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Abstract. In this work, we study a multi-patch model, where the patches are coupled by asym-
metrical migration terms, and each patch follows a logistic law under the assumption that some
growth rates are much larger than the other. First, for Two-patch model where one growth rate is
much larger than the second one, the total equilibrium population is greater or smaller than the
sum of two carrying capacities for all migration rates. Second, we consider Three-patch model in
the two cases: (i) where two growth rates are much larger than the third one, and (ii) where one
growth rate is much larger than the other two. For both cases, we give a complete classification
of all possible situations under which the fragmentation can lead to a total equilibrium popula-
tion greater or smaller than the sum of the three carrying capacities. Finally, in the general case,
we consider the model of n patches with the assumption that: (i) all growth rates but one are
much larger than the n th growth rate, (ii) two blocks where the growth rates of the first block are
much larger than that of the second one. For the first case, we give a complete classification of
all possible situations under which the fragmentation can lead to a total equilibrium population
greater or smaller than the sum of the n carrying capacities, and in the second case, we construct
a reduced model and we prove its global stability.

1. Introduction

In biology, there are several factors that affect the population growth and its re-
production in a sound manner, for example, the disparity and the large variation in the
growth rate between different organisms, which lead to the creation of some imbal-
ances in the environmental milieu. The theoretical paradigm that has been used to treat
these problem, is that of a single population fragmented into patches coupled by migra-
tion, and the sub population in each patch follows a local logistic law. This system is
modeled by a non linear system of differential equation of the following form:

dx
dt

= f (x)+ β Γx, (1)

where x = (x1, . . . ,xn)T , with n is the number of patches in the system, xi represents
the population density in the i-th patch, f (x) = ( f1(x1), . . . , fn(xn))T , and

fi(xi) = rixi(1− xi/Ki), i = 1, . . .n. (2)
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The parameters ri and Ki are respectively the intrinsic growth rate and the carrying
capacity of patch i . It is fundamental in the ecology of population life histories that
intrinsic growth rate and carrying capacity are distinct parameters related to a species
population, and are not necessarily correlated. The term β Γx on the right hand side
of the system (1) describes the effect of the migration between the patches, where β
is the migration rate and Γ = (γi j) is the matrix representing the migrations between
the patches. For i �= j , γi j > 0 denotes the incoming flux from patch j to patch i . If
γi j = 0, there is no migration. The diagonal entries of Γ satisfy the following equation

γii = −
n

∑
j=1, j �=i

γ ji, i = 1, · · · ,n, (3)

which means that what comes out of a patch is distributed between the other n− 1
patches.

The model (1), (2), (3) has been studied by many ecologists and mathematicians,
for example, Freedman and Waltman [19] and Holt [23] in the case n = 2 and Γ such
that γ12 = γ21 = 1, Arditi et al. [1, 2] for two patches and also Poggiale et al. [29] in
the case where β → ∞ .

DeAngelis et al. [7, 10] considered the case of n > 2 patches in a circle, with
symmetric migration between any patch and its two neighbours:

dxi

dt
= rixi

(
1− xi

Ki

)
+ β (xi−1−2xi + xi+1), i = 1, . . . ,n, (4)

where we denote x0 = xn and xn+1 = x1 , so that the same relationships hold between
xi , xi−1 and xi+1 for all values of i . This model corresponds to the matrix Γ whose
non-zero off-diagonal elements are given by

γ1n = γn1 = 1 and γi,i−1 = γi−1,i = 1, for 2 � i � n.

The system (4) is a one-dimensional discrete-patch version of the standard reaction-
diffusion model. In [7, 10] the perfect mixing case is described.

Recently, Arditi et al. [1, 2] gave a full mathematical analysis of the two-patch
logistic model with symmetric and asymmetric dispersal. Wu et al. [34] generalized
their results to a source-sink system, i.e the model (1), (3) for n = 2 and

f (x1,x2) =
(

r1x1

(
1− x1

K1

)
,r2x2

(
−1− x2

K2

))T

(5)

The case of the general symmetric and non symmetric migration was considered by
Elbetch et al. in [13] and in [14] respectively. They gave some conditions on the
parameters of the model that ensure that migration is beneficial or detrimental to the
sum of n carrying capacities. They also calculated the formula of perfect mixing.

Arino et al. [4] also studied a source-sink model of n patches, where the source
patch follows a logistic growth rate, and the sink patch with exponential decay, i.e

f (x) =

{
rixi

(
1− xi

Ki

)
if i = 1, . . . ,m,

−rixi if i = m+1, . . . ,n.
(6)
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For the model (1), (3), (6), the authors proved the existence of a threshold number of
source patches such that the population potentially becomes extinct below the threshold
and established above the threshold.

Another important form of f appears in the work of Gao [20] on susceptible-
infected-susceptible (SIS) model in n patches connected by human migration:

fi(xi) = rixi

(
1− xi

Ki

)
− γixi, i = 1, . . . ,n, (7)

where γi > 0. Note that, if ri < γi for some patches i , the system (1), (3), (7) is
a source-sink model. For this model, Gao gave the total number of infections at the
stable steady state as β → 0+ and β → ∞ . He also calculated the derivative of the
total number of infections at the stable steady for β = 0. For the two-patch model, Gao
gave a complete classification of the model parameter space as to whether dispersal is
beneficial or detrimental to disease control.

In [33], Wang considered the model of n patches with Allee effect growth, i.e the
system (1), (3) for:

fi(xi) = rixi

(
1− xi

Ki

)
− λiθixi

θi + xi
, i = 1, . . . ,n, (8)

where ri,Ki,λi and θi are positive constants, the first term in the right-hand side of (8)
denote the logistic growth, and the last term describes the mating limitation or predation
effect (see [11, 12]). Wang gave the conditions on the global stability of the model (1),
(3), (8) in the case of weak Allee effect by using the theory of monotonic dynamical
systems.

Recently, Chen et al. [5] considered the two-patch model with additive Allee
effect, i.e the system (1), (3) for n = 2 and

f (x1,x2) =
(
−x1,x2

(
1− x2− m

x2 +a

))T

. (9)

The positive parameters m and a are the Allee effect constants. The additive Allee ef-
fect consists of two cases, i.e., weak and strong Allee effects. That is, if 0 < m < a , it is
the weak Allee effect; if m > a , it is the strong Allee effect. For this model, the authors
presented the possible qualitative behavior and bifurcation phenomena, and they also
discussed the existence and stability of all non-negative equilibria of this system. They
investigated the effect of Allee effect and dispersal on total population abundance. For
more details and information on the Allee effect models, the reader is referred to [33].

In [15], I suggested to study the two-patch model where each patch follows a
Richard’s law, i.e, the model (1), (3) for n = 2 and

f (x1,x2) =
(

r1x1

(
1−
(

x1

K1

)μ)
,r2x2

(
1−
(

x2

K2

)μ))T

, (10)

where μ is a positive parameter. For this model, I was interested in the effect of
this choice, which generalizes the logistic, on the dynamics of the total population in
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two patches. I gave a complete classification of the model parameter space concerning
when dispersal causes smaller or larger total biomass than no dispersal. I used for this
classification, the geometric method of Arditi et al. [2]. For general information of
the effects of patchiness and migration in both continuous and discrete cases, and the
results beyond the logistic model, the reader is referred to the work of Levin [26, 27],
DeAngelis et al. [7, 8, 9, 10], Freedman et al. [18], Zaker et al. [35] and Elbetch et al.
[16, 17].

Our aim in the present paper is to study the effect of the migration on the total
population with the assumption that some sub populations increase faster than the oth-
ers. Mathematically, this assumption means that some growth rates in the equation (2)
have the form ri/ε , where ε is assumed to be a small positive number. Under this
assumption, the first term in the right hand side of (1) takes the following form:

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

rixi

(
1− xi

Ki

)
if i = 1, . . . ,m,

ri

ε
xi

(
1− xi

Ki

)
if i = m+1, . . . ,n.

(11)

In our main result of Theorem 4.3, we prove the numerical results of [13] under the
assumption that one growth rate is much larger than the other two, i.e the system (1),
(3), (11) for (n,m) = (3,2) . In particular, we prove the existence of at most two
positive values of migration rate, solution of the following equation:

Total equilibrium population = Sum of carrying capacities.

We recall that, the numerical simulations of [13] are given for matrix Γ which is sym-
metric and irreducible. Note that, in the numerical result of [14], Elbetch et al. proved
for three-patch model, when the matrix Γ is irreducible and not necessarily symmetric,
the existence of at least three positive values of migration rate for which the total equi-
librium population equals its initial state without migration (see Figures 4,5 and 6 in
[14]).

The paper is organized as follows. In Section 2, some proprieties of the model (1),
(3), (11) have been recalled as functions of the two parameters ε and β . In Section
3, Two-patch model with one growth rate being much larger than the second one is
considered, we compare the total equilibrium population with the sum of two capacities
when ε goes to zero. In Section 4, Three-patch model is studied in both cases: the case
when two growth rates are much larger than the third one and the case when one growth
rate is much larger than the other two. In Section 5, the model in the general case is
considered, with the hypothesis that some growth rates are much larger than the others.
We have given some comparisons between the total equilibrium population and the
sum of carrying capacities. The conclusion is given in Section 6. The paper ends with
two appendices A and B, which in the first we show the global stability of the reduced
model (44) and in the second, we compute the second derivative of the total equilibrium
population of the same model.
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2. Model proprieties

Our objective in this section, is to recall some properties of the model (1), (3),
(11), and also some essentials results of [13, 14] with respect to parameters β and ε .
First, for the non-negativity of the solutions of (1), (3), (11), we have the following
proposition [13, Prop. 2.1] and [14, Prop. 2.1]:

PROPOSITION 2.1. The domain Rn
+ = {(x1, . . . ,xn) ∈ Rn/xi � 0, i = 1, . . . ,n} is

positively invariant for the system (1), (3), (11).

We recall that, when the matrix of migration Γ is irreducible, System (1), (3), (11)
admits a unique positive equilibrium which is globally asymptotically stable (GAS), see
[3, Theorem 2.2], [4, Theorem 1] or [13, Theorem 6.1]. In what follows, the positive
equilibrium point of (1), (3), (11) is denoted by E∗(β ,ε) = (x∗1(β ,ε), . . . ,x∗n(β ,ε)) and
the sum of x∗i (β ,ε) for i = 1, . . . ,n , is denoted by X∗

T (β ,ε) . Note that, X∗
T (0,ε) =

K1 + . . .+Kn . We denote also by δ := (δ1, . . . ,δn)T the positive vector which generates
the vector space kerΓ . For the existence, uniqueness, and positivity of δ see Lemma
1 of Cosner et al. [6] and Lemma 1 of Elbetch et al. [14]. In [22, Lemma 2.1], Guo
et al. gives explicit formulas of the components of the vector δ , with respect of the
coefficients of Γ . We denote also in all this article αi = ri/Ki . We recall the following
result of [14, Prop 3.4], which describes the total equilibrium population for perfect
mixing (i.e when β → ∞ in (1), (3), (11)):

PROPOSITION 2.2. Consider the system (1), (3), (11). We have:

X∗
T (+∞,ε) := lim

β→∞
X∗

T (β ,ε) =
n

∑
i=1

δi
∑n

i=m+1 riδi + ε ∑m
i=1 δiri

∑n
i=m+1 αiδ 2

i + ε ∑m
i=1 δ 2

i αi
. (12)

If the matrix Γ is symmetric, the limit (12) specializes to the formula given in [13,
Equation (24)]:

X∗
T (+∞,ε) = n

∑n
i=m+1 ri + ε ∑m

i=1 ri

∑n
i=m+1 αi + ε ∑m

i=1 αi
. (13)

We recall the formula of the derivative of the total equilibrium population X∗
T (β ,ε)

given in [14, Prop. 4.7] for Γ non symmetric and in [13, Lemma 3.3] for Γ symmetric:

PROPOSITION 2.3. The derivative of X∗
T with respect to β at β = 0 is given by:

dX∗
T

dβ
(0,ε) =

m

∑
i=1

1
ri

n

∑
j=1, j �=i

(γi jKj − γ jiKi)+ ε
n

∑
i=m+1

1
ri

n

∑
j=1, j �=i

(γi jKj − γ jiKi). (14)

In [13, 14], Elbetch et al. have answered in some particular cases of the model (1),
(3), (11) for n = m to the following important question: Is it possible, depending on the
migration rate, that the total equilibrium population X∗

T be larger than the sum of the
capacities ∑i Ki ? This question is of ecological importance since the answer gives the
conditions under which dispersal is either beneficial or detrimental to total equilibrium
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population. Note that, this last question has been studied by many researches (see
[1, 2, 7, 8, 9, 13, 14, 18, 19, 20, 21]). Elbetch et al. [13] proved that, if all the patches
do not differ with respect to the intrinsic growth rate (i.e., r1 = . . . = rn) , then the
effect of migration is always detrimental. In the case when (K1, . . . ,Kn)T ∈ kerΓ (if
the matrix Γ is symmetric, the condition (K1, . . . ,Kn)T ∈ kerΓ means that the patches
do not differ with respect to the carrying capacity), migration has no effect on the total
equilibrium population. An example when the effect of migration is always beneficial,
is in the case when Γ is symmetric and all the patches do not differ with respect to the
parameter α = r/K quantifying intraspecific competition (i.e., α1 = . . . ,αn) (see also
[14, Prop. 4.2] for another example when Γ is non symmetric).

