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QUASISTATIC FRICTIONAL CONTACT PROBLEM WITH DAMAGE

FOR THERMO–ELECTRO–ELASTIC–VISCOPLASTIC BODIES
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(Communicated by I. Velčić)

Abstract. The aim of present paper is to study the process of a quasistatic frictional contact
between a thermo-electro-elastic-viscoplastic body with damage, and an obstacle, the so-called
foundation. We assume that the normal stress is prescribed on the contact surface and we use the
quasistatic version of Coulomb’s law of dry friction. We establish a variational formulation of
the model, which is set as a system involving the displacement field, the stress field, the electric
potential field, the temperature field and the damage field. Existence and uniqueness of a weak
solution of the problem is proved. The proof is based on arguments of evolutionary variational
inequalities, parabolic inequalities, differential equations and fixed point.

1. Introduction

Situations of frictional contact abound in the industry and everyday life (contacts
of the braking pads with the wheel or the tire with the road are usual examples). As a
result, a considerable effort has been done in its modelling and numerical simulations.
see for instance [10, 16, 18] and the references therein.

The piezoelectric effect is characterized by the coupling between the mechanical
and electrical properties of the materials. In simplest terms, when a piezoelectric ma-
terial is squeezed, an electric charge collects on its surface, conversely, when a piezo-
electric material is subjected to a voltage drop, it mechanically deforms. Piezoelectric
materials are used extensively as switches and actuators in many engineering systems,
in radioelectronics, electroacoustics and measuring equipments. There is a considerable
interest in frictional or frictionless contact problems involving piezoelectric materials,
see for instance [2, 12, 17] and the references therein.

The piezoelectric effect is characterized by the coupling between the mechanical
and electrical properties of the materials. In simplest terms, when a piezoelectric ma-
terial is squeezed, an electric charge collects on its surface, conversely, when a piezo-
electric material is subjected to a voltage drop, it mechanically deforms. Piezoelectric
materials are used extensively as switches and actuators in many engineering systems,
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in radioelectronics, electroacoustics and measuring equipments. There is a consider-
able interest in frictional or frictionless contact problems involving piezoelectric ma-
terials, see for instance [2, 12, 17] and the references therein. Different models have
been proposed to describe the interaction between the thermal and mechanical field,
see for instance [3, 14, 11] and the references therein. A thermo-elastic-viscoplastic
body is considered in [5, 14]. Initial and boundary value problems for thermo mechan-
ical models were studied by many authors. Therefore, existence and uniqueness result
concerning the uncoupled thermo viscoelastic was obtained in [13] using a monotony
method.

Damage is a very important phenomenon in engineering because it directly af-
fects the structure of machines. There exists a very large engineering literature on it.
Early models for mechanical damage derived from the thermodyamical considerations
appeared in [6, 7], where numerical simulations were included. The mathematical anal-
ysis of one-dimensional problems can be found in [8]. In all these results, the damage
of the material is described with a damage function α , restricted to have values be-
tween zero and one. When α = 1 there is no damage in the material, when α = 0,
the material is completely damaged, when 0 < α < 1 there is partial damage and the
system has a reduced load carrying capacity. Quasistatic contact problems with damage
have been investigated in [9, 10, 15].

Quasi-static processes for electro-viscoelastic with long-term memory and dam-
age have been studied in [11], such that electrical conditions are introduced in cases
where the foundation conductive. In this paper, we consider a general model for the
a quasistatic process of frictional contact between a deformable body and an obstacle.
The material obeys a general electro elastic-viscoplastic constitutive law with damage
and thermal effects. On the contact surface the body can arrive in frictional contact
with an obstacle, the so-called foundation which is electrically nonconducting and the
contact is given by

−σν = F,

⎧⎨
⎩

‖σσσσστ‖ � μ |σν | ,
σσσσστ = −μ |σν | u̇uuuuτ

‖u̇uuuuτ‖ if u̇uuuuτ �= 0,

where F is a given positive function. The above relations assert that the tangential
stress is bounded by the normal stress multiplied by the value of the friction coefficient
μ .

The rest of the article is structured as follows. In Section 2 we present contact
model and provide comments on the contact boundary conditions. In Section 3 we list
the assumptions on the data and derive the variational formulation. We prove in Section
4 the existence and uniqueness of the solution.

2. Problem statement

The physical setting is the following. A body occupies the domain Ω ⊂ R
d (d =

2,3) with outer Lipschitz surface which is divided into three disjoint measurable parts
Γ1 , Γ2 and Γ3 on one hand, and a partition of Γ1∪Γ2 into two open parts Γa and Γb ,
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on the other hand. We assume that meas(Γ1) > 0 and meas(Γa) > 0. Let T > 0 and
let [0,T ] be the time interval of interest. The body is clamped on Γ1 × (0,T ) and the
displacement vanishes there. Surface tractions of density f2 act on Γ2 × (0,T ) and a
volume force of density f0 is applied in Ω× (0,T) .

We also assume that the electrical potential vanishes on Γa × (0,T) and a surface
electric charge of density q2 is prescribed on Γb × (0,T ) . On Γ3 the potential contact
surface, the body is in contact with an insulator obstacle, the so-called foundation.

The classical formulation of the mechanical problem of electro elastic-viscoplastic
with damage and thermal effects, be stated as follows.

Problem P

Find a displacement field uuuuu : Ω× (0,T) → R
d , a stress field σσσσσ : Ω× (0,T) → S

d ,
an electric potential field ϕ : Ω×(0,T)→R , a temperature field θ : Ω×(0,T)→R , an
electric displacement field DDDDD : Ω×(0,T )→R

d , and a damage field α : Ω×(0,T)→R

such that

σσσσσ(t) = A ε (u̇uuuu(t))+B (ε (uuuuu(t)) ,α(t))−E ∗E(ϕ)(t)

+
∫ t

0
G (σσσσσ(s)−A ε (u̇uuuu(s))+E ∗E(ϕ)(s),ε (uuuuu(s)))ds−Ceθ

in Ω× (0,T),

(1)

DDDDD = E ε(uuuuu)+BBBBBE(ϕ) in Ω× (0,T), (2)

θ̇ −divK(∇θ ) = r(u̇uuuu,α)+q, in Ω× (0,T), (3)

α̇ − kΔα + ∂ϕY (α) � S (ε(uuuuu),α) , in Ω× (0,T), (4)

Divσσσσσ + f0 = 0 in Ω× (0,T), (5)

divDDDDD−q0 = 0 in Ω× (0,T), (6)

uuuuu = 00000 on Γ1 × (0,T ), (7)

σν = f2 on Γ2 × (0,T), (8)

