s rule to (2.2) to obtain

lim
x→∞

y2(x)∫ ∞
x

1
p(s) ds

= −1 if
∫ ∞

a

1
p(s)

ds < ∞, y2(x) = o(1),
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or

lim
x→∞

y2(x)∫ x
a

1
p(s) ds

= 1 if
∫ ∞

a

1
p(s)

ds = ∞,

With p complex and further conditions on p , Eastham [11, p. 79] has shown that the
second of these two asymptotic formulae for y2 will hold. Alternately, one might apply
transformations of variables to reduce to the case p = w = 1. This incidentally shows
that “a large leading coefficient” is not a unitary invariant.

Many equations in applications are defined for intervals (0,a]. For a singular point
at 0 define

L̃[u] =
1
w

[−(pu�)� +qu], 0 < t � a, � = d/dt. (2.13)

Now transform the point 0 to ∞ by defining y(x) = u(t), x = 1/t. Then computations
show that

L̃[u] = L[y] =
1
W

[−(Py′)′ +Qy], W (x) =
w(t)
x2 , Q(x) =

q(t)
x2 , P(x) = x2p(t) (2.14)

with ′ = d/dx. Note that the map u → y above is unitary as

∫ a

0
w(t)|u(t)|2 dt =

∫ ∞

1/a
W (x)|y(x)|2 dx.

For more general change of independent and dependent variables see [1] or [2].
We now apply Theorem 2.1 to (2.14) to obtain

THEOREM 2.2. Assume there is a function Ω̃ on (0,a] so that Ω(x) := Ω̃(1/x)
is (ED) or (EI), and that

∫ a

0

∣∣∣ Ω̃
p

∣∣∣dt < ∞,

∫ a

0

w

|Ω̃| dt < ∞, and
∫ a

0

∣∣∣ Ω̃ �

Ω̃

∣∣∣(
∫ t

0

w

|Ω̃| ds
)

dt < ∞, (2.15)

and

Q0(t) :=
∫ t

0

q

Ω̃
ds exists and

∫ a

0

∣∣Ω̃ �

Ω̃
Q0

∣∣ds < ∞. (2.16)

Then there are solutions u1, u2 of L̃[u] = zu for I = (0,a] such that

u1(t) → 1,
(pu�

1)(t)
Ω̃(t)

→ 0 as t → 0 and (pu�
2)(t) → 1, u2(t)Ω̃(t) → 0 as t → 0.

(2.17)

As with Theorem 2.1 two choices of Ω̃ are useful:

Ω̃(t) =
p(t)
t1−ε for some ε > 0, (2.18)

and
Ω̃(t) = (p(t)w(t))1/2 . (2.19)
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As with I = [a,∞) we can give sufficient conditions for u1, u2 ∈ L 2
w((0,a]). For

u1 , it is clear that

u1 ∈ L 2
w((0,a]) ⇔

∫ a

0
wdt < ∞. (2.20)

For u2 , we see that |u2|= o(|pw|−1/2) in case of (2.19) and that |u2(x)|= o(t1−ε/|p(t)|)
in case of (2.18). This leads to in case of(2.19),

∫ a

0

1
|p| dt < ∞ ⇒ u2 ∈ L 2

w([a.∞)), (2.21)

and in case of (2.18)
∫ a

0

wt2−2ε

|p|2 dt < ∞ ⇒ u2 ∈ L 2
w((0,a]). (2.22)

REMARK 2.3. Theorem 2.2 applies to a number of equations of physical interest.
If the singular point is not at zero, say at x = e , then the shift of coordinate s = x− e
allows to apply the results above.

Everitt [13, p. 271–331] has made a catalogue of fifty-two real Sturm-Liouville
equations which occur in mathematical physics and in tests for numerical eigenvalue
solvers. In these examples he classifies such properties as limit point, limit circle, os-
cillatory or not, discrete spectrum, and essential spectrum. We consider some of these
examples and show how Theorem 2.2 also gives the classification of limit point or limit
circle at a finite singular point. Nonoscillatory always holds with real coefficients when
Theorem 2.1 or 2.2 applies since one solution is asymptotic to one. While these exam-
ples have real coefficients, the asymptotoic solutions given are valid if q is replaced by
cq, c∈C , or a perturbation term is added which satisfies the conditions of Theorem 2.1
or 2.2. We use in these examples ′ = d/dt.

EXAMPLE 2.4. Fuel cell equation (Number 55). This differential equation is

− (ty′(t))′ − t3y(t) = zty(t), t ∈ (0,b]. (2.23)

The choice Ω̃(t) = [p(t)w(t)]1/2 = t (same as ε = 1 in (2.18)) in Theorem 2.2 yields
solutions u1, u2 with the asymptotic behavior

u1(t) = 1+o(1), u2(t) = ln(t)[1+o(1)] as t → 0+ .

These two solutions are both in L 2
w((0,b]) which shows that zero is of limit circle type.

EXAMPLE 2.5. Laplace tidal wave equation (Number 45). This differential equa-
tion is

− (t−1y′(t))′ +(kt−2 + k2t−1)y(t) = zy(t), t ∈ (0,∞). (2.24)

The choice Ω̃(t) = p(t)/t1−ε = t−3/2 with ε = 1/2 in Theorem 2.2 yields solutions
u1, u2 with the asymptotic behavior

u1(t) = 1+o(1), u2(t) =
t2

2
[1+o(1)] as t → 0+ .
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These two solutions are both in L 2
w((0,1]) which shows that zero is of limit circle type.

At infinity Theorem 2.1 does not apply, but the asymptotic behavior can be obtained by
applying Theorem 2.3.1 of Eastham [11, p. 57] yielding limit point at infinity.