It was shown by Arditi et al. [1, Proposition 2, page 54], for Two-patch model,
that only three situations can occur: the case where the total equilibrium population is
always greater than the sum of carrying capacities, the case where it is always smaller,
and a third case, where the effect of migration is beneficial for lower values of the
migration coefficient β and detrimental for the higher values. More precisely, it was
shown in [1] that, if n= 2 in (1), (3), (11) (i.e the system (15)), the following trichotomy
holds

• If X∗
T (+∞,ε) > K1 +K2 then X∗

T (β ,ε) > K1 +K2 for all β > 0 and ε > 0.

• If dX∗
T

dβ (0,ε) > 0 and X∗
T (+∞,ε) < K1 +K2 , then there exists β0(ε) > 0 such that

X∗
T (β ,ε) > K1 +K2 for 0 < β < β0(ε) , X∗

T (β ,ε) < K1 +K2 for β > β0(ε) and
X∗

T (β0,ε) = K1 +K2 .

• If dX∗
T

dβ (0,ε) < 0, then X∗
T (β ,ε) < K1 +K2 for all β > 0 and ε > 0.

Therefore, the condition X∗
T (β ,ε) = K1 +K2 holds only for β = 0 and at most for one

positive value β = β0(ε) . The value β0(ε) exists if and only if d
dβ X∗

T (0,ε) > 0 and
X∗

T (+∞,ε) < K1 +K2 .
In [13, Section 5.2], Elbetch et al. have considered the model (1), (3), (11) for n =

3 with Γ is symmetric, and shown by numerical simulations the following situations,
which do not exist in the two-patch model:

• The case where dX∗
T

dβ (0,ε) < 0 and X∗
T (+∞,ε) > K1 +K2 +K3 .

• The case where dX∗
T

dβ (0,ε) > 0 and X∗
T (+∞,ε) > K1 +K2 +K3 and there exist

values of β for which X∗
T (β ,ε) < K1 +K2 +K3 .

• The case where dX∗
T

dβ (0,ε) < 0 and X∗
T (+∞,ε) < K1 +K2 +K3 and there exist

values of β for which X∗
T (β ,ε) > K1 +K2 +K3 .

Therefore the equality X∗
T (β ,ε) = K1 + K2 + K3 can occur for two positive values of

β , not only for a unique positive value as in the two-patch case.
In [14, Section 6], Elbetch et al. have reconsidered the three-patch model with Γ

is not symmetric. The novelty was showing when Γ is not symmetric is the existence



Differ. Equ. Appl. 15, No. 4 (2023), 323–359. 329

of three positive values of migration rate solution of the following equation:

Total equilibrium population = Sum of three carrying capacities,

i.e. the following situation hold:

• The case where dX∗
T

dβ (0,ε) > 0 and X∗
T (+∞,ε) < K1 +K2 +K3 , and there exists

three values 0 < β1 < β2 < β3 for which we have:

X∗
T (β ,ε) =

{
> K1 +K2 +K3 for β ∈]0,β1[∪]β2,β3[,

< K1 +K2 +K3 for β ∈]β1,β2[∪]β3,∞[.

3. Two-patch model where one growth rate is much larger than the second one

In this section, we consider the two-patch model and we assume that the growth
rate r2 is much larger than r1 , i.e the system (1), (3), (11) for (n,m) = (2,1) . For
simplicity we denote γ2 := γ12 > 0 the migration rate from patch 2 to patch 1 and
γ1 := γ21 > 0 from patch 1 to patch 2. The model is written:

⎧⎪⎪⎨
⎪⎪⎩

dx1

dt
= r1x1

(
1− x1

K1

)
+ β (γ2x2− γ1x1) ,

dx2

dt
=

r2

ε
x2

(
1− x2

K2

)
+ β (γ1x1− γ2x2) ,

(15)

where ε is assumed to be a small positive number. The derivative of X∗
T (β ,ε) with

respect to β at β = 0 becomes:

dX∗
T

dβ
(0,ε) = (γ2K2 − γ1K1)

(
1
r1

− ε
r2

)
, (16)

which is the formula [1, Equation A.1] given by Arditi et al with ε = 1 and γ1 = γ2 = 1.
The behavior of the model (15) for perfect mixing (i.e β → ∞) rewritten:

X∗
T (+∞,ε) = (γ1 + γ2)

εγ2r1 + γ1r2

εγ2
2 α1 + γ2

1 α2
, (17)

where αi = ri/Ki ; which is the formula [2, Equation 7] given by Arditi et al with ε = 1.
First, we have the result:

THEOREM 3.1. Let (x1(t,ε),x2(t,ε)) be the solution of the system (15) with ini-
tial condition (x0

1,x
0
2) satisfying x0

i � 0 for i = 1,2 . Let z(t) be the solution of the
differential equation

dx1

dt
= r1x1

(
1− x1

K1

)
+ β (γ2K2− γ1x1) =: ϕ(x1), (18)
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with initial condition z(0) = x0
1 . Then, when ε → 0 , we have

x1(t,ε) = z(t)+oε(1), uniformly for t ∈ [0,+∞) (19)

and, for any t0 > 0 , we have

x2(t,ε) = K2 +oε(1), uniformly for t ∈ [t0,+∞). (20)

Proof. When ε → 0, the system (15) is a slow-fast system, with one slow variable,
x1 , and one fast variable, x2 . Tikhonov’s theorem [28, 30, 31] prompts us to consider
the dynamics of the fast variable in the time scale τ = 1

ε t . One obtains

dx2

dτ
= r2x2

(
1− x2

K2

)
+ εβ (γ1x1 − γ2x2). (21)

In the limit ε → 0, we find the fast dynamics

dx2

dτ
= r2x2

(
1− x2

K2

)
. (22)

The slow manifold is given by the positive equilibrium of the system (22), i.e x2 = K2 ,
which is GAS in the positive axis. When ε goes to zero, Tikhonov’s theorem ensures
that after a fast transition toward the slow manifold, the solutions of (15) converge to the
solutions of the reduced model (18), obtained by replacing x2 = K2 into the dynamics
of the slow variable.

The differential equation (18) admits as a positive equilibrium

x∗1(β ,0+) :=
K1

2
− β

2α1
γ1 +

1
2α1

√
γ2
1 β 2 +(4α1γ2K2 −2r1γ1)β + r2

1. (23)

As ϕ(x1) > 0 for all 0 � x1 < x∗1(β ,0+) and ϕ(x1) < 0 for all x1 > x∗1(β ,0+) then,
the equilibrium x∗1(β ,0+) is GAS in the positive axis, so, the approximation given by
Tikhonov’s theorem holds for all t � 0 for the slow variable and for all t � t0 > 0 for
the fast variable, where t0 is as small as we want. Therefore, let z(t) be the solution of
the reduced model (18) of initial condition z(0) = x0

1 , then, when ε → 0, we have the
approximations (19) and (20). �

As a corollary of the previous theorem, we have the following result, which gives
the limit of the total equilibrium population X∗

T (β ,ε) of the model (15) when ε goes
to zero:

COROLLARY 3.1. We have:

X∗
T (β ,0+) := lim

ε→0
X∗

T (β ,ε) = lim
ε→0

(x∗1(β ,ε)+ x∗2(β ,ε)) (24)

=
K1

2
+K2− β

2α1
γ1 +

1
2α1

√
γ2
1 β 2 +(4α1γ2K2−2r1γ1)β + r2

1.



Differ. Equ. Appl. 15, No. 4 (2023), 323–359. 331

Proof. According to the equations (19), (20) and (23), when ε goes to zero, the
equilibrium E∗(β ,ε) of the model (15) is converge to E∗(β ,0+) := (x∗1(β ,0+),K2) ,
where x∗1(β ,0+) is given in (23).The sum of the coordinates of E∗(β ,0+) gives the
formula (24). �

In the following proposition, we calculate the derivative and the formula of perfect
mixing (i.e when β → ∞) of the total equilibrium population defined by (24).

PROPOSITION 3.1. Consider the total equilibrium population (24). Then,

dX∗
T

dβ
(0,0+) :=

−γ1K1 + γ2K2

r1
, (25)

and

X∗
T (+∞,0+) :=

γ1 + γ2

γ1
K2. (26)

Proof. The derivative of the total equilibrium population X∗
T (β ,0+) defined by

(24) with respect to β is:

dX∗
T

dβ
(β ,0+) = − γ1

2α1
+

1
2α1

γ2
1 β +2γ2K2α1 − γ1r1√

γ2
1 β 2 +(4γ2K2α1 −2γ1r1)β + r2

1

. (27)

In particular, the derivative of the total equilibrium population at β = 0 is given by the
formula (25).

By taking the limit of (24) when β → ∞ , we get that the total equilibrium popula-
tion X∗

T (β ,0+) tends to (26). �

We consider the regions in the set of the parameters γ1 and γ2 , denoted J0 and
J1 defined by:

J0 =
{

(γ1,γ2) :
γ2

γ1
>

K1

K2

}
, J1 =

{
(γ1,γ2) :

γ2

γ1
<

K1

K2

}
. (28)

We have the following result which gives the conditions for which patchiness is benefi-
cial or detrimental in model (15) when ε goes to zero.

THEOREM 3.2. Let J0 and J1 be the domains defined in (28). Consider the
total equilibrium population X∗

T (β ,0+) given by (24). Then, we have:

• If (γ1,γ2) ∈ J0 then X∗
T (β ,0+) > K1 +K2 , for all β > 0 .

• If (γ1,γ2) ∈ J1 then X∗
T (β ,0+) < K1 +K2 , for all β > 0 .

• If γ2
γ1

= K1
K2

, then x∗1(β ,0+) = K1 and x∗2(β ,0+) = K2 for all β � 0 . Therefore

X∗
T (β ,0+) = K1 +K2 for all β � 0 .
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Proof. First, we try to solve the equation X∗
T (β ,0+) = K1 +K2 with respect to β ,

the solutions of this last equation give the points of intersection between the curve of
the total equilibrium population β �→ X∗

T (β ,0+) and the straight line β �→K1 +K2 . For
any β � 0, we have

X∗
T (β ,0+) = K1 +K2 ⇐⇒ 1

2α1

√
γ2
1 β 2 +[4α1γ2K2 −2r1γ1]β + r2

1 =
K1

2
+

β
2α1

γ1

⇐⇒
√

γ2
1 β 2 +[4α1γ2K2 −2r1γ1]β + r2

1 = r1 + γ1β

⇐⇒4α1γ2K2 −2r1γ1 = 2r1γ1

⇐⇒α1γ2K2 = r1γ1

⇐⇒γ2K2 = K1γ1 ⇐⇒ dX∗
T

dβ
(0,0+) = 0.