−σν = F on Γ3× (0,T ) (9)⎧⎨
⎩

‖σσσσστ‖ � μ |σν |
σσσσστ = −μ |σν | u̇uuuuτ

‖u̇uuuuτ‖ if u̇uuuuτ �= 0
on Γ3 × (0,T ), (10)

− ki j
∂θ
∂xi

ν j = ke (θ −θR)+hτ (|u̇τ |) on Γ3 × (0,T ), (11)

∂α
∂ν

= 0 on Γ× (0,T ), (12)

ϕ = 0 on Γa× (0,T ), (13)

DDDDD.ν = q2 on Γb × (0,T ), (14)

θ = 0 on (Γ1 ∪Γ2)× (0,T), (15)

uuuuu(0) = uuuuu0, θ (0) = θ0, α(0) = α0, in Ω. (16)
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First, equations (1)–(4) represent the electro-elastic-viscoplastic constitutive law
with damage and thermal effects, were A , B and G are, respectively, nonlinear op-
erators describing the purely viscous, the elastic and the viscoplastic properties of the
material, E(ϕ) = −∇ϕ is the electric field, E = (ei jk) represent the third order pieso-
electric tensor, E ∗ is its transposition and BBBBB denotes the electric permittivity tensor,
Ce = (ci j) represents the thermal expansion tensor, K represent the thermal conductiv-
ity tensor, div(K∇θ ) = (ki jθ,i),i , q represent the density of volume heat source and r
is non linear function of velocity and damage.

α , θ represent the damage, and the temperature. ϕY (α) denotes the subdiffer-
ential of the indicator function of the set Y of admissible damage functions defined
by

Y =
{

α ∈ H1(Ω) | 0 � α � 1 a.e. in Ω} ,

and S is the mechanical source of the damage.
Equations (5) and (6) represent the equilibrium equations for the stress and electric

displacement fields. Equations (7)–(8) are the displacement-traction conditions.
Frictional contact conditions of the form (9) and (10) describe the contact on the

surface Γ3 , (11), (12) represent, respectively on Γ , a Fourier boundary condition for the
temperature and an homogeneous Neumann boundary condition for the damage field
on Γ . (13) and (14) represent the electric boundary conditions. Equation (15) means
that the temperature vanishes on (Γ1∪Γ2)× (0,T ) . Finally, The functions uuuuu0 , θ0 and
α0 in (16) are the initial data.

3. Variational formulation and preliminaries

For a weak formulation of the problem, first we introduce some notation. We
denote by S

d the space of second order symmetric tensors on R
d . We define the inner

product and the Euclidean norm on R
d and S

d , respectively, by

‖uuuuu‖ = (uuuuu ·uuuuu)
1
2 , ∀uuuuu ∈ R

d and ‖σσσσσ‖ = (σσσσσ ·σσσσσ)
1
2 , ∀σσσσσ ∈ S

d .

Here and below, the indices i and j run from 1 to d and the summation conven-
tion over repeated indices is used and the index that follows a comma indicates a partial
derivative with respect to the corresponding component of the independent variable.
Let Ω ⊂ R

d be a bounded domain with a regular boundary Γ and let ν denote the unit
outer normal on Γ . We define the function spaces

H = L2(Ω)d =
{
uuuuu = (ui) | ui ∈ L2(Ω)

}
, H1 = {uuuuu = (ui) | ε(uuuuu) ∈ H } ,

H =
{

σσσσσ = (σi j) | σi j = σ ji ∈ L2(Ω)
}

, H1 = {σσσσσ ∈ H | Divσσσσσ ∈ H}.
Here ε : H1 → H and Div : H1 → H are the deformation and divergence operators,
respectively, defined by

ε(uuuuu) = (εi j(uuuuu)) , εi j(uuuuu) =
1
2

(uuuuui, j +uuuuu j,i) , Div(σσσσσ) = σi j, j.
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The sets H , H1 , H and H1 are real Hilbert spaces endowed with the canonical inner
products

(uuuuu,vvvvv)H =
∫

Ω
uividx ∀u,v ∈ H, (σσσσσ ,τττττ)H =

∫
Ω

σi jτi jdx ∀σσσσσ ,τττττ ∈ H ,

(u,vvvvv)H1 = (uuuuu,vvvvv)H +(ε(uuuuu),ε(vvvvv))H , ∀uuuuu,vvvvv ∈ H1,

(σσσσσ ,τττττ)H1 = (σσσσσ ,τττττ)H +(Divσσσσσ ,Divτττττ)H , σσσσσ ,τττττ ∈ H1.

The associated norms are denoted by ‖.‖H , ‖.‖H1 , ‖.‖H and ‖.‖H1 . Let HΓ =
H

1
2 (Γ)d and γ : H1 → HΓ be the trace map. For every element uuuuu ∈ H1 , we also write

uuuuu for the trace γuuuuu of uuuuu on Γ and we denote by uν and uuuuuτ the normal and tangential
components of uuuuu on Γ given by

uν = uuuuu.ννννν, uuuuuτ = uuuuu−uνννννν. (17)

We recall that when σσσσσ is a regular function then the normal component and the tangen-
tial part of the stress field σσσσσ on the boundary are defined by

σν = σν ·ννννν, σσσσστ = σσσσσννννν −σνννννν, (18)

and for all σσσσσ ∈ H1 the following Green’s formula holds

(σσσσσ ,ε(vvvvv))H +(Divσσσσσ ,vvvvv)H =
∫

Γ
σσσσσν.vvvvvda, ∀vvvvv ∈ H1. (19)

Now, let V denote the closed subspace of H1(Ω) given by

V =
{

γ ∈ H1(Ω) | γ = 0 on Γ1∪Γ2
}

,

and we denote by V ′ the dual space of V .
We use the notation (., .)V ×V ′ to represent the duality pairing between V and V ′ .
Let V denote the closed subspace of H1(Ω)d defined by

V =
{

vvvvv ∈ H1(Ω)d | vvvvv = 0 on Γ1

}
.

Since meas(Γ1) > 0, Korn’s inequality holds and there exists a constant C0 > 0,
that depends only on Ω and Γ1 such that

‖ε(vvvvv)‖H � C0‖vvvvv‖H1(Ω)d , ∀vvvvv ∈V.

On V , we consider the inner product and the associated norm given by

(uuuuu,vvvvv)V = (ε(uuuuu),ε(vvvvv))H , ‖vvvvv‖V = ‖ε(vvvvv)‖H , uuuuu,vvvvv ∈V. (20)

It follows that ‖.‖H1(Ω)d and ‖.‖V are equivalent norms on V and therefore (V,(., .)V )
is a real Hilbert space.

For the electric displacement field we use two Hilbert spaces

W =
{
D ∈ H | divD ∈ L2(Ω)

}
,
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endowed with the inner products

(D,E)W = (D,E)H +(divD,divE)L2(Ω),

and the associated norm ‖.‖W . The electric potential field is to be found in

W =
{

ξ ∈ H1(Ω),ξ = 0 on Γa
}

.