EXAMPLE 2.6. Boyd equation (Number 35). This differential equation is

− y′′(t)− t−1y(t) = zty(t), t ∈ (−∞,0)∪ (0,∞). (2.25)

The choice Ω̃(t) = t−1/2 (ε = 1/2 in (2.18)) in Theorem 2.2 yields solutions u1, u2

with the asymptotic behavior

u1(t) = 1+o(1), u2(t) = t[1+o(1)] as t → 0+ .

Similar calculations hold as t → 0− . These two solutions are both in L 2
w((0,b]) which

shows that 0± is of limit circle type. Again Theorem 2.1 does not apply at ±∞ , but
the above mentioned theorem of Eastham can be use to show limit point at ±∞.

Our next example is one that has been studied a lot.

EXAMPLE 2.7. Latzko equation (Number 46). This differential equation is

− ((1− t7)y′(t))′ = zt7y(t), t ∈ (0,1]. (2.26)

This equation has the singular point at t = 1 and a translation can shift it to zero.
Calculations similar to the above examples yields solutions u1, u2 with the asymptotic
behavior

u1(t) = 1+o(1), u2(t) = [
∫ t

0
(1− s7)−1 ds][1+o(1)] as t → 1− .

Using L’Hopital’s rule we find that u2(t) = ln(1− t)[−1
7 + o(1)]. These two solutions

are both in L 2
w((0,1]) which shows that t = 1 is of limit circle type.

Our last example is a classical one.

EXAMPLE 2.8. Laguerre equation (Number 27). This differential equation is

− (tα+1 exp(−t)y′(t))′ = ztα exp(−t)y(t), t ∈ (0,∞), α ∈ (−∞,∞). (2.27)

The choice Ω̃(t) = [p(t)w(t)]1/2 = tα+1/2 in Theorem 2.2 yields solutions u1, u2 with
the asymptotic behavior: u1(t) = 1+o(1) as t → 0+ , and for u2 , we calculate that
as t → 0+ ,

α < 0 ⇒ u2(t) =
−1
αtα [1+o(1)], α = 0 ⇒ u2(t) = ln(t)[1+o(1)], and

α > 0 ⇒ u2(t) =
−t−α −1

α
[1+o(1)].
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We see that u1 ∈ L 2
w((0,1]) ⇔ α > −1, and u2 ∈ L 2

w((0,1]) ⇔ α < 1, Thus we have
that zero is of limit circle type if |α| < 1 and limit point type otherwise. Actually
zero is a regular point if −1 < α < 0. Asymptotic behavior at infinity is obtained by
first applying a Kummer-Liouville transformation, see example number 2.8. The theory
of [7] applies to give limit point at infinity with no essential spectrum generated from
the singular point there. Theorem 4.1 below gives that t = 0 is a Hilbert-Schmidt type
singular point so by the decomposition principle the Laguerre operator has only discrete
spectrum as is well known.

3. The operator R(z)

First we describe a general inversion operator R(z) and then apply it to the four
cases of I . In case I has two singular endpoints let a be an interior point of I , and
define I1 = (−∞,a]∩ I and I2 = [a,∞)∩ I . Suppose y3(x,z), y4(x,z) are solutions of
L[y] = zy such that

y3|I1 ∈ L 2
w(I1), y4|I2 ∈ L 2

w(I2), [y3,y4] ≡ 1. (3.1)

Define the kernel function K(x,s,z) on I× I by

K(x,s,z) =

⎧⎨
⎩

y4(x,z)y3(s,z), if s � x,

y3(x,z)y4(s,z), if s > x.
(3.2)

Throughout the remainder of the paper let c be the left endpoint of I , and let d be
the right endpoint of I . Define the operator R(z) on L 2

w (I) by

(R(z) f )(x) =
∫ d

c
K(x,s,z)w(s) f (s)ds

=
∫ x

c
y4(x,z)y3(s,z)w(s) f (s)ds+

∫ d

x
y3(x,z)y4(s,z)w(s) f (s)ds.

(3.3)

By choice of y3, y4, R(z) is defined on L 2
w (I) , and a computation shows that y := R(z) f

satisfies (L− z)[y] = f ; thus R(z) is one-to-one. When R(z) is Hilbert-Schmidt, R(z)
will be a compact map into L 2

w (I) . This occurs when, using K(x,s,z) = K(s,x,z) , and

∫ d

c

∫ d

c

∣∣K(x,s,z)
∣∣2w(s)w(x)dsdx = 2

∫ d

c

∫ d

x

∣∣y3(x,z)y4(s,z)
∣∣2w(s)w(x)dsdx

= 2
∫ d

c

∫ x

c

∣∣y4(x,z)y3(s,z)
∣∣2w(s)w(x)dsdx < ∞.

(3.4)

THEOREM 3.1. Assume R(z) is a Hilbert-Schmidt operator on L 2
w (I) for all

z (see equations (3.9)–(3.12) below). Then (L− z)R(z) f = f for all f ∈ L 2
w(I) so

R(R(z)) ⊆ D(T ). For all four cases of I, the operator T − z is a Fredholm operator
and has the closed range L 2

w(I) for all z ∈ C , and σess(T ) = σess(T0) = /0.
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Proof. Since R(z) is a Hilbert-Schmidt operator on L 2
w (I) , it follows that R(z) f ∈

L 2
w(I) and R(R(z)) ⊆ D(T ). As noted above (L− z)R(z) f = f for all f ∈ L 2

w(I)
so that T − z is onto L 2

w(I) so that T − z has a closed range. Thus σess(T ) = /0.
Since the null spaces of T − z and T+− z are finite dimensional, this implies T − z is
Fredholm. Since T is a finite dimensional extension of T0 , they have the same essential
spectrum. �

We now turn to the boundary conditions that members of R(R(z)) satisfy. Calcu-
lations show that