So, if dX∗
T

dβ (0,0+) �= 0 then β = 0 and the curve of the total equilibrium population inter-
sects the straight line β �→ K1 +K2 in a unique point which is (0,K1 +K2) . Therefore,
we conclude that the first and second items of the theorem hold. �

We can also show Theorem 3.2 by using Prop A.1 of [14].

0

D1
D0

D2

γ1

γ2
γ2
γ1
= K1

K2

γ2
γ1
= α2

α1

Figure 1: The domains D0 , D1 and D2 where r2 > r1 (i.e. α2
α1

> K1
K2

).

Indeed, if r2 is much larger than r1 , then the line γ2
γ1

= r2K1
r1K2

becomes a vertical
line in the set of parameters γ1 and γ2 . Therefore, the domain D1 in Fig. 1 (see Fig. 7
of [14]) disappears and there remain the two domains D0 and D2 which are the same as
the both domains J0 and J1 respectively given in (28). So, if (γ1,γ2) ∈ D0 then by
the item 2 of [14, Prop. A.1], X∗

T (β ,0+) > K1 +K2 for all β > 0, and if (γ1,γ2) ∈ D2

then, X∗
T (β ,0+) < K1 +K2 for all β > 0.

Note that the critical value β0 > 0 of the migration rate given in [14, Prop. A.1 ]
and given also in [1, Prop.2] for the case γ1 = γ2 = 1, such that the effect is beneficial
for lower values of β on the total equilibrium population and detrimental for the higher
values; is written for our model (15) as follows:

β0(ε) =
(r2 − r1 ε)α2α1

(α1ε + α2)(γ2ε α1 − γ1α2)
. (29)
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When ε → 0, we have limε→0 β0(ε) = −α1K2
γ1

< 0.
Biologically speaking, the existence of a faster growing sub population compared

to the second one causes the critical value of migration rate to disappear. Thus, only
three possible situations remain which the total equilibrium populationmay take instead
of four, either the effect is beneficial, detrimental or not to depend on the migration rate.

In the following proposition, we show that, the function β �→ X∗
T (β ,0+) is mono-

tonic in [0,+∞[ .

PROPOSITION 3.2. If (γ1,γ2) ∈ J0 (resp. (γ1,γ2) ∈ J1 ), then the total equilib-
rium population X∗

T (β ,0+) is increasing (resp. decreasing) in [0,+∞[ .

Proof. By the equation (27), we have:

dX∗
T

dβ
(β ,0+) = 0

⇐⇒ −1/2
γ1

√
r1

2−2r1β γ1 + β 2γ1
2 +4α1β K2γ2 + r1γ1−β γ1

2−2α1K2γ2√
r1

2−2r1β γ1 + β 2γ1
2 +4α1β K2γ2α1

= 0

⇐⇒ 4r1γ1α1K2γ2−4α1
2K2

2γ2
2 = 0

⇐⇒ γ1K1 −K2γ2 = 0.

This last equation prove that dX∗
T

dβ (β ,0+) > 0 for all β if (γ1,γ2)∈J0 , and dX∗
T

dβ (β ,0+)
< 0 for all β if (γ1,γ2) ∈ J1 . �

4. Three-patch model with two time scales dynamics

In this section, we consider the three-patch model, i.e the model (1), (3), (11) for
(n,m) = (3,1) . Our aim in what follows is to study the behavior of the model when
two growth rates are much larger than the third one and we examine also the case when
one growth rate is much larger than the other two. In particular, the aim is to compare
the total equilibrium population with the sum of three carrying capacities.

4.1. Two growth rates are much larger than the third one

We assume that the growth rates r2 and r3 of the second and the third patches
respectively are much larger than r1 . One can write the model (1), (11) for n = 3 and
m = 1 in the following way:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= r1x1

(
1− x1

K1

)
+ β (−(γ21 + γ31)x1 + γ12x2 + γ13x3),

dx2

dt
=

r2

ε
x2

(
1− x2

K2

)
+ β (γ21x1− (γ12 + γ32)x2 + γ23x3),

dx3

dt
=

r3

ε
x3

(
1− x3

K3

)
+ β (γ31x1 + γ32x2− (γ13 + γ23)x3),

(30)
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where ε is assumed to be a small positive number.
First, we have the following result:

THEOREM 4.1. Let (x1(t,ε),x2(t,ε),x3(t,ε)) be the solution of the system (30)
with initial condition (x0

1,x
0
2,x

0
3) satisfying x0

i � 0 for i = 1,2,3 . Let z(t) be the solu-
tion of the differential equation

dx1

dt
= r1x1

(
1− x1

K1

)
+ β (b−ax1) =: ϕ(x1), (31)

with a = γ21 + γ31,b = γ12K2 + γ13K3 and initial condition z(0) = x0
1 . Then, when

ε → 0 , we have

x1(t,ε) = z(t)+oε(1), uniformly for t ∈ [0,+∞) (32)

and, for any t0 > 0 , we have

xi(t,ε) = Ki +oε(1), i = 2,3, uniformly for t ∈ [t0,+∞). (33)

Proof. When ε → 0, the system (30) is a slow-fast system, with one slow variable,
x1 , and two fast variables, x2 and x3 . Tikhonov’s theorem [28, 30, 31] prompts us to
consider the dynamics of the fast variables in the time scale τ = 1

ε t . One obtains

⎧⎪⎪⎨
⎪⎪⎩

dx2

dτ
= r2x2

(
1− x2

K2

)
+ εβ (γ21x1− (γ12 + γ32)x2 + γ23x3),

dx3

dτ
= r3x3

(
1− x3

K3

)
+ εβ (γ31x1 + γ32x2− (γ13 + γ23)x3).

(34)

In the limit ε → 0, we find the fast dynamics⎧⎪⎪⎨
⎪⎪⎩

dx2

dτ
= r2x2

(
1− x2

K2

)
,

dx3

dτ
= r3x3

(
1− x3

K3

)
.

(35)

The slow manifold is given by the positive equilibrium point of the system (35), i.e
(x2,x3) = (K2,K3) , which is GAS in the interior of the positive cone. When ε goes
to zero, Tikhonov’s theorem ensures that after a fast transition toward the slow mani-
fold, the solutions of (30) converge to solutions of the reduced model (31), obtained by
replacing x2 = K2 and x3 = K3 into the dynamics of the slow variable.

The differential equation (31) admits

x∗1(β ,0+) :=
K1

2
− β

2α1
a+

1
2α1

√
a2β 2 +(4α1b−2r1a)β + r2

1, (36)

as a positive equilibrium point, which is GAS in the positive axis by the same reason
as the point (23), so, the approximation given by Tikhonov’s theorem holds for all
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t � 0 for the slow variable and for all t � t0 > 0 for the fast variables, where t0 is
as small as we want. Therefore, let z(t) be the solution of the reduced model (31) of
initial condition z(0) = x0

1 , then, when ε → 0, we have the approximations (32) and
(33). �

As a corollary of the previous theorem, we have the following result which gives
the limit of the total equilibrium population X∗

T (β ,ε) of the model (30) when ε goes
to zero:

COROLLARY 4.1. We have:

X∗
T (β ,0+) := lim

ε→0
X∗

T (β ,ε) = lim
ε→0

(x∗1(β ,ε)+ x∗2(β ,ε)+ x∗3(β ,ε))

=
K1

2
+K2 +K3− β

2α1
a+

1
2α1

√
a2β 2 +(4α1b−2r1a)β + r2

1. (37)

Proof. According to the equations (32), (33) and (36), when ε goes to zero, the
equilibrium E∗(β ,ε) of the model (30) converges to E∗(β ,0+) := (x∗1(β ,0+),K2,K3) ,
where x∗1(β ,0+) is given in (36).The sum of the coordinates of E∗(β ,0+) gives the
formula (37). �

PROPOSITION 4.1. Consider the total equilibrium (37). Then,

dX∗
T

dβ
(0,0+) =

−aK1 +b
r1

, (38)

and

X∗
T (+∞,0+) := K2 +K3 +

b
a
. (39)

Proof. The derivative of the total equilibrium population X∗
T (β ,0+) defined in

(37) with respect to β is:

dX∗
T

dβ
(β ,0+) = − a

2α1
+

1
2α1

a2β +2bα1−ar1√
a2β 2 +(4bα1−2ar1)β + r2

1

. (40)

In particular, the derivative of the total equilibrium population at β = 0 is given by
(38).

By taking the limit of (37) when β → ∞ , we get that the total equilibrium popula-
tion X∗

T (β ,0+) tend to the limit (39). �
We consider the regions in the set of the parameters a and b , denoted D0 and D1

defined by:
D0 = {(a,b) : b > aK1} , D1 = {(a,b) : b < aK1} (41)

We have the following result which gives the conditions for which patchiness is benefi-
cial or detrimental in model (30) when ε goes to zero.
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COROLLARY 4.2. Consider the equation X∗
T (β ,0+) defined in (37). Let D0 and

D1 be the domains defined by (41). Then, we have

• If (a,b) ∈ D0 then X∗
T (β ,0+) > K1 +K2 +K3 , for all β > 0 .

• If (a,b) ∈ D1 then X∗
T (β ,0+) < K1 +K2 +K3 , for all β > 0 .

• If aK1 = b, then x∗1(β ,0+) = K1,x∗2(β ,0+) = K2 and x∗2(β ,0+) = K3 for all
β � 0 . Therefore X∗

T (β ,0+) = K1 +K2 +K3 for all β � 0 .

Proof. The result is a consequence of Theorem 3.2. �

REMARK 4.1. When ε → 0, the condition aK1 = b is equivalent to (K1,K2,K3)T ∈
kerΓ . Indeed, if (K1,K2,K3)T ∈ kerΓ then⎧⎪⎪⎨

⎪⎪⎩
−(γ21 + γ31)K1 + γ12K2 + γ13K3 = 0,

γ21K1− (γ12 + γ32)K2 + γ23K3 = 0,

γ31K1 + γ32K2 − (γ13 + γ23)K3 = 0,

(42)

The first equation of (42) gives aK1 = b .
Now, when ε → 0, if aK1 = b , then (K1,K2,K3) is an equilibrium of (30), i.e

Γ(K1,K2,K3)T = 0, so (K1,K2,K3)T ∈ kerΓ

Note that, Elbetch et al. [14, Prop. 4.5] have shown that the total equilibrium
population is independent of the migration rate β if and only if (K1, . . . ,Kn)T ∈ kerΓ ,
which is the same with the item 3 of Corollary 4.2.

In [14, Section 6], Elbetch et al. showed that, for the three-patch model, the exis-
tence of at least three positive values of migration rate such that X∗

T (β ) = K1 +K2 +K3 .
Biologically speaking, the results of Corollary 4.2 prove that the existence of two faster
sub populations compared to the third one, causes the all critical values of migration
rate to disappear. Thus, when ε → 0, the total equilibrium population of the model
(30) behaves like the total equilibrium population of the two-patch model (15), i.e there
are only three possible situations that the total population can take, either the effect is
beneficial, detrimental or not to depend on the migration rate.