Since meas(Γa) > 0, the Friedrichs-Poincaré inequality holds:

‖∇ζ‖H � cF‖ζ‖H1(Ω), ∀ζ ∈W, (21)

where cF > 0 is a constant which depends only on Ω and Γa . On W we use the inner
product

(ϕ ,ξ )W = (∇ϕ ,∇ξ )H , (22)

and ‖.‖W the associated norm. It follows from (21) that ‖.‖H1(Ω) and ‖.‖W are equiv-
alent norms on W and therefore (W,‖.‖W ) is a real Hilbert space.

Moreover, by the Sobolev trace theorem, there exist two positive constants c0 and
c̃0 such that

‖vvvvv‖L2(Γ3)
d � c0‖vvvvv‖V , ∀vvvvv ∈V, ‖ψ‖L2(Γ3) � c̃0‖ψ‖W , ∀ψ ∈W. (23)

Moreover, when DDDDD ∈ W is a regular function, the following Green’s type formula
holds

(DDDDD,∇ζ )H +(divDDDDD,ζ )L2(Ω) =
∫

Γ
DDDDD ·νννννζda, ∀ζ ∈ H1(Ω). (24)

For any real Hilbert space X , we use the classical notation for the spaces Lp(0,T ;X)
and Wk,p(0,T ;X) , where 1 � p � ∞ and k � 1. For T > 0 we denote by C(0,T ;X)
and C1(0,T ;X) the space of continuous and continuously differentiable functions from
[0,T ] to X , respectively, with the norms

‖ fffff‖C(0,T ;X) = max
t∈[0,T ]

‖ fffff (t)‖X ,

‖ fffff‖C1(0,T ;X) = max
t∈[0,T ]

‖ fffff (t)‖X + max
t∈[0,T ]

‖ ḟffff (t)‖X .

In the study of the problem P , we consider the following assumptions
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The viscosity operator A : Ω×S
d −→ S

d satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) There exists LA > 0 such that

‖A (xxxxx,ωωωωω1)−A (xxxxx,ωωωωω2)‖ � LA ‖ωωωωω1 −ωωωωω2‖,
for all ωωωωω1,ωωωωω2 ∈ S

d , a.e xxxxx ∈ Ω.

(b) There exists mA > 0 such that

(A (xxxxx,ωωωωω1)−A (xxxxx,ωωωωω2)).(ωωωωω1 −ωωωωω2) � mA ‖ωωωωω1−ωωωωω2‖2,

for all ωωωωω1,ωωωωω2 ∈ S
d , a.e xxxxx ∈ Ω.

(c) The mapping xxxxx �→ A (xxxxx,ωωωωω) is Lebesgue measurable on Ω,

for any ωωωωω ∈ S
d .

(d) The mapping xxxxx �→ A (xxxxx,0) ∈ H .

(25)

The elasticity operator B : Ω×S
d ×R −→ S

d satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) There exists LB > 0 such that

‖B(xxxxx,ωωωωω1,α1)−B(xxxxx,ωωωωω2,α2)‖ � LB(‖ωωωωω1 −ωωωωω2‖+‖α1−α2‖),
for all ωωωωω1,ωωωωω2 ∈ S

d ,α1,α2 ∈ R, a.e. xxxxx ∈ Ω.

(b) The mapping xxxxx �→ B(xxxxx,ωωωωω ,α) is Lebesgue measurable on Ω,

for all ωωωωω ∈ S
d ,α ∈ R.

(c) The mapping xxxxx �→ B(xxxxx,0,0) ∈ H .

(26)

The visco-plasticity operator G : Ω×S
d ×S

d −→ R satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) There exists a constant LG > 0 such that

‖G (xxxxx,σσσσσ1,ωωωωω1)−G (xxxxx,σσσσσ2,ωωωωω2)‖ � LG (‖σσσσσ1 −σσσσσ2‖+‖ωωωωω1 −ωωωωω2‖),
for all t ∈ (0,T ),σσσσσ1,σσσσσ2,ωωωωω1,ωωωωω2 ∈ S

d , a.e. xxxxx ∈ Ω.

(b) The mapping xxxxx �→ G (xxxxx,σσσσσ ,ωωωωω) is Lebesgue measurable on Ω,

for all σσσσσ ,ωωωωω ,∈ S
d ,t ∈ (0,T ),

(c) The mapping xxxxx �→ G (xxxxx,0,0) ∈ H .

(27)

The function S : Ω×S
d ×R −→ R satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) There exists a constant LS > 0 such that

‖S (xxxxx,ωωωωω1,α1)−S (xxxxx,ωωωωω2,α2)‖ � LS (‖ωωωωω1 −ωωωωω2‖+‖α1 −α2‖) ,
for all ωωωωω1,ωωωωω2 ∈ S

d , for all α1,α2 ∈ R, a.e. xxxxx ∈ Ω.

(b) The mapping xxxxx �→ S(xxxxx,ωωωωω ,α) is Lebesgue measurable on Ω,

for all ωωωωω ∈ S
d , for all α ∈ R.

(c) The mapping xxxxx �→ S(xxxxx,0,0) ∈ L2(Ω).

(28)
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The thermal expansion operator Ce : Ω×R → R satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) There exists LCe > 0 such that

‖Ce (xxxxx,θ1)−Ce (xxxxx,θ2)‖ � LCe ‖θ1 −θ2‖ for all θ1,θ2 ∈ R, a.e. xxxxx ∈ Ω.

(b) Ce = (ci j) ,ci j = c ji ∈ L∞(Ω).
(c) The mapping xxxxx �→Ce(xxxxx,θ ) is Lebesgue measurable on Ω,

for any θ ∈ R.

(d) The mapping xxxxx �→Ce(xxxxx,0) ∈ H .

(29)

The thermal conductivity operator K = (ki j) : Ω×R → R satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a) There exists LK > 0 such that

‖K (xxxxx,r1)−K (xxxxx,r2)‖ � LK ‖r1− r2‖ , for all r1,r2 ∈ R, a.e. xxxxx ∈ Ω.

(b) ki j = k ji ∈ L∞(Ω),ki jαiα j � ckαiα j for some ck > 0,

for all (αi) ∈ R.

(c) The mapping xxxxx �→ k(xxxxx,0) belongs to L2(Ω).

(30)

Electric permittivity operator BBBBB = (bi j) : Ω×R
d → R

d satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) BBBBB(x,E) = (bi j(x)Ej) for all E = (Ei) ∈ R
d , a.e. x ∈ Ω.

(b) bi j = b ji ∈ L∞(Ω),1 � i, j � d.