[y3,R f ](x) = [y3,y4](x)
∫ x

c
y3(s,z)w(s) f (s)ds =

∫ x

c
y3(s,z)w(s) f (s)ds (3.5)

and

[y4,R f ](x) = −[y3,y4](x)
∫ d

x
y4(s,z)w(s) f (s)ds = −

∫ d

x
y4(s,z)w(s) f (s)ds (3.6)

Thus
[y3,R f ](c) = [y4,R f ](d) = 0. (3.7)

As noted by Knowles [21], for all y,v ∈ D(T ),

[y,v](c) = lim
x→c

[y,v](x), [y,v](d) = lim
x→d

[y,v](x)

exist. At a LP endpoint the limit is zero.
Whenever R(R(z)))⊆D(T ) we now prove that the functions in the range of R(z)

satisfy the right boundary conditons:

R(R(z))) = {y ∈ D(T ) : [y,y3](c) = [y,y4](d) = 0}. (3.8)

The equation (3.7) shows the inclusion one way. For the other way suppose y ∈ D(T )
and [y,y3](c) = [y,y4](d) = 0. Let f = (T − z)(y), ỹ = R(z) f , ŷ = ỹ− y. Then (T −
z)(ŷ) = f − f = 0 so that ŷ = c1y3 + c2y4 for some constants c1, c2. Thus

[ŷ,y3](c) = c1[y3,y3](c)+ c2[y4,y3](c) = c1 ·0+ c2 ·1 = c2.

On the other hand,
[ŷ,y3](c) = [ỹ,y3](c)− [y,y3](c) = 0

by choice of y, ỹ. Then c2 = 0. Similarly c1 = 0 by considering [ŷ,y4](d).
When R(z) is Hilbert-Schmidt equation (3.8) implies D(T0) ⊆ R(R(z))) and that

R(z)−1 + z is an extension of T0.
We will give some sufficient conditions for R(z) to be Hilbert-Schmidt (H-S).

Here we consider only the one singular endpoint case. The two endpoint case is studied
in section 5. It is clear that if each endpoint is regular or limit circle, then (3.4) holds
since ∫ d

c

∫ d

c

∣∣y4(x,z)y3(s,z)
∣∣2w(s)w(x)dsdx < ∞ ⇒ R(z) is H-S .
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Now consider the case of one singular point when Theorems 2.1 and 2.2 apply.
First let I = [a,∞). Since y1 = O(1) and y2 = o(Ω−1) we have, substituting into the
second part of (3.4),
∫ ∞

a
wds = ∞, y3 = y1, y4 = y2,

∫ ∞

a

(∫ x

a
wds

)
w(x)|Ω(x)−2|dx < ∞ ⇒ R(z) is H-S.

(3.9)
and, substituting into the first part of (3.4),
∫ ∞

a
wds < ∞, y3 = y2, y4 = y1,

∫ ∞

a

(∫ ∞

x
wds

)
w(x)|Ω(x)−2|dx < ∞ ⇒ R(z) is H-S.

(3.10)
In the case of I = (0,a], the conditions become

∫ a

0
wds = ∞, y3 = u1, y4 = u2,

∫ a

0

(∫ a

t
wds

)
w(t)|Ω̃(t)−2|dt < ∞ ⇒ R(z) is H-S.

(3.11)
and∫ a

0
wds < ∞, y3 = u2, y4 = u1,

∫ a

0

(∫ t

0
wds

)
w(t)|Ω̃(t)−2|dt < ∞ ⇒ R(z) is H-S.

(3.12)

EXAMPLE 3.1. Again we assume p(x) = xα and w(x) = xβ with the condition
(Reα)− β > 2 holding so Theorem 2.1 applies. Choose Ω = (pw)1/2 .Then (3.10)
holds if β < −1 and (3.9) holds if β � −1. Thus with power coefficients, the asymp-
totic hypothesis also implies Hilbert-Schmidt.

Note that limit circle cases are included in this example. While the conditions
above are sufficient for R(z) to be Hilbert-Schmidt, it is not clear that the conditions
of Theorem 2.1, resp. 2.2, alone are sufficient for Hilbert-Schmidt. However, those of
Theorem 2.1 are sufficient in the case of Example 3.1.

4. Operators with separated boundary conditions

First we define a special basis for solutions of L[y] = zy. In case I = (0,a] or
I = [a,∞) choose the base point at a . For the two singular endpoint case, choose
the base point at an interior point a of I. Let α ∈ C, and define solutions θα , φα of
L[y] = zy by the initial conditions[

θα φα
pθ ′

α pφ ′
α

]
(a,z) =

[
cosα sinα
sinα −cosα

]
. (4.1)

The boundary conditions to be imposed for y ∈ D(T ) are as follows.

At a regular point a : (cosα)y(a)+ (sinα)(py′)(a) = 0. (4.2)

Note that φα satisfies (4.2) and [φα ,θα ] ≡ 1.

At a singular limit point endpoint: No boundary conditions (4.3)
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At a limit circle endpoint with b = c or b = d. : (cosβ )[y,u](b)+ (sinβ )[y,v](b) = 0.
(4.4)

Here u ,v is a typical fundamental set of solutions of L[y] = 0 with [u,v] ≡ 1; more
generally we need only require u, v ∈ D(T ) with [u,v] ≡ 1. We are following the
parametrization of limit circle boundary conditions given by Fulton [14].

Operators are defined by restricting the domain of the maximal operator T . For
I = (0,a] or I = [a,∞) and the singular point is limit point,

D(Tα) = {y ∈ D(T ) : (4.2) holds}. (4.5)

For I = (0,a] or I = [a,∞) and the singular point is limit circle,

D(Tαβ ) = {y ∈ D(T ) : (4.2) and (4.4) hold}. (4.6)

For the two singular endpoint case we have four cases: Tpp, Tpc, Tcp, Tcc where
p means limit point and c means limit circle. At a limit point endpoint we impose a
boundary condition of type (4.3) and at a limit circle endpoint we impose a boundary
condition of type (4.4). For the remainder of this section we consider only Tα and Tαβ .
The two singular endpoint operators are considered in section 5.