4.2. One growth rate is much larger than the other two

In this section, we assume that the growth rate r3 of the third patch is much larger
than r1 and r2 . One can write the model (1), (3), (11) for (n,m) = (3,2) in the follow-
ing way: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= r1x1

(
1− x1

K1

)
+ β (−(γ21 + γ31)x1 + γ12x2 + γ13x3),

dx2

dt
= r2x2

(
1− x2

K2

)
+ β (γ21x1− (γ12 + γ32)x2 + γ23x3),

dx3

dt
=

r3

ε
x3

(
1− x3

K3

)
+ β (γ31x1 + γ32x2− (γ13 + γ23)x3),

(43)
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where ε is assumed to be a small positive number.
We have the following theorem:

THEOREM 4.2. Let (x1(t,ε),x2(t,ε),x3(t,ε)) be the solution of the system (43)
with initial condition (x0

1,x
0
2,x

0
3) satisfying x0

i � 0 for i = 1,2,3 . Let (z1(t),z2(t)) be
the solution of the system⎧⎪⎪⎨
⎪⎪⎩

dx1

dt
= r1x1

(
1− x1

K1

)
+ β (−(γ21 + γ31)x1 + γ12x2 + γ13K3) =: f1(x1,x2),

dx2

dt
= r2x2

(
1− x2

K2

)
+ β (γ21x1− (γ12 + γ32)x2 + γ23K3) =: f2(x1,x2),

(44)

with initial condition (z1(0),z2(0)) = (x0
1,x

0
2) . Then, when ε → 0 , we have

xi(t,ε) = zi(t)+oε(1), i = 1,2 uniformly for t ∈ [0,+∞] (45)

and, for any t0 > 0 , we have

x3(t,ε) = K3 +oε(1), uniformly for t ∈ [t0,+∞]. (46)

Proof. When ε → 0, the system (43) is a slow-fast system, with two slow vari-
ables, x1 and x2 , and one fast variable x3 . We consider the dynamics of the fast
variable in the time scale τ = 1

ε t . One obtains

dx3

dτ
= r3x3

(
1− x3

K3

)
+ εβ (γ31x1 + γ32x2− (γ13 + γ23)x3). (47)

In the limit ε → 0, we find the fast dynamics

dx3

dτ
= r3x3

(
1− x3

K3

)
. (48)

The slow manifold is given by the positive equilibrium point of the equation (48), i.e
x3 = K3 , which is GAS in the positive axis. Tikhonov’s theorem [28, 30, 31] ensures
that after a fast transition toward the slow manifold, the solutions of (43) are approxi-
mated by the solutions of the reduced model (44), obtained by replacing x3 = K3 into
the dynamics of the slow variable. The approximations (45) and (46) follow from
Tikhonov’s theorem. �

4.2.1. Global stability of the reduced model (44)

For β = 0 the system (44) is uncoupled and there exists an equilibrium (K1,K2)
interior to the positive quadrant which is GAS. The problem is whether the equilibrium
continues to be positive and GAS for any β or not. Clearly, when β is sufficiently
small, from elementary perturbation theory it follows that there always exists an interior
equilibrium. First, we start by studying the existence of equilibrium of system (44) (see
Prop. A.1). Second, in Theorem A.1, we prove the global stability of System (44).

We denoted E ∗(β ,0+) := (x∗1(β ,0+),x∗2(β ,0+)) the equilibrium of (44) and
X∗

T (β ,0+) := x∗1(β ,0+)+ x∗2(β ,0+)+K3 the total equilibrium population.
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4.2.2. Perfect mixing

For the behavior of the reduced model (44) for large migration rate, i.e when β →
∞ , we prove the following result:

PROPOSITION 4.2. We have:

lim
β→+∞

E ∗(β ,0+) =
K3

δ3
(δ1,δ2),

where δ1,δ2 and δ3 are given by:⎧⎪⎪⎨
⎪⎪⎩

δ1 = γ12γ13 + γ12γ23 + γ32γ13,

δ2 = γ21γ13 + γ21γ23 + γ31γ23,

δ3 = γ21γ32 + γ31γ12 + γ31γ32.

(49)

Proof. Denote: E ∗(∞,0+) = K3
δ3

(δ1,δ2) . The equilibrium point E ∗(β ,0+) is the

solution in the positive cone R2
+ , of the equation Fβ = 0, where

Fβ : R
2 → R

2, (x1,x2) �−→ ( f β
1 (x1,x2), f β

2 (x1,x2)),

where f β
1 and f β

2 are defined by the first and the second equation of the right hand of
(44) respectively. Taking the limit β → ∞ , of Fβ gives

F∞ : R
2 → R

2, (x1,x2) �−→ ( f ∞
1 (x1,x2), f ∞

2 (x1,x2)) ,

where {
f ∞
1 (x1,x2) = −(γ21 + γ31)x1 + γ12x2 + γ13K3,

f ∞
2 (x1,x2) = γ21x1− (γ12 + γ32)x2 + γ23K3.

(50)

Since the matrix Γ = (γi j)3×3 is irreducible, the solution of the equation F∞ = 0 is
given by E ∗(∞,0+) . Therefore, when β → ∞ , the equilibrium E ∗(β ,0+) tend to
E ∗(∞,0+) . �

COROLLARY 4.3. Consider the total equilibrium of (43) when ε → 0 . Then,
when β → ∞ , the total equilibrium population X∗

T (β ,0+) := x∗1(β ,0+)+ x∗2(β ,0+)+
x∗3(β ,0+) tends to:

X∗
T (+∞,0+) =

K3

δ3
(δ1 + δ2 + δ3). (51)

Proof. As the equilibrium E ∗(β ,0+) tends to K3
δ3

(δ1,δ2) when β → ∞ , then

lim
β→∞

X∗
T (β ,0+) = lim

β→∞
(x∗1(β ,0+)+ x∗2(β ,0+)+ x∗3(β ,0+)) =

K3

δ3
(δ1 + δ2 + δ3). �
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4.2.3. Total population abundance

In this part, our aim is to compare the total equilibrium population X∗
T (β ,0+) of

(43) with the sum of three carrying capacities, by analyzing the stable positive equilib-
rium E ∗(β ,0+) of (44). When there is no migration (i.e β = 0) the total equilibrium
population equal to K1 + K2 + K3 . First for all, we give some proprieties of the total
equilibrium population X∗

T (β ,0+) .

LEMMA 4.1. The total equilibrium population X∗
T (β ,0+) of (43) satisfies the fol-

lowing relation:

X∗
T (β ,0+) = K1 +K2 +K3 + β

(−(γ21 + γ31)x∗1(β ,0+)+ γ12x∗2(β ,0+)+ γ13K3

α1x∗1(β ,0+)
(52)

+
γ21x∗1(β ,0+)− (γ12 + γ32)x∗2(β ,0+)+ γ23K3)

α2x∗2(β ,0+)

)
.

Proof. The equilibrium point E ∗(β ,0+) of the reduced model (44) satisfies:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 = r1x∗1(β ,0+)
(

1− x∗1(β ,0+)
K1

)
+ β (−(γ21 + γ31)x∗1(β ,0+)

+γ12x∗2(β ,0+)+ γ13K3),

0 = r2x∗2(β ,0+)
(

1− x∗2(β ,0+)
K2

)
+ β (γ21x∗1(β ,0+)

−(γ12 + γ32)x∗2(β ,0+)+ γ23K3).

(53)

Dividing the first equation in (53) by α1x∗1(β ,0+) and the second by α2x∗2(β ,0+) , we
obtain⎧⎪⎪⎨

⎪⎪⎩
x∗1(β ,0+) = K1 + β

−(γ21 + γ31)x∗1(β ,0+)+ γ12x∗2(β ,0+)+ γ13K3

α1x∗1(β ,0+)
,

x∗2(β ,0+) = K2 + β
γ21x∗1(β ,0+)− (γ12 + γ32)x∗2(β ,0+)+ γ23K3

α2x∗2(β ,0+)
.

(54)

Taking the sum of these expressions gives the total equilibrium population for reduced
model, and by approximation (46) we deduce the relation (52). �

LEMMA 4.2. The derivative of the total equilibrium population X∗
T (β ,0+) at β =

0 is given by:

dX∗
T

dβ
(0,0+) =

−(γ21 + γ31)K1 + γ12K2 + γ13K3

r1
+

γ21K1 − (γ12 + γ32)K2 + γ23K3

r2
.

(55)

Proof. By differentiating the equation (52), at β = 0, we get

dX∗
T

dβ
(0,0+) =

−(γ21 + γ31)x∗1(0,0+)+ γ12x∗2(0,0+)+ γ13K3

α1x∗1(0,0+)

+
γ21x∗1(0,0+)− (γ12 + γ32)x∗2(0,0+)+ γ23K3)

α2x∗2(0,0+)
,

(56)
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which gives (55), since x∗1(0,0+) = K1 and x∗2(0,0+) = K2 . �

In the remainder of this section, we denote:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 = K1r2(γ12 + γ31 + γ21)+K2r1(γ21 + γ32 + γ12),

c2 = −K1r2γ21K2 −2K1r2γ12K2 −K1
2r2γ31 −K1r2γ31K2

−K1
2r2γ21−K1r2γ13K3−K2r1γ32K1 −2K1

2r2γ12−K2
2r1γ12

+K2r1γ23K3 −K2r1γ12K1 −K2
2r1γ32,

c3 = K1r2γ13K3K2 +K1r2γ12K2
2 +K1

3r2γ12 +2K1
2r2γ12K2 +K1

2r2γ13K3.

(57)

As the matrix Γ = (γi j)3×3 is irreducible, then c1 > 0 and c3 > 0. We denote: ξ1 = c2
c1

,

ξ2 = c3
c1

, Δ = ξ 2
1 −4ξ2 and mi , i = 1, . . . ,5 are defined as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m1 = −ξ1−
√

Δ, m2 = −ξ1 +
√

Δ if Δ � 0,

m3 = −2m1(γ12 + γ21 + γ31)+4(γ12K1 + γ12K2 + γ13K3),

m4 = −2m2(γ12 + γ21 + γ31)+4(γ12K1 + γ12K2 + γ13K3),

m5 = 2ξ1(γ12 + γ21 + γ31)+4(γ12K1 + γ12K2 + γ13K3).

(58)

Notice that: ξ2 > 0, and if Δ = 0 then m3 = m4 = m5 .
We consider the regions in the set of parameters ξ1 and ξ2 , denoted J0 := J −

0 ∪
J +

0 ,J> := J −
> ∪J +

> and J< := J −
< ∪J +

< depicted in Fig. 2 and defined by:

J0 := J −
0 ∪J +

0 :

⎧⎪⎨
⎪⎩

J −
0 =

{
(ξ1,ξ2) : ξ2 = ξ 2

1
4 ,ξ1 < 0

}
,

J +
0 =

{
(ξ1,ξ2) : ξ2 = ξ 2

1
4 ,ξ1 > 0

}
.

(59)

J> := J −
> ∪J +

> :

⎧⎪⎨
⎪⎩

J −
> =

{
(ξ1,ξ2) : ξ2 >

ξ 2
1
4 ,ξ1 < 0

}
,

J +
> =

{
(ξ1,ξ2) : ξ2 >

ξ 2
1
4 ,ξ1 � 0

}
.

(60)

J< := J −
< ∪J +

< :

⎧⎪⎨
⎪⎩

J −
< =

{
(ξ1,ξ2) : 0 < ξ2 <

ξ 2
1
4 ,ξ1 < 0

}
,

J +
< =

{
(ξ1,ξ2) : 0 < ξ2 <

ξ 2
1
4 ,ξ1 > 0

}
.

(61)

We can now state our main result:

THEOREM 4.3. Consider the total equilibrium population X∗
T (β ,0+) of (43) when

ε → 0 . Let dX∗
T

dβ (0,0+) be the derivative of X∗
T (β ,0+) at β = 0 given by (55). Let

J0 := J −
0 ∪J +

0 ,J> := J −
> ∪J +

> and J< := J −
< ∪J +

< be the domains de-
picted in Fig. 2 and defined by (59), (60) and (61) respectively. Then,
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Figure 2: The domain J0 := J −
0 ∪J +

0 ,J> := J −
> ∪J +

> and J< := J −
< ∪J +

< in the
set of parameters ξ1 and ξ2 .

1. if (ξ1,ξ2) ∈ J< ∪J +
0 ∪J +

> , then, for all β � 0 :

X∗
T (β ,0+) =

⎧⎨
⎩

> K1 +K2 +K3 if
dX∗

T
dβ (0,0+) > 0,

< K1 +K2 +K3 if
dX∗

T
dβ (0,0+) < 0.