(c) There exists a constant mBBBBB > 0 such that

BBBBBE.E � mBBBBB‖E‖2, for all E = (Ei) ∈ R
d , a.e. in Ω.

(31)

The piezoelectric operator E : Ω×S
d → R

d satisfies

{
(a) E =

(
ei jk

)
,ei jk ∈ L∞(Ω),1 � i, j,k � d.

(b) E (x)σσσσσ · τττττ = σσσσσ ·E ∗τττττ, for all σσσσσ ∈ S
d , and all τττττ ∈ R

d .
(32)

The tangential function hτ : Γ3 ×R −→ R+ satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a) There exists Lτ > 0 such that

‖hτ (xxxxx,u1)−hτ (xxxxx,u2)‖ � Lτ ‖u1−u2‖ ,

for all u1,u2 ∈ R, a.e. xxxxx ∈ Γ3.

(b) For any u ∈ R,xxxxx �→ hτ(xxxxx,u) is Lebesgue measurable on Γ3.

(c) The mapping xxxxx �→ hτ(xxxxx,0) belongs to L2(Γ3).

(33)

We assume that the friction coefficient μ , the normal stress F , the boundary and
initial data θR , ke , α0 , uuuuu0 and θ0 the volume of forces f0 and f2 and the charges den-
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sities q0 , q2 the heat source density q the microcrack diffusion coefficient k0 satisfy

μ ∈ L∞ (Γ3) , μ � 0 a.e. on Γ3,

F ∈ L2 (Γ3) , F � 0 a.e. on ∈ Γ3,
(34)

θR ∈C(0,T ;L2(Γ3)), ke ∈ L∞(Ω,R+), (35)

uuuuu0 ∈V, α0 ∈ Y , θ0 ∈ V , (36)

f0 ∈C
(
0,T ;L2(Ω)d

)
, f2 ∈C

(
0,T ;L2 (Γ2)

d
)

, (37)

q0 ∈C
(
0,T ;L2(Ω)

)
, q2 ∈C

(
0,T ;L2 (Γb)

)
, (38)

k0 > 0, q ∈C
(
0,T ;L2 (Ω)

)
. (39)

The function r : V ×R → L2(Ω) satisfies that there exists a constant Lr > 0 such
that

‖r (uuuuu1,ξ1)− r (uuuuu2,ξ2)‖L2(Ω) � Lr (‖uuuuu1−uuuuu2‖V +‖ξ1− ξ2)‖)
∀uuuuu1,uuuuu2 ∈V, ξ1,ξ2 ∈ R.

(40)

We introduce the following bilinear form a : H1(Ω)×H1(Ω) → R, by

a(ζ ,ξ ) = k0

∫
Ω

∇ζ ·∇ξdx. (41)

Now we consider the mappings j : V → R , f : [0,T ] → V , q : [0,T ] →W , Q :
[0,T ] → V ′ , K : V → V ′ , and R : V → V ′ respectively, by

j(wwwww) =
∫

Γ3

μF ‖wwwwwτ‖da, ∀wwwww ∈V, (42)

(f(t),wwwww)V =
∫

Ω
fffff 0(t) ·wwwwwdx+

∫
Γ2

fffff 2(t) ·wwwwwda, (43)

(q(t),υ)W =
∫

Ω
q0(t)υdx−

∫
Γb

q2(t)υda, (44)

(Q(t),φ)V ′×V =
∫

Γ3

keθR(t)φda+
∫

Ω
q(t)φdx. (45)

(Kρ ,φ)V ′×V =
d

∑
i, j=1

∫
Ω

ki j
∂ρ
∂x j

∂φ
∂xi

dx+
∫

Γ3

keρφda. (46)

(Rwwwww,φ)V ′×V =
∫

Ω
r(wwwww)φdx+

∫
Γ3

hτ (|wwwwwτ |)φda. (47)

for all wwwww ∈V , υ ∈W , φ ,ρ ∈ V and t ∈ [0,T ] . Note that

f ∈C (0,T ;V ) , q ∈C(0,T ;W ). (48)

Using standard arguments based on Green’s formula, we obtain the following vari-
ational formulation (1)–(16).
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Problem PV

Find a displacement field uuuuu : [0,T ]→V , a stress field σσσσσ : [0,T ]→H , an electric
potential ϕ : [0,T ] → W, a damage field α : [0,T ] → H1(Ω), and a temperature θ :
[0,T ] → V such that

σσσσσ(t) = A ε (u̇uuuu(t))+B (ε (uuuuu(t)) ,α(t))+E ∗∇ϕ(t)

+
∫ t

0
G (σσσσσ(s)−A ε (u̇uuuu(s))−E ∗∇ϕ(s),ε (uuuuu(s)))ds−Ceθ (t),

(49)

DDDDD = E ε(uuuuu)−BBBBB∇(ϕ), (50)

(σσσσσ(t),ε(vvvvv)− ε(u̇uuuu(t))H + j(vvvvv)− j(u̇uuuu(t)) � (f(t),vvvvv− u̇uuuu(t))V , (51)

(BBBBB∇ϕ(t),∇φ)H − (E ε(uuuuu(t)),∇φ)H = (q(t),φ)W , ∀φ ∈W, t ∈ (0,T ) (52)

θ̇(t)+Kθ (t) = Ru̇uuuu(t)+Q(t), in V ′, (53)

α(t) ∈ Y ,(α̇(t),ξ −α(t))L2(Ω) +a(α(t),ξ −α(t))

� (S (ε(uuuuu(t)),α(t)) ,ξ −α(t))L2(Ω) ,∀ξ ∈ Y , t ∈ (0,T ),
(54)

uuuuu(0) = uuuuu0, θ (0) = θ0, α(0) = α0. (55)

Our main existence and uniqueness result for Problem PV is in the following
section.

4. Existence and uniqueness

THEOREM 1. Assume that (25)–(40) hold, Then there exists a unique solution
(uuuuu,σσσσσ ,ϕ ,θ ,α,DDDDD) to problem PV . Moreover, the solution has the regularity

uuuuu ∈C1(0,T ;V ), (56)

ϕ ∈C(0,T ;W ), (57)

σσσσσ ∈C(0,T ;H ), (58)

θ ∈C
(
0,T ;L2(Ω)

)∩L2(0,T ;V )∩W 1,2 (
0,T ;V ′) , (59)

α ∈W 1,2 (
0,T ;L2(Ω)

)∩L2 (
0,T ;H1(Ω)

)
, (60)

DDDDD ∈C(0,T ;W ). (61)

A set of functions (uuuuu , σσσσσ , ϕ , θ , α,DDDDD) , satisfying (1)–(16), (49)–(55) is called
a weak solution of the mechanical problem of electro elastic-viscoplastic with damage
and thermal effects P . We conclude that, under the conditions specified in Theorem 1,
the mechanical problem P has a unique weak solution satisfying (56)–(61).