To define the resolvent operators for Tα and Tαβ , we need to first define the
Titchmarsh-Weyl function at a singular point.

First consider the case where the singular point is in the limit point case. For
z ∈ ρ(Tα) we have from (1.8) that

1 = def (T0− z) = dim N (T − z).

Let ψα(·,z) = c1θα(·,z)+ c2φα(·,z) be the unique L 2
w(I) solution of L[y] = zy nor-

malized as follows. We have c1 �= 0 since φα(·,z) /∈ L 2
w(I) as z ∈ ρ(Tα) and φα

satisfies (4.2). Thus take c1 = 1. Then c2 is uniquely determined and we define it as
mα . Thus mα is defined on ρ(Tα) , and

ψα(·,z) = θα (·,z)+mα(z)φα (·,z) ∈ L 2
w(I).

For the limit circle case we require, when z is not an eigenvalue of Tαβ or equiv-
alently when φα does not satisfy (4.4), that

ψαβ (·,z) := θα (·,z)+mαβ (z)φα (·,z)

satisfy (4.4). A calculation then gives

mαβ (z) = −cosβ [θα ,u](b)+ sinβ [θα ,v](b)
cosβ [φα ,u](b)+ sinβ [φα ,v](b)

. (4.7)

We are now able to give resolvent formulae for Tα and Tαβ by specifying y3, y4 in
(3.2). We assume (3.9)–(3.10) hold for I = [a,∞) , and (3.11)–(3.12) hold for I = (0,a]
so we need only check that the boundary conditions in (3.8) are the same as those which
define Tα and Tαβ .
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First we choose I = [a,∞). Chose y3 = φα and y4 = ψα in the limit point case
and y4 = ψαβ in the limit circle case. In the limit circle case it is clear that (3.1) holds.
In the limit point case ψα is a multiple of the L 2

w(I) solution, y2 for (3.9) and y1 for
(3.10) so (3.1) holds. Then

[y,y3](a) = [y,φα ](a) = [(pφ ′
α)y− (py′)φα ](a)

= −(cosα)y(a)− (sinα)(py′)(a) = 0

which is equivalent to (4.2). In the limit point case there is nothing further to prove as
y4 = ψα ∈ L 2

w(I).
Suppose now the limit circle case holds. We must prove [y,ψαβ ](∞) = 0 is equiv-

alent to (4.4). This equivalence establishes that the boundary condition [y,ψαβ ](∞) = 0
is independent of z . For this we need a modified form of an algebraic identity given by
Fulton. It is: For y, g in the domain of [·, ·] ,

[y,g] = det

[
[y,v] [g,v]
[y,u] [g,u]

]
(4.8)

which may be verified by a direct calculation.
Suppose now (4.4) holds for some y ∈ D(T ). Then

[y,ψαβ ] = det A, A =
[
[y,v] [ψαβ ,v]
[y,u] [ψαβ ,u]

]
(4.9)

and
[sinβ ,cosβ ]A(∞) = [0,0] ⇒ det A(∞) = 0 ⇒ [y,ψαβ ](∞) = 0.

Conversely suppose [y,ψαβ ](∞) = 0 for some y ∈ D(T ). Then det A(∞) = 0 and thus
the columns of A(∞) are linearly dependent. First we show the second column of A(∞)
is not the zero vector. If it is then

[θα ,v](∞)+mαβ [φα ,v](∞) = 0, [θα ,u](∞)+mαβ [φα ,u](∞) = 0.

This implies

det B = 0, B =
[
[θα ,v] [φα ,v]
[θα ,u] [φα ,u]

]
(∞).

However, as with the algebraic identity (4.8), det B = [θα ,φα ](∞) = 1. Thus the first
column of A(∞) is a multiple of the second and hence satisfies (4.4).

Thus under the hypotheses of z ∈ ρ(Tα), resp., z ∈ ρ(Tαβ ), the resolvent of Tα ,
resp., Tαβ , is given by (3.3) where

K(x,s,z) =

⎧⎨
⎩

ψα(x,z)φα (s,z), resp., ψαβ (x,z)φα (s,z), if s � x,

φα(x,z)ψα (s,z), resp., φα(x,z)ψαβ (s,z), if s > x.
(4.10)

For the case I = (0,a] , we choose y4 = φα and y3 = ψα in the limit point case
and y3 = ψαβ in the limit circle case. Then the proofs are similar to the I = [a,∞) case
and are omitted.



312 H. BEHNCKE AND D. HINTON

THEOREM 4.1. Assume the hypotheses of Theorems 2.1 and 2.2 Assume that
(3.9)–(3.10) hold for I = [a,∞) , and that (3.11)–(3.12) hold for I = (0,a] . Then Tα
and Tαβ are C−selfadjoint operators and have Hilbert-Schmidt resolvents.

Proof. That Tα , resp., Tαβ , is a C -selfadjoint operator follows from the theory
of Knowles [21] and Race [30] which connects the number of boundary conditions for
a C -selfadjoint extension of T0 with the defect number def T0. The construction of
the resolvents for Tα and Tαβ shows that Theorem 3.1 applies to give Hilbert-Schmidt
resolvents. �

REMARK 4.2. For the construction of the resolvent of Tα , resp., Tαβ , it was
necessary to have the existence of one z which is not an eigenvalue so the assumption of
no eigenvalue of infinite algebraic multiplicity is implicit for these boundary conditions.

The functions mα and mαβ have certain analytic properties which we now state.

THEOREM 4.3. Assume I = (0,a] or I = [a,∞) and the hypotheses of Theorem
4.1 hold. Then mα , resp., mαβ , are meromorphic on C , and its poles are the eigenval-
ues of Tα , resp., Tαβ .