(62)

2. Let (ξ1,ξ2) ∈ J −
0 . Let m5 be given in (58).

(a) if (2K1 + ξ1)m5 < 0 then there exist unique β ∗ = α1ξ1(2K1+ξ1)
m5

> 0 such
that:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

if
dX∗

T
dβ (0,0+) > 0 then X∗

T (β ,0+) =

{
> K1 +K2 +K3 if 0 � β � β ∗,

< K1 +K2 +K3 if β � β ∗.

if
dX∗

T
dβ (0,0+) < 0 then X∗

T (β ,0+) =

{
< K1 +K2 +K3 if 0 � β � β ∗,

> K1 +K2 +K3 if β � β ∗.
(63)

(b) if (2K1 + ξ1)m5 � 0 with m5 �= 0 then the total equilibrium population
X∗

T (β ,0+) satisfies to (62).

(c) if m5 = 0 , then x∗1(β ,0+) = K1,x∗2(β ,0+) = K2 and x∗3(β ,0+) = K3 for all
β � 0 . Therefore, X∗

T (β ,0+) = K1 +K2 +K3 for all β .

3. Let (ξ1,ξ2) ∈ J −
> . Let m1,m2,m3 and m4 be given in (58).

(a) if m3(m1 − 2K1) > 0 and m4(m2 − 2K1) > 0 , then there exist two values

of migration rate β ∗
1 = α1m1(m1−2K1)

m3
> 0 and β ∗

2 = α1m2(m2−2K1)
m4

> 0 such
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that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if dX∗
T

dβ (0,0+) > 0 then X∗
T (β ,0+) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> K1 +K2 +K3

if β ∈ [0,β1]∪ [β2,∞[,
< K1 +K2 +K3

if β ∈ [β1,β2].

if
dX∗

T
dβ (0,0+) < 0 then X∗

T (β ,0+) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

< K1 +K2 +K3

if β ∈ [0,β1]∪ [β2,∞[,
> K1 +K2 +K3

if β ∈ [β1,β2].
(64)

(b) if m3(m1 − 2K1) � 0 with m3 �= 0 and m4(m2 − 2K1) > 0 or m3(m1 −
2K1) > 0 and m4(m2 − 2K1) � 0 with m4 �= 0 then there exist unique β ∗
such that, the total equilibrium population X∗

T (β ,0+) satisfies to (63).

(c) if m3(m1−2K1) � 0 and m4(m2−2K1) � 0 with m3 �= 0 and m4 �= 0 then,
the total equilibrium population X∗

T (β ,0+) satisfies to (62).

(d) if m3 = 0 or m4 = 0 , then x∗1(β ,0+) = K1,x∗2(β ,0+) = K2 and x∗3(β ,0+) =
K3 for all β � 0 . Therefore, X∗

T (β ,0+) = K1 +K2 +K3 for all β .

Proof. By Equation (52), the equality X∗
T = K1 +K2 +K3 is equivalent to β = 0

or

− (γ21K1r2 + γ31K1r2 + γ12K2r1 + γ32K2r1)x∗1x
∗
2 + γ12K1r2x

∗
2
2

+ γ13K3K1r2x
∗
2 + γ21K2r1x

∗
1
2 + γ23K3K2r1x

∗
1 = 0

(65)

Thus (x∗1,x
∗
2) is the solution of the following algebraic system:⎧⎪⎪⎨
⎪⎪⎩

−(γ21K1r2 + γ31K1r2 + γ12K2r1 + γ32K2r1)x∗1x
∗
2 + γ12K1r2x∗2

2

+γ13K3K1r2x∗2 + γ21K2r1x∗1
2 + γ23K3K2r1x∗1 = 0,

x∗1 + x∗2 = K1 +K2.

(66)

By the second equation of (66), we get x∗2 = K1 +K2 − x∗1 . Substitute x∗2 into the first
equation in (66) to obtain the following quadratic equation of x∗1 :

(x∗1)
2 + ξ1x

∗
1 + ξ2 = 0, (67)

where the coefficients ξ1 = c2/c1 and ξ2 = c3/c1 are given in (57).
(1) If (ξ1,ξ2) ∈ J< , then Δ < 0, and the equation (67) admits no solutions,

therefore, the system (66) admits no solutions. If (ξ1,ξ2) ∈ J +
0 , then Δ = 0, so

the equation (67) admits x∗1 = −ξ1/2 as solution which is negative. The case where
(ξ1,ξ2) ∈ J +

> , we have Δ > 0 and the equation (67) admits two negative solutions.
Thus, if (ξ1,ξ2) ∈ J<∪J +

0 ∪J +
> , then, the inequalities (62) are satisfied.
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(2) Let (ξ1,ξ2) ∈ J −
0 . The equation (67) admits the positive solution x∗1 =

−ξ1/2. By the second equation of (66), we deduce that x∗2 = K1 + K2 + ξ1
2 . So the

system (66) admits a unique solution given by (−ξ1
2 ,K1 +K2 + ξ1

2 ). If we replace this

last solution in the first equation of (44) we obtain β ∗ = α1ξ1(2K1+ξ1)
m5

with m5 �= 0.

So, if 2K1+ξ1
m5

> 0 then β ∗ is positive and the inequalities (63) are satisfied, otherwise,
β = 0 is the unique solution of the equation X∗

T = K1 +K2 +K3 , and (62) is satisfied.

If m5 = 0, then if we replace the solution (−ξ1
2 ,K1 +K2 + ξ1

2 ) in the first equation of

(44) we obtain −ξ1
2 = K1. Thus X∗

T (β ,0+) = K1 +K2 +K3 for all β .
(3) Let (ξ1,ξ2)∈J −

> , therefore, Δ > 0 and c2 < 0, then the equation (67) admits
two positive solutions given by x∗11 = m2

2 and x∗12 = m1
2 . By the second equation of (66),

we deduce: x∗21 = K1 +K2 − m2
2 , and x∗22 = K1 +K2 − m1

2 respectively. So the system
(66) admits two positive solutions given by: (x∗11,x

∗
21) and (x∗12,x

∗
22). If we replace the

first (resp. the second) solution in the first equation of (44) we obtain β ∗
1 = α1m1(m1−2K1)

m3

(resp. β ∗
2 = α1m2(m2−2K1)

m4
) .

We discuss the existence of β ∗
1 and β ∗

2 with respect to signs of m1(m1−2K1)
m3

and
m2(m2−2K1)

m4
respectively. In particular, if β ∗

1 and β ∗
2 are positive then the inequalities

(64) are satisfied. If m3 = 0 (resp. m4 = 0), then if we replace the solution (m1
2 ,K1 +

K2+ m1
2 ) (resp. (m2

2 ,K1+K2+ m2
2 )) in the first equation of (44), we obtain that m1

2 = K1

(resp. m2
2 = K1). Thus, X∗

T (β ,0+) = K1 +K2 +K3 for all β . �
Let S be a set of the non negative solutions of the equation X∗

T (β ,0+) = K1 +
K2 +K3 , which can be summarized as follows:

If Δ > 0 then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If ξ1 � 0 then S = {0},

If ξ1 < 0 then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If m3(m1−2K1) � 0, with m3 �= 0 and

m4(m2 −2K1) � 0 with m4 �= 0, then S = {0},
If m3(m1−2K1) > 0 and m4(m2 −2K1) � 0) or

(m3(m1 −2K1) � 0 and m4(m2−2K1) > 0

then S =
{

0,α1m1
(m1−2K1)

m3

}
or

S =
{

0,α1m2
(m2−2K1)

m4

}
respectively .

If m3(m1−2K1) > 0 and m4(m2 −2K1) > 0 then

S = {0,α1m1
(m1−2K1)

m3
,α1m2

(m2−2K1)
m4

},

If m3 = 0 or m4 = 0 then S = R+.

If Δ = 0 then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

If ξ1 < 0 then

⎧⎪⎨
⎪⎩

If m5(2K1 +ξ1) � 0 with m5 �= 0 then S = {0},
If m5(2K1 +ξ1) < 0, then S =

{
0,α1ξ1

2K1+ξ1
m5

}
,

If m5 = 0 then S = R+.
If ξ1 � 0 then S = {0}.

If Δ < 0 then S = {0}.
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REMARK 4.2. In Theorem 4.3, if dX∗
T

dβ (0,0+) = 0, then we discuss according to
the sign of the second derivative of the total equilibrium population. In the appendix B,
we have added the explicit calculations of the second derivative of X∗

T defined by (52).

In our result of Theorem 4.3, we prove the numerical results of [13] under the
assumption that one growth rate is much larger than the other two. In particular, we
prove the existence of two positive values of β solutions of X∗

T = K1 +K2 +K3 .
In [14, Prop. 4.5], Elbetch et al. have shown that, the equilibrium E∗(β ,ε) of (1),

(2), (3) does not depend on β if and only if (K1, . . . ,Kn)T ∈ kerΓ . In this case we have
E∗(β ,ε) = (K1, . . . ,Kn) for all β and for all ε > 0. Therefore, for three-patch model
(43), we have the result:

PROPOSITION 4.3. Consider the domains J −
0 and J −

> defined in (59) and (60)
respectively. Let m3,m4 and m5 be given in (58). We have

1. Let (ξ1,ξ2) ∈ J −
0 . The hypothesis in item 2 (c) of Theorem 4.3 is equivalent to

(K1,K2,K3)T ∈ kerΓ , i.e m5 = 0 if and only if (K1,K2,K3)T ∈ kerΓ .

2. Let (ξ1,ξ2) ∈ J −
> . The hypothesis in item 3 (d) of Theorem 4.3 is equivalent to

(K1,K2,K3)T ∈ kerΓ , i.e m3 = 0 or m4 = 0 if and only if (K1,K2,K3)T ∈ kerΓ .

Proof. For the proof, we prove the first point, the second is shown in the same
way as the first. If (ξ1,ξ2) ∈ J −

0 , then the system (66) admits unique solution given

by (−ξ1
2 ,K1 +K2 + ξ1

2 ). Suppose that m5 = 0 i.e

ξ1(γ12 + γ21 + γ31)+2(γ12K1 + γ12K2 + γ13K3) = 0. (68)

As ξ1 = −2K1 , so the equation (68) becomes

− (γ21 + γ31)K1 + γ12K2 + γ13K3 = 0. (69)

By the second equation of the reduced model (44) at equilibrium, we obtain:

γ21K1 − (γ12 + γ32)K2 + γ23K3 = 0. (70)

The sum of Equation (70) and (69) gives

γ31K1 + γ32K2 − (γ13 + γ23)K3 = 0. (71)

The equations (69), (70) and (71) show that (K1,K2,K3)T ∈ kerΓ .
Now, suppose that (K1,K2,K3)T ∈ kerΓ , then by the equation (69) we have:

0 = −(γ21 + γ31)K1 + γ12K2 + γ13K3 =
1
2

((γ21 + γ31)ξ1 +2(γ12K2 + γ13K3))

=
1
2

(ξ1(γ12 + γ21 + γ31)+2(γ12K1 + γ12K2 + γ13K3)) =
1
2
m5.