The proof of Theorem 1 will be carried out in several steps, From now on, in this
section, we always suppose that the assumptions of Theorem 1 hold, and we always
assume that C is a generic positive constant may change from place to place. Let ηηηηη ∈
C(0,T ;H ) and λ ∈C(0,T ;L2(Ω)) we consider the following variational problem.
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Problem P1
η

Find a displacement field uuuuuη : [0,T ] →V such that for all t ∈ [0,T ]

(A ε (u̇uuuuη(t)) ,ε (wwwww)− ε(u̇uuuuη(t)))H +(B (ε (uuuuuη(t)) ,αλ (t)) ,ε (wwwww)− ε(u̇uuuuη(t)))H

+(ηηηηη(t),ε(wwwww)− ε(u̇uuuuη(t)))H + j(wwwww)− j (u̇uuuuη (t)) � (f(t),wwwww− u̇uuuuη (t))V ,

∀wwwww ∈V, a.e. t ∈ (0,T ),
(62)

uuuuuη(0) = uuuuu0. (63)

We have the following result for P1
η

LEMMA 1. 1) There exists a unique solution uuuuuη ∈ C1(0,T ;V ) to the problem
(62) and (63).

2) If uuuuu1 and uuuuu2 are two solutions of (62) and (63) corresponding to the data ηηηηη1 ,
ηηηηη2 ∈C([0,T ];H ) , then there exists C > 0 such that

‖uuuuu1(t)−uuuuu2(t)‖V � C
∫ t

0
‖ηηηηη1(s)−ηηηηη2(s)‖H ds, t ∈ [0,T ]. (64)

Proof. We define the operators A : V →V and B : V ×H1(Ω) →V by

(Auuuuu,wwwww)V = (A ε(uuuuu),ε(wwwww))H , ∀uuuuu,wwwww ∈V, (65)

(B(uuuuu,α),wwwww)V = (B (ε(uuuuu),α)ε(wwwww))H , ∀uuuuu,wwwww ∈V, α ∈ H1(Ω). (66)

Therefore, (62) can be rewritten as follows

(Au̇uuuu(t),wwwww− u̇uuuu(t))V +(B(uuuuu(t),α(t)) ,wwwww− u̇uuuu(t))V + j(wwwww)
− j(uuuuu(t)) � (fη(t),wwwww− u̇uuuu(t))V ,

(67)

where

fη(t) = f(t)−ηηηηη(t), a.e. t ∈ [0,T ].

We use assumption (25) to show that A is a strongly monotone Lipschitz continu-
ous operator. Also, it follows from (26) that B is a Lipschitz continuous operator and
we use (23) to see that the functional j defined in (42) satisfies

j(wwwww) � c0‖μ‖L∞(Γ3)‖F‖L2(Γ3)‖wwwww‖V , ∀wwwww ∈V.

So the seminorm j is continuous and, therefore, it is a convex lower semicontinuous
function on V . Finally, note that fη ∈ C([0,T ];V ) and uuuuu0 ∈ V and we use classical
arguments of functional analysis concerning evolutionary variational inequalities [4,
19] we can easily prove the existence and uniqueness of uuuuuη satisfying (56). Using
inequality (62) for ηηηηη = ηηηηη1 , uuuuuηηηηη1 = uuuuu1 , u̇uuuuη1 = u̇uuuu1 , we find

(A ε (u̇uuuu1(t)) ,ε (wwwww)− ε(u̇uuuu1(t)))H +(B (ε (uuuuu1(t)) ,αλ (t)) ,ε (wwwww)− ε(u̇uuuu1(t)))H

+(ηηηηη1(t),ε(wwwww)− ε(u̇uuuu1(t)))H + j(wwwww)− j (u̇uuuu1(t)) � (f(t),wwwww− u̇uuuu1(t))V ,

∀wwwww ∈V, a.e. t ∈ (0,T ),
(68)
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for ηηηηη = ηηηηη2 , uuuuuηηηηη2 = uuuuu2 , u̇uuuuη2 = u̇uuuu2 , we obtain

(A ε (u̇uuuu2(t)) ,ε (wwwww)− ε(u̇uuuu2(t)))H +(B (ε (uuuuu2(t)) ,αλ (t)) ,ε (wwwww)− ε(u̇uuuu2(t)))H

+(ηηηηη2(t),ε(wwwww)− ε(u̇uuuu2(t)))H + j(wwwww)− j (u̇uuuu2(t)) � (f(t),wwwww− u̇uuuu2(t))V ,

∀wwwww ∈V, a.e. t ∈ (0,T ),
(69)

we take wwwww = u̇uuuu2(t) in (68) and wwwww = u̇uuuu1(t) in (69), add the two inequalities to obtain

(A ε (u̇uuuu1(t))−A ε (u̇uuuu2(t)) ,ε(u̇uuuu1(t))− ε(u̇uuuu2(t)))H
� (B (ε (uuuuu1(t)) ,αλ (t))−B (ε (uuuuu2(t)) ,αλ (t)) ,ε (u̇uuuu2(t))− ε(u̇uuuu1(t)))H

+(ηηηηη1(t)−ηηηηη2(t),ε(u̇uuuu1(t))− ε(u̇uuuu2(t))),

then we use assumptions (25) and (26) to find

‖u̇uuuu1− u̇uuuu2‖V � C (‖uuuuu1−uuuuu2‖V +‖ηηηηη1 −ηηηηη2‖H ) . (70)

Since uuuuui(t) =
∫ t

0
u̇uuuui(s)ds+uuuuu0,∀t ∈ [0,T ] , we have

‖uuuuu1(t)−uuuuu2(t)‖V �
∫ t

0
‖u̇uuuu1(s)− u̇uuuu2(s)‖V ds. (71)

Using (70), (71) and the Gronwall’s inequality, we find∫ t

0
‖u̇uuuu1(s)− u̇uuuu2(s)‖V ds �

∫ t

0
‖ηηηηη(s)−ηηηηη(s)‖H ds, (72)

which concludes the proof of Lemma 1. �
In the second step we use the solution uuuuuη , obtained in Lemma 1, and consider the

following variational problem for the electrical potential.