Proof. For the limit point case, i.e., mα , the proof can be found as Theorem 10 of
[5]. The analyticity of mαβ on ρ(Tαβ ) also follows as that of Tα in [5] yielding in fact

m�
αβ (z) = −

∫
I
wψαβ (·,z)2 dx, � = d/dz.

Since mαβ is analytic on ρ(Tαβ ) , the only possbible singular points of mαβ are
the eigenvalues of Tαβ . Suppose z0 is an eigenvalue of Tαβ . Let γ = α −π/2. Then
by (4.1), we have φγ =−θα , θγ = φα . Using these in (4.7) gives mαβ =−1/mαγ. Thus
either mαβ has a pole at z0 (if mαγ (z0) = 0) or a removable singularity (if mαγ(z0) �=
0). Since z0 is an eigenvalue of Tαβ , the function φα is an eigenfunction. Since
θα satisfies an independent boundary condition at a, we see that θα does not satisfy
the boundary condition (4.4) at z0 . Thus the numerator of (4.7) is not zero, and the
denominator is zero. This shows mαβ (z0) has a pole at z0 . �

EXAMPLE 4.1. Assume p(x) = 1 and with w satisfying
∫ ∞
1 x2w(x)dx < ∞ on

[1,∞) and w satisfying the conditions of Theorem 2.1, e.g., w(x) = x−4 . Two inde-
pendent solutions of L[y] = −y′′/w = 0 are u(x) = 1, v(x) = x. Now [y,u] = −y′ and
[y,v] = y− xy′. Thus the boundary condition (4.4) is

−(cosβ )y′(∞)+ (sinβ )(y− xy′)(∞) = 0,

and we know the limits exist since y, u, v ∈ D(T ).
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5. Two singular endpoints with separated boundary conditions

The standard method in this case is the decomposition principle. To apply Theo-
rem 2.1 at −∞ , we make the change of variable g(x) = y(−x). Then

L[y] = zy ⇔ L̂[g] =
1
ŵ

[
(− p̂g′)′ + q̂g

]
= zg, −∞ < x < ∞,

where p̂(x) = p(−x), q̂(x) = q(−x), ŵ(x) = w(−x). We say Theorem 2.1 holds for L
at −∞ if it holds for L̂ at ∞.

In [21] Knowles has characterized maximal J -selfadjoint extensions and their
boundary conditions. An important lemma of [21] is:

LEMMA 5.1. A linear manifold D ′ of L 2
w(I) is the domain of definition of a

J -selfadjoint extension of T0 if and only if D ′ satisfies the following conditions.
(i) D(T0) ⊆ D ′ ⊆ D(T );
(ii) For any two functions y, g in D ′ , the relation [y,g](d)− [y,g](c) = 0 holds;
(iii) Every function g ∈D(T ) which satisfies [y,g](d)− [y,g](c) = 0 for all y∈D ′

belongs to D ′ .

THEOREM 5.1. Suppose I = (0,∞) or I = (−∞,∞) and that the conditions of
Theorem 4.1 hold at each singular endpoint. Then each of Tpp, Tpc, Tcp, Tcc is a C -
selfadjoint operator with empty essential spectrum.

Proof. By Theorem 4.1 all one singular endpoint problems have empty essential
spectrum. By the decomposition principle, see Glazman [16, p. 101], the two singular
endpoint problem will also have empty essential spectrum.

To show the operators are C -selfadjoint operators we use the lemma above and
consider the separate cases.

(i) Tpp : Since [y,g](b) = 0 for all y, g ∈ D(T ) at a limit point endpoint b , we
see that by choosing D ′ = D(T0) in Lemma 5.1 it follows that T0 is C -selfadjoint and
D(T0) = D(T ) or T0 = T .

(ii)Tpc : Define D ′ by

D ′ = {y ∈ D(T ) : (4.4) holds}.
Recall (4.4) ⇔ [y,ψαβ ](∞) = 0. Then D ′ = D(Tpc) . Let now y, g ∈ D ′. By (4.8)
we have [y,g](∞) = 0 so condition (ii) of Lemma 5.1 holds. To show condition (iii)
of Lemma 5.1holds, suppose g ∈ D(T ) is such that [y,g](∞) = 0 for all y ∈ D ′. By
applying the patching Lemma 4.2 of Knowles [21], we can truncate smoothly ψαβ so
the truncated function ψ̂αβ has support in [a,∞). Then choosing y = ψ̂αβ , we have
y ∈ D ′ and [y,g](∞) = 0 = [ψαβ ,g](∞). Thus g ∈ D ′ .

(iii) The cases of Tpc, Tcc are similar to that of Tpc and are omitted. For the case
of Tcc we may use different β ’s at the two endpoints. �

For the remainder of this section T1 denotes any one of the operators Tpp, Tpc,
Tcp, Tcc .
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For z ∈ ρ(T1), define the functions m±(z) and functions ψ± as follows: let m+ =
mα , α = 0, if the right endpoint is limit point, and let m+ = mαβ if the right endpoint
is limit circle. Similarly define m− for the left endpoint.

Let ψ+(·,z) = θα(·,z)+m+(z)φα (·,z) and let ψ−(·,z) = θα(·,z)+m−(z)φα (·,z) .
As proved in section 4, the functions m± are meromorphic functions under the hy-
potheses of Theorem 4.3.

We define a Green’s function K(x,y,z) , for z ∈ ρ(T1), by choosing for R(z) in
(3.3): y3 = ψ−, y4 = ψ+/(m+−m−). ( below it is noted that the meromorphic function
m+(z)−m−(z) is analytic on z ∈ ρ(T1)) Then

K(x,y,z) =

⎧⎪⎨
⎪⎩
−ψ+(x,z)ψ−(y,z)

m+(z)−m−(z)
, y � x,

−ψ−(x,z)ψ+(y,z)
m+(z)−m−(z) , x < y.