Hence, m5 = 0, which completes the demonstration of the first point. �
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5. The general case

In this section, we consider the model of multi-patch logistic growth, coupled by
asymmetric migration terms (1), (3), (11). Our goal is to generalize some results of the
previous sections. First, we start by the following situation:

5.1. All growth rates but one are much larger than the last one

We assume that the growth rates r2, . . . ,rn are much larger than r1 . The model
(1), (3), (11) is written under this assumption as:⎧⎪⎪⎨

⎪⎪⎩
dx1

dt
= r1x1

(
1− x1

K1

)
+ β ∑n

j=1, j �=1

(
γ1 jx j − γ j1x1

)
,

dxi

dt
=

ri

ε
xi

(
1− xi

Ki

)
+ β ∑n

j=1, j �=1 (γi jx j − γ jixi) , i = 2, · · · ,n,

(72)

where ε is assumed to be a small positive number.
We have the following theorem:

THEOREM 5.1. Let (x1(t,ε), . . . ,xn(t,ε)) be the solution of the system (72) with
initial condition (x0

1, . . . ,x
0
n) satisfying x0

i � 0 for i = 1, . . . ,n. Let z(t) be the solution
of the differential equation

dx1

dt
= r1x1

(
1− x1

K1

)
+ β (ξ − μx1) =: ϕ(x1), (73)

with μ = ∑n
j=2 γ j1,ξ = ∑n

j=2 γ1 jKj and initial condition z(0) = x0
1 . Then, when ε → 0 ,

we have
x1(t,ε) = z(t)+oε(1), uniformly for t ∈ [0,+∞) (74)

and, for any t0 > 0 , we have

xi(t,ε) = Ki +oε(1), i = 2, . . . ,n, uniformly for t ∈ [t0,+∞). (75)

Proof. Consequence direct of proof of Theorem 4.1. �

As a corollary of the previous theorem, we have the following result which gives
the limit of the total equilibrium population X∗

T (β ,ε) of the model (72) when ε goes
to zero:

COROLLARY 5.1. We have:

X∗
T (β ,0+) := lim

ε→0
X∗

T (β ,ε) =
K1

2
+K2 + . . .+Kn− β

2α1
μ (76)

+
1

2α1

√
μ2β 2 +(4α1ξ −2r1μ)β + r2

1.
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In particular, the derivative of the total equilibrium population (76) at β = 0 is
given by:

dX∗
T

dβ
(0,0+) =

−μK1 + ξ
r1

. (77)

By taking the limit of (76) when β → ∞ , we get that the total equilibrium population
X∗

T (β ,0+) tends to:

X∗
T (+∞,0+) = K2 + . . .+Kn +

ξ
μ

. (78)

We consider the regions in the set of the parameters μ and ξ , denoted J0 and
J1 defined by:

J0 = {(μ ,ξ ) : ξ > μK1} , J1 = {(μ ,ξ ) : ξ < μK1} (79)

We have the following result which gives the conditions for which the patchiness is
beneficial or detrimental in the model (72) when ε goes to zero.

COROLLARY 5.2. Consider the total equilibrium population X∗
T (β ,0+) defined

in (76). Let J0 and J1 be the domains defined by (79). Then, we have

• If (μ ,ξ ) ∈ J0 then X∗
T (β ,0+) > ∑n

i=1 Ki , for all β > 0 .

• If (μ ,ξ ) ∈ J1 then X∗
T (β ,0+) < ∑n

i=1 Ki , for all β < 0 .

• If ξ = μK1 , then x∗i (β ,0+) = Ki, i = 1, . . . ,n, for all β � 0 . Therefore X∗
T (β ,0+)

= ∑n
i=1 Ki for all β � 0 .

REMARK 5.1. The condition μK1 = ξ is equivalent to (K1, . . . ,Kn)T ∈ kerΓ . In-
deed, if (K1, . . . ,Kn)T ∈ kerΓ then

n

∑
j=1, j �=i

γi jKj − γ jiKi = 0, (80)

The first equation of (80) gives μK1 = ξ .
Now, when ε → 0, if μK1 = ξ , then (K1, . . . ,Kn) is a equilibrium of (72), i.e

Γ(K1, . . . ,Kn)T = 0, so (K1, . . . ,Kn)T ∈ kerT .

5.2. One growth rate is much larger than all others

We propose here to study the model (1), (3), (11) with the hypothesis that rn much
larger than r1, . . . ,rn−1 . On can write the model in the following way:⎧⎪⎪⎨

⎪⎪⎩
dxi

dt
= rixi

(
1− xi

Ki

)
+ β ∑n

j=1, j �=n (γi jx j − γ jixi) , i = 1, · · · ,n−1,

dxn

dt
=

rn

ε
xn

(
1− xn

Kn

)
+ β ∑n

j=1, j �=i (γn jx j − γ jnxn) ,
(81)

where ε is assumed to be small positive number.
We have the theorem:
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THEOREM 5.2. Let (x1(t,ε), . . . ,xn(t,ε)) be the solution of the system (81) with
initial condition (x0

1, . . . ,x
0
n) satisfying x0

i � 0 for i = 1, . . . ,n. Let z(t) be the solution
of the system:

ẋ = ψ(x)+ β (Lx+KnV ) =: ϒ(x), (82)

with initial condition zi(0)= x0
i for i = 1, . . . ,n−1 , x = (x1, . . . ,xn−1)T , L := (γi j)n−1×n−1

is the sub matrix of the matrix Γ , obtained by dropping the last row and the last column
of Γ , V is the vector defined by V := (γin)n−1×1 and

ψ(x) = (r1x1(1− x1/K1), · · · ,rn−1xn−1(1− xn−1/Kn−1))
T . (83)

Then, when ε → 0 , we have

xi(t,ε) = zi(t)+oε(1), i = 1, . . . ,n−1 uniformly for t ∈ [0,+∞) (84)

and, for any t0 > 0 , we have

xn(t,ε) = Kn +oε(1), uniformly for t ∈ [t0,+∞). (85)

Proof. The same proof of Theorem 4.1. �

5.2.1. Global stability of the reduced model (82)

Our goal in this part, is to prove the global stability of the system (82). First, we
start by the following proposition:

PROPOSITION 5.1. The positive cone R
n−1
+ is positively invariant for (82).

Proof. Assume that x j � 0 for all j and there exist i such that xi = 0. We have

dxi

dt
= β

(
∑
i�= j

γi jx j + γinKn

)
� 0. (86)

Hence, on the boundary of R
n−1
+ , the vector field associated to (82) either is tangent to

the boundary of R
n−1
+ , or points inward. The system (82) is cooperative. Indeed, it has

a jacobian matrix with no negative off-diagonal elements, given by:

Jϒ(x) = diag(ri −2αixi)+ βL. (87)

According to [32, Proposition B.7, page 267], no trajectory comes out of R
n−1
+ . There-

fore, R
n−1
+ is positively invariant for (82). �

For the boundedness of the solutions of the reduced model (82) we prove:
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PROPOSITION 5.2. For any non-negative initial condition, the solutions of System
(82) remain bounded, for all t � 0 . Moreover, the set

Λn−1 =
{

(x1, . . . ,xn−1) : x1 + . . .+ xn−1 � μ∗
2

μ∗
1

}
, (88)

where μ∗
1 = mini {1+ β γni} and μ∗

2 = ∑n−1
i=1

(ri+1)2
αi

+ β γinKn , is positively invariant
and is a global attractor for the system (82).

Proof. To show that all solutions are bounded, we consider the quantity defined
by XT (t) = x1(t)+ . . .+ xn−1(t) . So, we have

ẊT (t) =
n−1

∑
i=1

rixi

(
1− xi

Ki

)
−β

n−1

∑
i=1

γnixi + β

(
n−1

∑
i=1

γin

)
Kn. (89)

By Equation (107), the equation (89) becomes

ẊT (t) �
n−1

∑
i=1

−xi +
(ri +1)2

αi
−β

n−1

∑
i=1

γnixi + β

(
n−1

∑
i=1

γin

)
Kn. (90)

Therefore
ẊT (t) � −μ∗

1XT (t)+ μ∗
2 , for all t � 0, (91)

which gives

XT (t) �
(

XT (0)− μ∗
2

μ∗
1

)
e−μ∗

1 t +
μ∗

2

μ∗
1
, for all t � 0. (92)

Hence

XT (t) � max

(
XT (0),

μ∗
2

μ∗
1

)
, for all t � 0. (93)

Therefore, the solutions of System (82) are positively bounded and defined for all t � 0.
From (92) it can be deduced that the set Λn−1 is positively invariant and it is a global
attractor for the system (82). �

LEMMA 5.1. Assume that the matrix Γ is irreducible. The reduced model (82)
does not admits the origin as equilibrium.

Proof. We suppose that the origin is an equilibrium of (82), then ϒ(0) = 0, which
equivalent to VT = 0, i.e γ1n = . . . = γn−1,n = 0. So, we obtain a contradiction since Γ
is irreducible. �

THEOREM 5.3. Assume that the two matrices L and Γ are irreducible. The re-
duced model (82) admits unique equilibrium point in the interior of the positive cone
R

n−1
+ \ {0} which is GAS.
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Proof. To show the global stability of the reduced model (82) in this case, we use
the following result of Hirsch [25]. If the cooperative system

ẋ = F(x), (94)

has the following proprieties:

• JF(x) is irreducible for any x � 0,

• JF(x) � JF(y) for any x � y � 0, and

• all solutions are bounded,

then either the origin is globally stable or else there exists a unique positive equilibrium
point and all the trajectories in Rn

+ \{0} tend to it. Here JF(x) is the Jacobian of F(x) .
The jacobian matrix of the reduced model (82) is given by (87), which is ir-

reducible because L is also. Moreover, if Jϒ(x) � Jϒ(y) then diag(ri − 2αixi) �
diag(ri−2αiyi) which gives xi � yi for all i , i.e x � y � 0. By Lemma 5.2, all solutions
are bounded and the reduced model (82) does not admit the origin as equilibrium by
Lemma 5.1. Hence, the reduced model (82) is globally stable according to Hirsch [25].
We denote by E ∗

n−1(β ,0+) this equilibrium. �

5.2.2. Perfect mixing

For the behavior of the reduced model (82) for large migration rate, i.e when β →
∞ , we obtain:

PROPOSITION 5.3. we have:

lim
β→+∞

En−1(β ,0+) =
Kn

δn
(δ1, . . . ,δn−1).

Proof. Denote En−1(∞,0+)= Kn
δn

(δ1, . . . ,δn−1) . The equilibriumpoint En−1(β ,0+)
is the unique solution in the positive cone of the equation Ψβ = 0, where

Ψβ (x) := ψ(x)+ β (Lx+KnV ) = 0. (95)

Taking the limit β → ∞ , in (95) we get

Ψ∞(x) := Lx+KnV = 0. (96)

By Lemma 2 of Elbetch et al. [14], the equation Ψ∞ = 0 admits En−1(∞,0+) as unique
solution. Therefore, when β → ∞ , the equilibrium En−1(β ,0+) tend to En−1(∞,0+) .

�

As a corollary of the previous proposition, we obtain
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COROLLARY 5.3. The total equilibrium population X∗
T (β ,0+) of (81) satisfies:

X∗
T (+∞,0+) =

Kn

δn

n

∑
i=1

δi.

Moreover, if the matrix Γ is symmetric, then X∗
T (+∞,0+) = nKn.

Proof. Consequence direct of the formula En−1(∞,0+) and the approximation
(85). �

5.3. Two blocks of patches, where the growth rates of the first block are much
larger than of the second one

We propose here to study the model (1), (3), (11).
We have the theorem:

THEOREM 5.4. Let (x1(t,ε), . . . ,xn(t,ε)) be the solution of the system (1), (11)
with initial condition (x0

1, . . . ,x
0
n) satisfying x0

i � 0 for i = 1, . . . ,n. Let z(t) be the
solution of the system:

ẋ = ψ(x)+ β (Lx+UK) =: ϒ(x), (97)

with initial condition zi(0) = x0
i for i = 1, . . . ,m, x = (x1, . . . ,xm)T , L := (γi j)m×m is

the sub matrix of the matrix Γ , obtained by dropping the n−m last row and the n−m
last column of Γ , U := (γi j)m×(n−m) is the sub matrix of the matrix Γ , obtained by
dropping the n−m last row and the m first column of Γ , K is the vector defined by
K := (Km+1, . . . ,Kn)T , and

ψ(x) = (r1x1(1− x1/K1), · · · ,rmxm(1− xm/Km))T . (98)

Then, when ε → 0 , we have

xi(t,ε) = zi(t)+oε(1), i = 1, . . . ,m uniformly for t ∈ [0,+∞) (99)

and, for any t0 > 0 , we have

xi(t,ε) = Ki +oε(1), i = m+1, . . . ,n uniformly for t ∈ [t0,+∞). (100)

Proof. The same proof of Theorem 4.1. �

5.3.1. Study of the reduced model (97)

It is clear that the positive cone Rm
+ is positively invariant for the model (97), and

for any non-negative initial condition, the solution of the reduced model is bounded, for
all t � 0. Now, we prove the result:

LEMMA 5.2. Assume that the matrix Γ is irreducible. The reduced model (97)
does not admits the origin as equilibrium.
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Proof. We suppose that the origin is a equilibrium of (97), then ϒ(0) = 0, which
equivalent to UK = 0, i.e γi j = 0 for all i ∈ {1, . . . ,m} and j ∈ {m+1, . . . ,n} . So, we
obtain a contradiction since Γ is irreducible. �

THEOREM 5.5. Assume that the two matrices L and Γ are irreducible. The re-
duced model (97) admits unique equilibrium point in the interior of the positive cone
Rm

+ \ {0} which is GAS, denoted by Em(β ,0+) .