Problem P2
η

Find an electrical potential ϕη : (0,T ) →W such that

(BBBBB∇ϕη(t),∇ζ )H − (E ε (uuuuuη(t)) ,∇ζ )H = (q(t),ζ )W , for all ζ ∈W, t ∈ (0,T ).
(73)

LEMMA 2. Problem (73) has unique solution ϕη which satisfies the regularity
(57). Moreover, if ϕηηηηη1 and ϕηηηηη2 are the solutions of (73) corresponding to ηηηηη1,ηηηηη2 ∈
C([0,T ];H ) , then there exists C > 0 such that∥∥ϕηηηηη1(t)−ϕηηηηη2(t)

∥∥
W � C

∥∥uuuuuηηηηη1(t)−uuuuuηηηηη2(t)
∥∥

V , ∀t ∈ [0,T ]. (74)

Proof. We consider the form L : W ×W → R

L(ϕ ,φ) = (BBBBB∇ϕ ,∇φ)H , ∀ϕ ,φ ∈W, (75)
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we use (21), (22), (31) and (75) to show that the form L is bilinear continuous, sym-
metric and coercive on W , moreover using (44) and the Riesz representation theorem
we may define an element ξη : [0,T ] →W such that

(ξη (t),φ)W = (q(t),φ)W +(E ε (uuuuuη(t)) ,∇φ)H , ∀φ ∈W, t ∈ (0,T ),

we apply the Lax-MilgramTheorem to deduce that there exists a unique element ϕη(t)∈
W such that

L(ϕη (t),φ) = (ξη (t),φ)W , ∀φ ∈W. (76)

It follows from (76) that ϕη is a solution of the equation (73). Let ϕηi = ϕi , and
uuuuuηi = uuuuui for i = 1,2. We use (73) to obtain

‖ϕ1(t)−ϕ2(t)‖W � C‖uuuuu1(t)−uuuuu2(t)‖V , ∀t ∈ [0,T ].

Now since uuuuuη ∈ C1(0,T ;V ) , so implies that ϕη ∈ C(0,T ;W ) . This completes the
proof. �

In the third step, we use the displacement field uuuuuη obtained in Lemma 1 to con-
sider the following variational problem.

Problem P3
η

Find the temperature field θη : (0,T ) → L2(Ω)

θ̇η (t)+Kθη(t) = Ru̇uuuuη (t)+Q(t), in V ′, a.e. t ∈ [0,T ], (77)

θη (0) = θ0. (78)

LEMMA 3. There exists a unique solution θη to the auxiliary problem P3
η satis-

fying (59). Moreover ∃C > 0 such that ∀ηηηηη1,ηηηηη2 ∈C(0,T ;H ) .

∥∥θη1(t)−θη2(t)
∥∥2

L2(Ω) � C
∫ t

0
‖ηηηηη1(s)−ηηηηη2(s)‖2

H ds, ∀t ∈ [0,T ]. (79)

Proof. The result follows from classical first order evolution equation given in
Refs. [1, 18]. Here the Gelfand triple is given by

V ⊂ L2(Ω) =
(
L2(Ω)

)′ ⊂ V ′.

The operator K is linear and coercive. By Korn’s inequality, we have

(Kτ,τ)V ′×V � C‖τ‖2
V .

Let θηi = θi , and uuuuuηi = uuuuui for i = 1,2. Let t ∈ R
+ be fixed. Then, we have(

θ̇1(t)− θ̇2(t),θ1(t)−θ2(t)
)
V ′×V

+(Kθ1(t)−Kθ2(t),θ1(t)−θ2(t))V ′×V

= (Ru̇1(t)−Ru̇2(t),θ1(t)−θ2(t))V ′×V .
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We integrate the above equality over (0,t) and we use the strong monotonicity of
K and the Lipschitz continuity of R : V → V ′ to deduce that

‖θ1(t)−θ2(t)‖2
L2(Ω)ds � C

∫ t

0
‖u̇uuuu1(s)− u̇uuuu2(s)‖2

V ds,

It follows now from (72), that

‖θ1(t)−θ2(t)‖2
L2(Ω) � C

∫ t

0
‖ηηηηη1(s)−ηηηηη2(s)‖2

H ds, ∀t ∈ [0,T ]. �

In the fourth step we let λ ∈C(0,T ;L2(Ω))

Problem Pλ

Find the damage field αλ : (0,T ) → L2(Ω) such that αλ (t) ∈ Y and

(α̇λ (t),ξ −αλ )L2(Ω) +a(αλ (t),ξ −αλ (t))

� (λ (t),ξ −αλ (t))L2(Ω) ∀ξ ∈ Y , a.e. t ∈ (0,T ),
(80)

αλ (0) = α0. (81)

For the study of problem Pλ , we have the following result.

LEMMA 4. There exists a unique solution αλ to the auxiliary problem Pλ satis-
fying (60).

Proof. The inclusion mapping of
(
H1(Ω),‖ · ‖H1(Ω)

)
into

(
L2(Ω),‖ · ‖L2(Ω)

)
is

continuous and its range is dense. We denote by (H1(Ω))′ the dual space of H1(Ω)
and, identifying the dual of L2(Ω) with itself, we can write the Gelfand triple

H1(Ω) ⊂ L2(Ω) ⊂ (
H1(Ω)

)′
.

We use the notation (., .)(H1(Ω))′×H1(Ω) to represent the duality pairing between

(H1(Ω))′ and (H1(Ω)) . We have

(α,ρ)(H1(Ω))′×H1(Ω) = (α,ρ)L2(Ω), ∀α ∈ L2(Ω),ρ ∈ H1(Ω),

and we note that K is a closed convex set in (H1(Ω)) , using the definition (53) of the
bilinear form a , for all υ ,ρ ∈ H1(Ω) , we have a(υ ,ρ) = a(ρ ,υ) and

|a(υ ,ρ)|� k‖∇υ‖H‖∇ρ‖H � c‖υ‖H1(Ω)‖ρ‖H1(Ω),

Therefore, a is continuous and symmetric. Thus, for all υ ∈ H1(Ω) , we have

a(υ ,υ) = k‖∇υ‖2
H ,
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so

a(υ ,υ)+ (k+1)‖υ‖2
L2(Ω) � k

(
‖∇υ‖2

H +‖υ‖2
L2(Ω)

)
,

which implies

a(υ ,υ)+ c0l‖υ‖2
L2(Ω) � c1‖υ‖2

H1(Ω) with c0 = k+1 and c1 = k.

Finally, we use (40), (46) to see that λ ∈ L2(0,T ;L2(Ω)) and α0 ∈ K , and we
use a standard result for parabolic variational inequalities (see [1], p. 124), we find
that there exists a unique function α ∈W 1,2

(
0,T ;L2(Ω)

)∩L2
(
0,T ;H1(Ω)

)
, such that

α(0) = α0 , α(t) ∈ K for all t ∈ [0,T ] and for almost all t ∈ (0,T )

(α̇λ (t),ρ −αλ )(H1(Ω))′×H1(Ω) +a(αλ (t),ρ −αλ (t)) � (λ (t),ρ −αα(t))L2(Ω) ,

∀ρ ∈ K. �

In the fifth step, we use uuuuuη , ϕη , θη and αλ obtained in Lemmas 1, 2, 3 and 4,
respectively to construct the following Cauchy problem for the stress field.