(5.1)

Then with M =: (m+−m−)−1, c = left endpoint of I ,

(R(z) f )(x) =
∫ ∞

c
K(x,y,z)w(y) f (y)dy

=
∫ x

c
−M(z)ψ+(x,z)ψ−(y,z)w(y) f (y)dy−

∫ ∞

x
M(z)ψ−(x,z)ψ+(y,z)w(y) f (y)dy.

(5.2)

THEOREM 5.2. Assume the hypotheses of Theorem 5.1 hold, and the one singular
endpoints operators are Hilbert-Schmidt. Then the resolvent operator for T1 is given
by (5.2) and R(z) is Hilbert-Schmidt.

Proof. As in the proof of Theorem 3.1, it will follow that R(z) is the resolvent op-
erator for T1 after we prove that R(z) is Hilbert-Schmidt. Here we follow the proof of
Theorem 7.4 of [7]. The operator R(z) of (5.2) can be written as the sum of two oper-
ators R1(z), R2(z) where R1(z), respectively, R2(z), acts on functions f with support
in (c,a] , respectively, [a,∞). For R2(z), we have

(R2(z) f )(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

a
−Mψ+(x,z)ψ−(y,z)w(y) f (y)dy = C( f )ψ+(x,z), x < a,

∫ x

a
−Mψ+(x,z)ψ−(y,z)w(y) f (y)dy

−
∫ ∞

x
Mψ−(x,z)ψ+(y,z)w(y) f (y)dy, x � a,

(5.3)
where C( f ) := −∫ ∞

a Mψ−(y,z)w(y) f (y)dy. Since

(R2(z)( f )(a) = −Mψ−(a,z)
∫ ∞

a
ψ+(y,z)w(y) f (y)dy,

(R2(z) f )′(a) = −Mψ ′
−(a,z)

∫ ∞

a
ψ+(y,z)w(y) f (y)dy,
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we see that the x � a part of R2(z) is an extension of the minimal operator for the
interval [a,∞) with boundary condition

y(a)ψ ′
−(a,z)− y′(a)ψ−(a,z) = 0,

and is hence a Hilbert-Schmidt operator by Theorem 4.1. The operator C( f ) is a
bounded rank one operator and is thus Hilbert-Schmidt. It follows then that R2(z) is
a Hilbert-Schmidt operator. Similarly R1(z) is Hilbert-Schmidt making R(z) Hilbert-
Schmidt. �

The proof of Theorem 16 in [5] also applies to give the following result.

THEOREM 5.3. Assume the hypotheses of Theorem 5.1 hold. Then the eigenval-
ues of T1 are given by:

Spectrum T1 = S1∪S2,

where
S1 = {z : m+,m− are analytic at z and m−(z) = m+(z)},

and
S2 = {z : m+,m− each have a pole at z}.

6. Asymptotic integration of Euler type and nondominant potentials

We will now present another approach to the problem with nondominant poten-
tials. This method is more general for nonoscillatory potentials and avoids the use of
the auxiliary function Ω of section 2 or the function ρ of section 2.7 of Eastham [11].
However the hypotheses are more complicated than those of section 2. Unlike the theo-
rems of section 2 which generally imply a Hilbert-Schmidt resolvent, the spectrum here
may contain nonempty essential spectrum. Even with compact resolvent it may fail to
be Hilbert-Schmidt. For simplicity here we only consider the case I = [a,∞).

First we give a simple example to show that essential spectrum may now appear.

EXAMPLE 6.1. On [1,∞) let

L[y] :=
1

xα−2 [−(xαy′)′] = zy, α, z real . (6.1)

This Euler equation has solutions of the form xδ , and simple computations show that
the nontrival solutions are oscillatory and not in L 2

w([1,∞) if z > (α − 1)2/4. For
z < (α − 1)2/4 the solutions are nonoscillatory and there is one linearly independent
solution in L 2

w([1,∞) . Thus the oscillation constant is (α − 1)2/4, and the essential
spectrum is [(α − 1)2/4,∞) [32, p. 220]. Below (α − 1)2/4 a selfadjoint extension
of the minimal operator T0 may have at most one eigenvalue, and no C -symmetric
extension of T0 has a Hilbert-Schmidt or even compact resolvent.

Another example with explicit solutions on [0,∞) is

L[y] :=
1

eαx [−(eαxy′)′ +Meαxy] = zy, α real . (6.2)
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This equation has the solutions y±(x) = eλ±x where

λ± =
1
2

[−α ± (
α2 +4(m− z)

)1/2]
.

Neither solution y± is in L 2
w([0,∞) for α2 + 4(M − z) ∈ (−∞,0) so again no C -

symmetric extension of T0 has a compact resolvent.
On the other hand, the equation

L[y] := −(x3y′)′ − (8x/9)y = zy, (6.3)

has the two L 2([1,∞)) solutions x−4/3, x−2/3 for z = 0 and hence two linearly inde-
pendent L 2([1,∞)) solutions for all z ∈ C, and is thus limit circle at infinity. Hence
C -symmetric extensions of T0 are Hilbert-Schmidt.

Again the starting point is

L[y] =
1
w

[− (py′)′ +qy
]
= zy, x ∈ I. (6.4)

For the coefficients we assume that

p �= 0, q = q1 +q2 +q3 w = w1 +w2, w1, w2 > 0, (6.5)

where p, q1, w1 are twice differentiable, q2, w2 are once differentiable with

q2, w = o(q1), q′2, w′
2 = o(q′1), q′2, w′

2 ∈ L 2([a,∞)), (6.6)

and
q′′1

1+ |q| ,
w′′

1

1+ |q| ∈ L0([a,∞)),
q′2

1+ |q|
w′

2

1+ |q| ∈ L 2
0 ([a,∞)), (6.7)

where L p
0 stands for all p -integrable functions vanishing at infinity. Further assump-

tions will be stated later. In the remainder we will call f = f1 + f2 the smooth part of
f if f1 is absolutely continuous.