Proof. We use Theorem of Hirsch [25] as in proof of Theorem 5.3. �

The behavior of the reduced model (97) for large migration rate, i.e β → ∞ , is
given by:

PROPOSITION 5.4. we have:

lim
β→+∞

Em(β ,0+) = −L−1UK.

Proof. Denote Em(∞,0+) := −L−1UK . The equilibrium point Em(β ,0+) is the
unique solution in the positive cone of the equation Ψβ = 0, where

Ψβ (x) := ψ(x)+ β (Lx+UK) = 0. (101)

Taking the limit β → ∞ , in (101) we get

Ψ∞(x) := Lx+UK = 0. (102)

Since, the matrix L is invertible, then the equation Ψ∞ = 0 admits Em(∞,0+) as unique
solution. Therefore, when β → ∞ , the equilibrium Em(β ,0+) tend to Em(∞,0+) . �

6. Conclusion

The aim of this paper is to study the effect of the dispersal on the dynamics of
the total equilibrium population under the assumption that some growth rates are much
larger than others in the multi-patch logistic model.

In Section 3, we consider the two-patch model in the case when one growth rate
is much larger than the second one. First, by perturbation arguments, we give a ap-
proximation of the solutions of the system in this case. Next, we compare the total
equilibrium population with the sum of two carrying capacities.

In Section 4, first, we study a three-patch model under the assumption that two
growth rates are much larger than the third one. We compute the derivative at β = 0
of the total equilibrium population and also we give the formula of perfect mixing.
Next, we compare the total equilibrium population with the sum of the three carrying
capacities. Second, we study three-patch model under the assumption that one growth
rate is much larger than the two others. Our results prove the numerical simulation of



352 B. ELBETCH

[13]. In particular, we prove, under certain conditions on the parameters of the system,
the existence of two positive values of β solutions of the following equation:

Total equilibrium population=Sum of three carrying capacities.

In Section 5, we generalize some results of the sections 3 and 4. In particular,
we determine the reduced models and we prove their global stability using Hirsch’s
theorem [25] in the following cases:

• All growth rates but one are much larger than the last one.

• One growth rate is much larger than all others.

• Two blocks of patches, with the growth rates of the first block being much larger
than of the second one.

We give also the formula of the perfect mixing for the three previous cases.
Some questions important remain open: for example, for three-patch logistic model,

is it possible to a complete comparison between the total equilibrium population and
the sum of the three carrying capacities without the assumption that some growth rates
are much larger than the other. I think this question is difficult and requires a lot of
work and mathematical tools.

A. Global stability of the reduced model (44)

In this section, we prove the global stability of the reduced model (44). First, we
start by study the existence and uniqueness of equilibrium points. We have the result:

PROPOSITION A.1. Assume that the matrices Γ = (γi j)3×3 and

L =
[−(γ21 + γ31) γ12,

γ21 −(γ12 + γ32)

]

are irreducible. Then, the reduced model (44) admits a unique equilibrium in the inte-
rior of the positive cone R2

+ \ {0} for all β .

Proof. The equilibrium of (44) is a solution of the following system of equations:⎧⎪⎪⎨
⎪⎪⎩

0 = r1x1

(
1− x1

K1

)
+ β (−(γ21 + γ31)x1 + γ12x2 + γ13K3),

0 = r2x2

(
1− x2

K2

)
+ β (γ21x1 − (γ12 + γ32)x2 + γ23K3).

(103)

The system (103) does not admits the origin as solution. Indeed, we suppose that the
origin is a solution of (103), then γ13 = γ23 = 0. So, we obtain a contradiction since
Γ is irreducible. Note that, as the matrix L is irreducible, then γ12 �= 0 and γ21 �= 0.



Differ. Equ. Appl. 15, No. 4 (2023), 323–359. 353

Solving the first equation of (103) with respect to x2 and the second with respect to x1

we get: ⎧⎪⎪⎨
⎪⎪⎩

P1 : x2 =
α1

β γ12
x2
1 +

β (γ21 + γ31)− r1

β γ12
x1 − γ13

γ12
K3,

P2 : x1 =
α2

β γ21
x2
2 +

β (γ12 + γ32)− r2

β γ21
x2 − γ23

γ21
K3.

(104)

The two equations of (104) define simply the two isoclines of (44). The isocline P1 is
a parabola, which is convex downward and intersect the first axis in two points. Indeed,
the equation P1(x1) = 0 must have two real roots and one of them must be a non-
positive root and the other is non-negative. Likewise for the other isocline, P2 is a
parabola, which is convex leftward and intersect the second axis in two points, one
is non-positive and the other is non-negative. So, these two isoclines have a unique
intersection in the interior of the positive cone denoted E ∗(β ,0+) which is depend a
the migration rate (see figure 3).

O x1

E ∗(β ,0+)

x2

P1

P2

O x1

E ∗(β ,0+)

x2

P1

P2

O x1

E ∗(β ,0+)

x2
P1

P2

Figure 3: All possible configurations for the isoclines of the system (103) (in red for x1 and in
blue foor x2 ) for certain parameters. The equilibrium points are the intersection between these
two isoclines, this intersections contains the positive point E ∗(β ,0+) .

�

In the following, our aim is to show the global stability of the equilibrium E ∗(β ,0+) .
For this, we need some results. First, for the non-negativity and boundedness of the so-
lutions of the reduced model (44), we have the following result:
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LEMMA A.1. For any non-negative initial condition, the solutions of system (44)
remain bounded, for all t � 0 . Moreover, the set

Λ =
{

(x1,x2) : x1 + x2 � ξ ∗
2

ξ ∗
1

}
, (105)

where ξ ∗
1 = min{1+ β γ31,1+ β γ32} and ξ ∗

2 = (r1+1)2
α1

+ (r2+1)2
α2

+ β (γ13 + γ23)K3 , is
positively invariant and is a global attractor for the system (44).

Proof. To show that all solutions are bounded, we consider the quantity defined
by XT (t) = x1(t)+ x2(t) . So, we have

ẊT (t) = r1x1

(
1− x1

K1

)
+r2x2

(
1− x2

K2

)
+β (−γ31x1−γ32x2 +(γ13 +γ23)K3). (106)

For all ri and Ki positive, we have the following inequality

rixi

(
1− xi

Ki

)
� −xi +

(ri +1)2

αi
i = 1,2. (107)

Substituting Equation (107) in the equation (106), we get

ẊT (t) �−x1 +
(r1 +1)2

α1
−x2 +

(r2 +1)2

α2
+β (−γ31x1− γ32x2 +(γ13 + γ23)K3). (108)

Therefore
ẊT (t) � −ξ ∗

1 XT (t)+ ξ ∗
2 , for all t � 0, (109)

which gives

XT (t) �
(

XT (0)− ξ ∗
2

ξ ∗
1

)
e−ξ ∗

1 t +
ξ ∗

2

ξ ∗
1
, for all t � 0. (110)

Hence

XT (t) � max

(
XT (0),

ξ ∗
2

ξ ∗
1

)
, for all t � 0. (111)

Therefore, the solutions of system (44) are positively bounded and defined for all t � 0.
From (110) it can be deduced that the set Λ is positively invariant and it is a global
attractor for the system (44). �

We have also the following property:

LEMMA A.2. System (44) admits no periodic solution.

Proof. Let fi be the right hand side of the system (44). Then

∂ f1
∂x1

+
∂ f2
∂x2

= r1 + r2−2(α1x1 + α2x2)−β (γ21 + γ31 + γ12 + γ32)

= −
(

dP1

dx1
+

dP2

dx2

)
< 0.
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So, by Dulac’s Criterion [24, Theorem 4.1.1], the system (44) admits no periodic solu-
tion. �

THEOREM A.1. The equilibrium E ∗(β ,0+) of (44) is GAS for all β .

Proof. The Jacobian matrix of the system (44) at E ∗(β ,0+) is given by:

J(E ∗) =
[

θ1 β γ12

β γ21 θ2

]
, (112)

where θ1 = r1 − 2 r1
K1

x∗1(β ,0+)−β (γ21 + γ31) , and θ2 = r2 − 2 r2
K2

x∗2(β ,0+)−β (γ12 +
γ32) .

We have:

0 <
dP1

dx1
(x∗1(β ,0+),x∗2(β ,0+)) = 2

α1

β γ12
x∗1(β ,0+)+

β (γ21 + γ31)− r1

β γ12
,

= − 1
β γ12

(
r1−2

r1

K1
x∗1(β ,0+)−β (γ21 + γ31)

)
,

= − 1
β γ12

θ1.

Therefore, θ1 < 0. By the same method, we obtain that θ2 < 0. This implies that
tr(J(E ∗)) = θ1 + θ2 < 0, where tr means the trace.

It’s clear that, at the equilibrium E ∗ :

dP1

dx1
(E ∗) >

(
dP2

dx2
(E ∗)

)−1

, (113)

which gives
θ1

−β γ12
>

−β γ21

θ2
. (114)

Thus, detJ(E ∗) = θ1θ2 −β 2γ12γ21 > 0. Hence by the Routh-Hurwitz criteria for sta-
bility, the real parts of the the eigenvalues value of the Jacobian matrix are negative,
proving that E ∗ is asymptotically stable. Lemmas A.1 and A.2 imply that there cannot
be any non-trivial closed paths lying in the interior of the positive quadrant and hence
the stability must be global. �

B. The second derivative of the total equilibrium population (52) at β = 0

We consider the reduced model (44). The steady state (x∗1(β ,0+),x∗2(β ,0+)) is
the solution of the set of algebraic equations:⎧⎪⎪⎨
⎪⎪⎩

0 = r1x∗1(β ,0+)
(

1− x∗1(β ,0+)
K1

)
+β (−(γ21 + γ31)x∗1(β ,0+)+ γ12x∗2(β ,0+)+ γ13K3),

0 = r2x∗2(β ,0+)
(

1− x∗2(β ,0+)
K2

)
+β (γ21x∗1(β ,0+)− (γ12 + γ32)x∗2(β ,0+)+ γ23K3).

(115)
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The derivative of (115) with respect to β gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 =
[
r1−2

r1

K1
x∗1(β ,0+)−β (γ21 + γ31)

]
dx∗1
dβ

(β ,0+)+ β
dx∗2
dβ

(β ,0+)

−(γ21 + γ31)x∗1(β ,0+)+ γ12x∗2(β ,0+)+ γ13K3,

0 =
[
r2−2

r2

K2
x∗2(β ,0+)−β (γ12 + γ32)

]
dx∗2
dβ

(β ,0+)+ β
dx∗1
dβ

(β ,0+)

+γ21x∗1(β ,0+)− (γ12 + γ32)x∗2(β ,0+)+ γ23K3.

(116)

For β = 0, x∗1(0,0+) = K1 and x∗2(0,0+) = K2 , the equations (116) become

⎧⎪⎪⎨
⎪⎪⎩

0 = −r1
dx∗1
dβ

(0,0+)− (γ21 + γ31)K1 + γ12K2 + γ13K3,

0 = −r2
dx∗2
dβ

(0,0+)+ γ21K1 − (γ12 + γ32)K2 + γ23K3.