Problem Pη,λ

Find the stress field σσσσση,λ : [0,T ] → H which is a solution of the problem

σσσσση,λ (t) = B (ε (uη(t),αλ (t)))+
∫ t

0
G

(
σσσσση,λ (s),ε (uη(s))

)
ds−Ceθη (t),

a.e. t ∈ (0,T ).
(82)

LEMMA 5. Pη,λ has a unique solutions σσσσση,λ ∈C(0,T ;H ) . Moreover, if σσσσσηi,λi
,

uuuuuηi , θηi and αλi
represent the solutions of Problems Pη,λ , P1

η , P3
η and, Pλ re-

spectively, for (ηηηηη i,λi) ∈ C(0,T ;H × L2(Ω)) , i = 1,2 , then there exists C > 0 such
that∥∥σσσσση1,λ1

(t)−σσσσση2,λ2
(t)

∥∥2
H

� C
(∥∥uuuuuη1(t)−uuuuuη2(t)

∥∥2
V +

∥∥αλ1
(t)−αλ2

(t)
∥∥2

L2(Ω)

+
∥∥θη1(t)−θη2(t)

∥∥2
L2(Ω) +

∫ t

0

∥∥uuuuuη1(s)−uuuuuη2(s)
∥∥2

V

)
.

(83)

Proof. Let ΣΣΣΣΣη,λ : C(0,T ;H ) →C(0,T ;H ) be the operator given by

ΣΣΣΣΣη,λ σσσσσ(t) = B (ε (uη(t),αλ (t)))+
∫ t

0
G

(
σσσσση,λ (s),ε (uη(s))

)
ds−Ceθη(t), (84)

Let σσσσσ i ∈ W 1,∞(0,T ;H ) , i = 1,2 and t1 ∈ (0,T ). Using hypothesis (27) and
Holder’s inequality, we find

∥∥ΣΣΣΣΣη,λ σσσσσ1 (t1)−Ση,λ σσσσσ2 (t1)
∥∥2

H
� L2

G T
∫ t1

0
‖σσσσσ1(s)−σσσσσ2(s)‖2

H ds.
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Integration on the time interval (0,t2) ⊂ (0,T ) , it follows that

∫ t2

0

∥∥ΣΣΣΣΣη,λ σσσσσ1 (t1)−ΣΣΣΣΣη,λ σσσσσ2 (t1)
∥∥2

H
dt1 � L2

G T
∫ t2

0

∫ t1

0
‖σσσσσ1(s)−σσσσσ2(s)‖2

H dsdt1.

Therefore

∥∥ΣΣΣΣΣη,λ σσσσσ1 (t2)−ΣΣΣΣΣη,λ σσσσσ2 (t2)
∥∥2

H
� L4

G T 2
∫ t2

0

∫ t1

0
‖σσσσσ1(s)−σσσσσ2(s)‖2

H dsdt1.

For t1, t2, . . . ,tn ∈ (0,T ), we generalize the procedure above by recurrence on n .
We obtain the inequality

∥∥ΣΣΣΣΣη,λ σσσσσ1 (tn)−ΣΣΣΣΣη,λ σσσσσ2 (tn)
∥∥2

H

� L2n
G Tn

∫ tn

0
· · ·

∫ t2

0

∫ t1

0
‖σσσσσ1(s)−σσσσσ2(s)‖2

H dsdt1 . . .dtn−1.

Which implies

∥∥ΣΣΣΣΣη,λ σσσσσ1 (tn)−ΣΣΣΣΣη,λ σσσσσ2 (tn)
∥∥2

H
� L2n

G Tn+1

n!

∫ T

0
‖σσσσσ1(s)−σσσσσ2(s)‖2

H ds.

Thus, we can infer, by integrating over the interval time (0,T ) , that

∥∥ΣΣΣΣΣη,λ σσσσσ1−ΣΣΣΣΣη,λ σσσσσ2
∥∥2

C(0,T ;H ) � L2n
G Tn+2

n!
‖σσσσσ1−σσσσσ2‖2

C(0,T ;H ) .

It follows from this inequality that for large n enough, the operator ΣΣΣΣΣn
η,λ is a con-

traction on the Banach space C(0,T ;H ) , and therefore there exists a unique element
σσσσσ ∈C(0,T ;H ) such that ΣΣΣΣΣη,λ σσσσσ = σσσσσ . Moreover, σσσσσ is the unique solution of Problem
Pη,λ . Consider now (ηηηηη1,λ1),(ηηηηη2,λ2) ∈C(0,T ;H ×L2(Ω)) and for i = 1,2, denote
uuuuuηi = uuuuui , θηi = θi , αλi

= αi and σσσσσηi,λi
= σσσσσ i . We have

σσσσσ i(t) = B (ε (uuuuui(t),αi(t)))+
∫ t

0
G (σσσσσ i(s),ε (uuuuui(s)))ds−Ceθi(t),

a.e. t ∈ (0,T ).
(85)

and using the properties (26), (27) and (29) of B , G and Ce we find

‖σσσσσ1(t)−σσσσσ2(t)‖2
H

� C
(
‖uuuuu1(t)−uuuuu2(t)‖2

V +‖α1(t)−α2(t)‖2
L2(Ω) +‖θ1(t)−θ2(t)‖2

L2(Ω)

+
∫ t

0
‖uuuuu1(s)−uuuuu2(s)‖2

V ds+
∫ t

0
‖σσσσσ1(s)−σσσσσ2(s)‖2

H ds

)
, ∀t ∈ [0,T ].

(86)

We use Gronwall argument in the previous inequality to deduce (83), which con-
cludes the proof of Lemma 5. �
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Finally, as a consequence of these results and using the properties of the operators
G , E , Ce and the function S , for t ∈ (0,T ) , we consider the element

Λ(ηηηηη,λ )(t) =
(
Λ1(ηηηηη,λ )(t),Λ2(ηηηηη,λ )(t)

) ∈ H ×L2(Ω), (87)

defined by(
Λ1(ηηηηη,λ )(t),vvvvv

)
H ×V = (E ∗∇ϕη(t),ε(vvvvv))H +(Ceθη (t),ε(vvvvv))H

+
(∫ t

0
G

(
σσσσση,λ ,εεεεε (uuuuuη(s))

)
ds,ε(vvvvv)

)
H

,∀vvvvv ∈V,
(88)

Λ2 (ηηηηη,λ ) (t) = S (ε (uuuuuη(t)) ,αλ (t)) . (89)

Here, for every (ηηηηη,λ ) ∈ C(0,T ;H ×L2(Ω)) . uuuuuη , ϕη , θη , αλ and σσσσση,λ represent
the displacement field, the electric potential field, the temperature field, the damage
field and the stress field, obtained in Lemmas 1, 2, 3, 4 and 5 respectively. We have the
following result.