For asymptotic integration write (6.4) in systems form

Y ′ =
[

0 1/p
q− zw 0

]
Y, Y =

[
y

py′

]
, (6.8)

and diagonalizing the smooth part of (6.8) with q replaced by q̃ = q1 +q2− zw , we get
with

T =
[

1 1
(pq̃)1/2 −(pq̃)−1/2

]
and TZ = Y,

the system

Z′ =
([

(q̃/p)1/2 0
0 −(q̃/p)1/2

]
− (pq̃)′

4(pq̃)

[
1 −1
−1 1

])
Z. (6.9)
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For (6.9) to be equivalent to (6.8) in the sense of asymptotic solutions we need that

T−1
[

0 0
q3 0

]
T

be integrable, i.e.,
q3/(pq̃)1/2 ∈ L ([a,∞)). (6.10)

The potential q = q1 +q2−zw is nondominant if (q̃/p)1/2 is comparable or dominated
by (pq̃)′/(pq̃). In this case we assume for some constant k and function φ that

(q̃/p)1/2 =
−(pq̃)′

4(pq̃)
(k+ φ), φ = o(1),(φ ′)2, φ ′′ ∈ L ([a,∞)), k �= ±i. (6.11)

With this we can write

Z′ = − (pq̃)′

4(pq̃)

[
1+(k+ φ) −1

−1 1− (k+ φ)

]
Z. (6.12)

In the remaining calculations we will substitute k̃ = k+φ . The eigenvalues of the
matrix in (6.12) are λ± = 1± (1+ k̃2)1/2 and with the matrix

T1 =
[
1 −b
b 1

]
, b = k̃− (1+ k̃2)1/2 = k− (1+ k2)1/2 +o(1),

one gets with T1W = Z that

W ′ =
(
− (pq̃)′

4(pq̃)

[
λ+ 0
0 λ−

]
−T−1

1 T ′
1

)
W

=
(
− (pq̃)′

4(pq̃)

[
λ+ 0
0 λ−

]
− 1

(1+b2)

[
bb′ −b′
b′ bb′

])
W.

(6.13)

This systems matrix is not yet in Levinson form. So a further diagonalization is
necessary. However, by (6.11) the off-diagonal element b′ = O(φ ′) is square integrable
so that a further diagonalization will most add integrable terms to the diagonal. Thus
the eigenvalues of the system (6.13) are essentially

μ± =
(−(pq̃)′λ±

4(pq̃)
− bb′

1+b2

)
. (6.14)

It remains to check on the influence of the terms q2 and zw on the result. It follows
from (6.5) that these terms have at all levels a (1+o(1)) , respectively, L ([a,∞)) effect
on the problem. Moreover, φ = φ(x,z) will be analytic in z . The Euler case arises if
k �= 0 as in Eastham [11], section 2.6. Expanding the expression (1+ k̃2)1/2 gives

[
1+(k+ φ)2]1/2 = (1+ k2)1/2[1+

2kφ + φ2

2(1+ k2)
+ . . .

]

:= (1+ k2)1/2 + Φ.
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Thus the eigenvalues in (6.13) have the form

μ± =
(−(pq̃)′

4(pq̃)

[
1± (

(1+ k2)1/2 + Φ
)]− bb′

1+b2

)
,

Φ =
kφ

(1+ k2)1/2
+O(φ2), b′ = o(1). (6.15)

Expanding b with respect to φ and w shows that bb′ ∈ L 2
0 ([a,∞)) by (6.11). Thus

the dichotomy condition holds if, modulo L ([a,∞)) terms, where k is as in (6.11),

Re

((
(1+ k2)1/2 + Φ

)
(pq̃)′

(pq̃)

)
is of one sign in [a,∞). (6.16)

When (pq̃)′Φ/(pq̃) ∈ L ([a,∞)), the Φ term can be dropped in (6.16).
With this we get the solutions of (6.13),

W± = [e± +o(1)]exp

(∫ x

a
μ±(t,z)dt

)
where e+ =

[
1
0

]
e− =

[
0
1

]
. (6.17)

The leading part can easily be evaluated and gives (pq)−[1±(1+k2)1/2]/4.
Thus transforming back through Y = TT1W yields solutions y± of (6.4),

y± = [1+o(1)](pq̃)−[1±(1+k2)1/2]/4(1+b2)−1/2 exp

(∫ x

a

(∓(pq̃)′

4(pq̃)
Φ

)
dt

)
. (6.18)

Hence we have the following theorem.

THEOREM 6.1. Under the conditions (6.5), (6.6), (6.10), (6.11), and (6.16), the
equation (6.4) has a pair of independent solutions given by (6.18).

Eastham [11, Theorem 2.6.1] gives a similar result.

REMARK 6.2. In the important case where (pq̃)′Φ/(pq̃) ∈ L ([a,∞)), a renor-
malization yields, under the hypotheses of Theorem 6.1, solutions of (6.4) of the form

y± = [1+o(1)](pq̃)−[1±(1+k2)1/2]/4. (6.19)

In this situation we have

y± ∈ L 2
w([a,∞)) ⇔

∫ ∞

a

∣∣(pq̃)−[1±(1+k2)1/2]/2
∣∣wdx < ∞. (6.20)

EXAMPLE 6.2. In (6.4) let

p(x) = xα , q(x) = Mxα−2, M �= 0, w(x) = xδ , α −2 > δ , α �= 1,

where M ∈ C. It follows that

k+ φ =
−4(M− zs)3/2

M(2α −2)− z(α + δ )s
, s := xδ+2−α ,
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so that

k =
−2M1/2

α −1
, φ = O(s), (pq̃)′Φ/(pq̃) ∈ L ([a,∞)). (6.21)

By (6.19) there are solutions of (6.4) of the form

y± = [1+o(1)]
[
x2α−2(M− zxδ+2−α)]−[1±(1+k2)1/2]

4

= [1+o(1)]M±xr± , (6.22)

where

M± = M
−[1±(1+k2)1/2]

4 , r± =
−(α −1)∓ [(α −1)2 +4M]1/2

2
.