(117)

Therefore

⎧⎪⎪⎨
⎪⎪⎩

dx∗1
dβ

(0,0+) =
1
r1

(−(γ21 + γ31)K1 + γ12K2 + γ13K3) ,

dx∗2
dβ

(0,0+) =
1
r2

(γ21K1 − (γ12 + γ32)K2 + γ23K3) .
(118)

The derivative of (116) with respect to β gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 =
[
r1 −2

r1

K1
x∗1(β ,0+)−β (γ21 + γ31)

]
d2x∗1
dβ 2 (β ,0+)−2

r1

K1

(
dx∗1
dβ

(β ,0+)
)2

−(γ21 + γ31)
dx∗1
dβ

(β ,0+)+ β
d2x∗2
dβ 2 (β ,0+)+

dx∗2
dβ

(β ,0+)

−(γ21 + γ31)
dx∗1
dβ

(β ,0+)+ γ12
dx∗2
dβ

(β ,0+),

0 =
[
r2 −2

r2

K2
x∗2(β ,0+)−β (γ12 + γ32)

]
d2x∗2
dβ 2 (β ,0+)−2

r2

K2

(
dx∗2
dβ

(β ,0+)
)2

−(γ12 + γ32)
dx∗2
dβ

(β ,0+)+ β
d2x∗1
dβ 2 (β ,0+)+

dx∗1
dβ

(β ,0+)

−(γ12 + γ32)
dx∗2
dβ

(β ,0+)+ γ21
dx∗2
dβ

(β ,0+).

(119)
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Hence⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 =
[
r1 −2

r1

K1
x∗1(β ,0+)−β (γ21 + γ31)

]
d2x∗1
dβ 2 (β ,0+)+ β

d2x∗2
dβ 2 (β ,0+)

−2
r1

K1

(
dx∗1
dβ

(β ,0+)
)2

−2(γ21 + γ31)
dx∗1
dβ

(β ,0+)+(1+ γ12)
dx∗2
dβ

(β ,0+),

0 =
[
r2 −2

r2

K2
x∗2(β ,0+)−β (γ12 + γ13)

]
d2x∗2
dβ 2 (β ,0+)+ β

d2x∗1
dβ 2 (β ,0+)

−2
r2

K2

(
dx∗2
dβ

(β ,0+)
)2

−2(γ12 + γ32)
dx∗2
dβ

(β ,0+)+(1+ γ21)
dx∗1
dβ

(β ,0+).

(120)
For β = 0,x∗1(0,0+) = K1 and x∗2(0,0+) = K2 , the equations (120) become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = −r1
d2x∗1
dβ 2 (0,0+)+2

r1

K1

(
dx∗1
dβ

(0,0+)
)2

−2(γ21 + γ31)
dx∗1
dβ

(0,0+)

+(1+ γ12)
dx∗2
dβ

(0,0+),

0 = −r2
d2x∗2
dβ 2 (0,0+)−2

r2

K2

(
dx∗2
dβ

(0,0+)
)2

−2(γ12 + γ32)
dx∗2
dβ

(0,0+)

+(1+ γ21)
dx∗1
dβ

(0,0+),

(121)

where
dx∗1
dβ

(0,0+) and
dx∗2
dβ

(0,0+) are given by (118). Therefore

⎧⎪⎪⎨
⎪⎪⎩

d2x∗1
dβ 2 (0,0+) =

2
K1

(
dx∗1
dβ

(0,0+)
)2

− 2
r1

(γ21 + γ31)
dx∗1
dβ

(0,0+)+
1
r1

(1+ γ12)
dx∗2
dβ

(0,0+),

d2x∗2
dβ 2 (0,0+) =

2
K2

(
dx∗2
dβ

(0,0+)
)2

− 2
r2

(γ12 + γ32)
dx∗2
dβ

(0,0+)+
1
r2

(1+ γ21)
dx∗1
dβ

(0,0+).

(122)
The sum of the equations in (122) give the second derivative of the total equilibrium.

RE F ER EN C ES

[1] R. ARDITI, C. LOBRY AND T. SARI, In dispersal always beneficial to carrying capacity? New
insights from the multi-patch logistic equation, Theoretical Population Biology, 106 (2015), 45–59,
http://doi:10.1016/j.tpb.2015.10.001 .

[2] R. ARDITI, C. LOBRY AND T. SARI, Asymmetric dispersal in the multi-patch logistic equation, The-
oretical Population Biology, 120 (2018), 11–15, http://doi:10.1016/j.tpb.2015.10.001 .

[3] J. ARINO, Diseases in metapopulations, in Modeling and Dynamics of Infectious Diseases, Z. Ma,
Y. Zhou, J. Wu (eds.), Series in Contemporary Applied Mathematics, World Scientific Press, vol. 11
(2009), 64–122.

[4] J. ARINO, N. BAJEUX AND S. KIRKLAND, Number of Source Patches Required for Population Per-
sistence in a Source-Sink Metapopulation with Explicit Movement, Bulletin of Mathematical Biology,
81 (2019), 1916–1942, https://doi.org/10.1007/s11538-019-00593-1 .

[5] L. CHEN, T. LIU AND F. CHEN, Stability and bifurcation in a two-patch model with additive Allee
effect, AIMS Mathematics, 7 (1) (2022), 536–551, https://doi.org/10.3934/math.2022034 .

http://doi:10.1016/j.tpb.2015.10.001
http://doi:10.1016/j.tpb.2015.10.001
https://doi.org/10.1007/s11538-019-00593-1
https://doi.org/10.3934/math.2022034


358 B. ELBETCH

[6] C. COSNER, J. C. BEIER, R. S. CANTRELL, D. IMPOINVIL, L. KAPITANSKI, M. D. POTTS, A.
TROYO AND S. RUAN, The effects of human movement on the persistence of vector-borne diseases,
Theoretical Biology, 258 (2009), pp. 550–560, https://doi.10.1016/j.jtbi.2009.02.016 .

[7] D. L. DEANGELIS, C. C. TRAVIS AND W. M. POST, Persistence and stability of seed-dispersal
species in a patchy environment, Theoretical Population Biology, 16 (1979), 107–125,
http://dx.doi.org/10.1016/0040-5809(79)90008-X .

[8] D. L. DEANGELIS, W. NI AND B. ZHANG, Dispersal and heterogeneity: single species, Mathemat-
ical Biology, 72 (2015), 239–254, http://doi:10.1007/s00285-015-0879-y .

[9] D. L. DEANGELIS, W. NI AND B. ZHANG, Effects of diffusion on total biomass in heterogeneous
continuous and discrete-patch systems, Theoretical Ecology, 9 (2016),
http://doi10.1007/s12080-016-0302-3 .

[10] D. L. DEANGELIS AND B. ZHANG, Effects of dispersal in a non-uniform environment on population
dynamics and competition: a patch model approach, Discrete and Continuous Dynamical System
series B, 19 (2014), 3087–3104, http://dx.doi.org/10.3934/dcdsb.2014.19.3087 .

[11] B. DENNIS, Allee effects: population growth, critical density, and the chance of extinction, Nat. Re-
sour. Model., 3 (1989), 481–538, https://doi.10.1111/j.1939.7445.1989.tb00119.x .

[12] B. DENNIS, Allee effects in stochastic populations, Oikos, 96 (2002), 389–401,
https://doi.10.2307/3547064 .

[13] B. ELBETCH, T. BENZEKRI, D. MASSART AND T. SARI, The multi-patch logistic equation, Discrete
and Continuous Dynamical System series B, 26 (12) (2020), 6405–6424,
http://dx.doi.org/10.3934/dcdsb.2021025 .

[14] B. ELBETCH, T. BENZEKRI, D. MASSART AND T. SARI, The multi-patch logistic equation with
asymmetric migration, Rev. Integr. Temas Mat., 40, no. 1, 25–57 (2022),
http://doi10.18273/revint.v40n1-212022002 .

[15] B. ELBETCH, Effect of dispersal in Two-patch environment with Richards growth on population dy-
namics, J. Innov. Appl. Math. Comput. Sci. 2 (3) (2022), 41–68,
n2t.net/ark:/49935/jiamcs.v2i3.47 .

[16] B. ELBETCH AND A. MOUSSAOUI, Nonlinear diffusion in the multi-patch logistic model, Journal of
Mathematical Biology 87: 1, (2023), https://doi.org/10.1007/s00285-023-01936-2 .

[17] B. ELBETCH, Effect of dispersal in single-species discrete diffusion systems with source-sink patches,
Mathematica Applicanda, vol. 51 (1) 2023, pp. 51–97, doi:10.14708/ma.v51i1.7161 .

[18] H. I. FREEDMAN, B. RAI AND P. WALTMAN, Mathematical Models of Population Interactions with
Dispersal II: Differential Survival in a Change of Habitat, Journal of Mathematical Analysis and
Applications, 115 (1986), 140–154, https://doi.org/10.1016/0022-247X(86)90029-6 .

[19] H. I. FREEDMAN AND P. WALTMAN, Mathematical Models of Population Interactions with Dispersal
I: Stability of two habitats with and without a predator, SIAM Journal on Applied Mathematics, 32
(1977), 631–648, http://dx.doi.org/10.1137/0132052 .

[20] D. GAO, How does dispersal affect the infection size?, SIAM Journal on Applied Mathematics, vol.
80, no. 5, (2020), pp. 2144–2169, http://doi.10.1137/19M130652X .

[21] D. GAO AND C.-P. DONG, Fast diffusion inhibits disease outbreaks, Proceedings of the American
Mathematical Society, 148 (2020), pp. 1709–1722, http://doi.10.1090/proc/14868 .

[22] H. GUO, M. Y. LI AND Z. SHUAI, Global stability of the endemic equilibrium of multigroup SIR
epidemic models, Canadian Applied Mathematical Quarterly, 14 (2006), 259–284.

[23] R. D. HOLT, Population dynamics in two patch environments: some anomalous consequences of an
optimal habitat distribution, Theoretical Population Biology, 28 (1985), 181–201,
http://dx.doi.org/10.1016/0040-5809(85)90027-9 .

[24] J. HOFBAUER AND K. SIGMUND, Evolutionary Games and Population Dynamics, Cambridge Uni-
versity Press, Cambridge, 1998.

[25] M. W. HIRSCH, The dynamical systems approach to differential equations, Bull. A.M.S., 11, no. 1
(1984), 1–634.

[26] S. A. LEVIN, Dispersion and population interactions, American Naturalist, 108 (1974), 207–228,
https://doi.org/10.1086/282900 .

[27] S. A. LEVIN, Spatial patterning and the structure of ecological communities, in Some Mathematical
Questions in Biology, VII, Lectures on Math. in the Life Sciences, American Mathematical Society,
Providence, R.I., 8 (1976), 1–35.

https://doi.10.1016/j.jtbi.2009.02.016
http://dx.doi.org/10.1016/0040-5809(79)90008-X
http://doi:10.1007/s00285-015-0879-y
http://doi10.1007/s12080-016-0302-3
http://dx.doi.org/10.3934/dcdsb.2014.19.3087
https://doi.10.1111/j.1939.7445.1989.tb00119.x
https://doi.10.2307/3547064
http://dx.doi.org/10.3934/dcdsb.2021025
http://doi10.18273/revint.v40n1-212022002
n2t.net/ark:/49935/jiamcs.v2i3.47
https://doi.org/10.1007/s00285-023-01936-2
doi:10.14708/ma.v51i1.7161
https://doi.org/10.1016/0022-247X(86)90029-6
http://dx.doi.org/10.1137/0132052
http://doi.10.1137/19M130652X
http://doi.10.1090/proc/14868
http://dx.doi.org/10.1016/0040-5809(85)90027-9
https://doi.org/10.1086/282900


Differ. Equ. Appl. 15, No. 4 (2023), 323–359. 359

[28] C. LOBRY, T. SARI AND S. TOUHAMI, On Tykhonov’s theorem for convergence of solutions of slow
and fast systems, Electron.ice Journal of Differential Equations, 19 (1998), 1–22,
http://refhub.elsevier.com/S0040-5809(15)00102-1/sbref11 .
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