For M real and M < −(α − 1)2/4, then a computation using α − 2 > δ shows
that y± ∈ L 2

w ([a,∞)) so the resolvent is Hilbert-Schmidt.
For M /∈ (−∞,−(α −1)2/4], write r± in (6.22) as

r± =
1
2

[− (α −1)∓ (η + iμ)
]
, η > 0.

Then again y± ∈ L 2
w([a,∞)) for η < α −2− δ .

For η � α −2− δ , y+ ∈ L 2
w([a,∞)) and y− /∈ L 2

w([a,∞)). In (3.2) choose y4 =
y+, y3 = y−. Then since Re (r+ + r−) = 1−α ,

∫ x

a

∣∣K(x,s)
∣∣2w(s)ds =

∫ x

a

∣∣y4(x)y3(s)
∣∣2w(s)ds

= O
(
x2Re r+

∫ x

a
s2Re r−+δ ds

)
= O

(
x2Re r++2Re r−+δ+1)

= O
(
xδ+3−2α)

.

(6.23)

Since α −2− δ > 0, we have that 2δ +3−2α < −1 and

∫ ∞

a

∫ x

a

∣∣K(x,s)
∣∣2w(s)w(x)dsdx = O

(∫ ∞

a
x2δ+3−2α dx

)
< ∞,

and thus by (3.4) the resolvent is Hilbert-Schmidt in the M /∈ (−∞,−(α −1)2/4] case
as well.

A more extensive example is:

EXAMPLE 6.3. For α � −1, β � γ > δ , let

p(x) = p0x
α+2(ln x)β , q(x) = q0x

α(ln x)γ , w(x) = xα(ln x)δ , (6.24)

where p0, q0 ∈ C. Then

k+ φ = −4[1+o(1)](q0/p0)1/2 (ln x)(γ−β )/2

(2α +2)
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Exact expressions for z = 0 are given with β = γ,

k = −4
(q0/p0)1/2

2α +2
, φ(x) = 4

(q0/p0)1/2

2α +2

(
1− 1

1+( β+γ
2α+2)(ln x)−1

)
,

and with γ < β ,

k = 0, φ(x) = −4(q0/p0)1/2 (ln x)(γ−β )/2

(2α +2)+ (β + γ)(ln x)−1 .

In general, the expressions for y± are quite complicated so we examine a simpler
special case. Let in (2.26) δ = 0, 0 < γ < β −1, α > −1, γ + β > 1. Then

(pq̃) = p0x
2α+2[q0(ln x)γ+β − z(ln x)β ]

,
(pq̃)′

(pq̃)
= O

(1
x

)
.

This gives

φ = O
(
(ln x)(γ−β )/2), Φ = O

(
φ2) = O

(
(ln x)(γ−β )),

(pq̃)′

(pq̃)
Φ = O

(
(ln x)(γ−β )/x

) ∈ L ([a,∞).

Since k = 0 here, (6.18) gives after normalization of constants,

y+ = [1+o(1)]x−(α+1)(ln x)−(γ+β )/2, y− = [1+o(1)].

This gives y+ ∈ L 2
w([a,∞)) and y− /∈ L 2

w([a,∞)). In (3.2) choose y4 = y+, y3 = y−.
Then ∫ x

a

∣∣K(x,s)
∣∣2w(s)ds =

∫ x

a

∣∣y4(x)y3(s)
∣∣2w(s)ds

= O

(
x−2(α+1)(ln x)−(γ+β )

∫ x

a
sα ds

)

= O

(
x−α−1(ln x)−(γ+β )

)
.

(6.25)

Since γ + β > 1, we have that

∫ ∞

a

∫ x

a

∣∣K(x,s)
∣∣2w(s)w(x)dsdx = O

(∫ ∞

a
x−1(ln x)−(γ+β ) dx

)
< ∞,

and thus by (3.4) the resolvent is Hilbert-Schmidt.

Another approach to examples such as (6.24) when the range of parameters falls
outside the scope of Theorem 6.1 is by a Kummer-Liouville transformation, see for
example [1, 2]. For example in (6.24) with δ � β −2 and p real choose in (6.4)

y(x) = μ(x)Y (t), t =
∫ x

a
γ(s)ds, γ :=

[
w/p

]1/2
, μ(x) :=

[
pw

]−1/2
.
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Then

L[y] = zy,⇔ 1
w̃

[−(p̃Y �)� + q̃Y ] = zY, � = d/dt, (6.26)

where

p̃ = pμ2γ = 1, w̃ = wμ2/γ = 1, q̃ = −μγ−1(pμ ′)′ + μ2γ−1q.

The first summand of q̃ is independent of q. It involves two differentions. In the coeffi-
cients of (6.24) this gives in the first summand as a linear combination of p0(ln x)β−δ ,
p0(ln x)β−δ−1, and p0(ln x)β−δ−2. The second gives μ2γ−1q = q/w = q0(ln x)γ−δ .
Thus q̃ is a sum of four logarithmic terms. For example with δ = β , it follows that
t = ln x , and q̃ has the form q̃ = q0tγ−δ + c0 + c1/t + c2/t2. Equations of this type
can be handled by the methods of [5, 7]. In particular we see that for 0 < α < 1 the
operator is not Hilbert-Schmidt.
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