LEMMA 6. The mapping Λ has a fixed point (ηηηηη∗,λ ∗) ∈ C(0,T ;H × L2(Ω)),
such that Λ(η∗η∗η∗η∗η∗,λ ∗) = (η∗η∗η∗η∗η∗,λ ∗) .

Proof. Let t ∈ (0,T ) and (ηηηηη1,λ1) ,(ηηηηη2,λ2) ∈ C
(
0,T ;H ×L2(Ω)

)
. We use the

notation that uuuuuηi = uuuuui, u̇uuuuηi = u̇uuuui, θηi = θi, ϕηi = ϕi, αλi
= αi and σσσσσηi,λi

= σσσσσ i for
i = 1,2.

Let us start by using (23), (27), (29) and (32), we have

‖Λ1 (ηηηηη1,λ1) (t)−Λ1 (ηηηηη2,λ2)(t)‖2
H � ‖E ∗∇ϕ1(t)−E ∗∇ϕ2(t)‖2

H

+‖Ceθ1(t))−Ceθ2(t)‖2
H

+
∫ t

0
‖G (σσσσσ1(s),ε(uuuuu1(s)))−G (σσσσσ2(s),ε(uuuuu2(s)))‖2

H ds

� C
(
‖ϕ1(t)−ϕ2(t)‖2

W +‖θ1(t)−θ2(t)‖2
L2(Ω)

+
∫ t

0
‖σσσσσ1(s)−σσσσσ2(s)‖2

H ds+
∫ t

0
‖uuuuu1(s)−uuuuu2(s)‖2

V ds

)
.

(90)

We use estimates (74), (83) to obtain

‖Λ1 (ηηηηη1,λ1)(t)−Λ1 (ηηηηη2,λ2) (t)‖2
H

� C

(
‖α1(t)−α2(t)‖2

L2(Ω) +‖θ1(t)−θ2(t)‖2
L2(Ω)

+‖uuuuu1(s)−uuuuu2(s)‖2
V +

∫ t

0
‖uuuuu1(s)−uuuuu2(s)‖2

V ds

)
.

(91)

By similar arguments, from (89) and (28) we obtain∥∥Λ2 (ηηηηη1,λ1)(t)−Λ2 (ηηηηη2,λ2) (t)
∥∥2

H

� C
(
‖uuuuu1(t)−uuuuu2(t)‖2

V +‖α1(t)−α2(t)‖2
L2(Ω)

)
, a.e. t ∈ (0,T ).

(92)
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It follows now from (92), (91) and (87) that

‖Λ(ηηηηη1,λ1)(t)−Λ(ηηηηη2,λ2)(t)‖2
H ×L2(Ω)

� C

(
‖α1(t)−α2(t)‖2

L2(Ω) +‖θ1(t)−θ2(t)‖2
L2(Ω)

+‖uuuuu1(s)−uuuuu2(s)‖2
V +

∫ t

0
‖uuuuu1(s)−uuuuu2(s)‖2

V ds

)
.

(93)

Form (80), deduced that

(α̇1 − α̇2,α1 −α2)L2(Ω) +a(α1 −α2,α1 −α2)

� (λ1−λ2,α1 −α2)L2(Ω) , a.e. t ∈ (0,T ).

integrate inequality with respect to time, using the initial conditions α1 (0) = α2 (0) =
α0, and inequality a(α1 −α2,α1 −α2) � 0, we find

1
2 ‖α1 (t)−α2 (t)‖2

L2(Ω) � C

t∫
0

(λ1 (s)−λ2 (s) ,α1 (s)−α2 (s))L2(Ω)ds,

which implies

‖α1 (t)−α2 (t)‖2
L2(Ω)

� C

⎛
⎝ t∫

0

‖λ1 (s)−λ2 (s)‖2
L2(Ω) ds+

t∫
0

‖α1 (s)−α2 (s)‖2
L2(Ω) ds

⎞
⎠ .

This inequality combined with the Gronwall inequality leads to

‖α1 (t)−α2 (t)‖2
L2(Ω) � C

t∫
0

‖λ1 (s)−λ2 (s)‖2
L2(Ω) ds ,∀t ∈ [0,T ] . (94)

Form the previous inequality and estimates (94), (93), (79) and (64) it follows now
that

‖Λ(ηηηηη1,λ1) (t)−Λ(ηηηηη2,λ2)(t)‖2
H ×L2(Ω)

� C
∫ T

0
‖(ηηηηη1,λ1)(s)− (ηηηηη2,λ2)(s)‖2

H ×L2(Ω) ds.
(95)

Reiterating this inequality m times we obtain

‖Λm (ηηηηη1,λ1)−Λm (ηηηηη2,λ2)‖2
C(0,T ;H ×L2(Ω))

� CmTm

m!
‖(ηηηηη1,λ1)− (ηηηηη2,λ2)‖2

C(0,T ;H ×L2(Ω)) .
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Thus, for m sufficiently large, Λm is a contraction on the Banach space C(0,T ;H ×
L2(Ω)) , and so Λ has a unique fixed point. �

Now we have every thing that is required to prove Theorem 1.

Proof. Let (ηηηηη∗,λ ∗) ∈C(0,T ;H ×L2(Ω)) be the fixed point of Λ and

uuuuu = uuuuuη∗ , θ = θη∗ , ϕη∗ = ϕ , α = αλ ∗ (96)

σσσσσ = A ε(u̇uuuu)+E ∗∇ϕ(t)+ σσσσση∗λ ∗ , (97)

DDDDD = E ε(uuuuu)+BBBBB∇(ϕ). (98)

We prove that (uuuuu,σσσσσ ,θ ,ϕ ,α,DDDDD) satisfies (49)–(55) and (56)–(61). Indeed, we
write (82) for ηηηηη∗ = ηηηηη , λ ∗ = λ and use (96)–(97) to obtain that (49) is satisfied. Now
we consider (62) for ηηηηη∗ = ηηηηη , λ ∗ = λ and use (96) to find

(A ε(u̇uuuu(t)),ε(vvvvv− u̇uuuu(t)))H +(B (ε (uuuuu(t)) ,α(t)) ,ε (vvvvv)− ε(u̇uuuu(t)))H
+(ηηηηη∗(t),vvvvv− u̇uuuu(t))H + j (vvvvv)− j (u̇uuuu(t)) � (f(t),vvvvv− u̇uuuu(t))V

∀vvvvv ∈V, t ∈ [0,T ].
(99)

The equalities Λ1 (ηηηηη∗,λ ∗) = ηηηηη∗ and Λ2 (ηηηηη∗,λ ∗) = λ ∗. combined with (88)–(89),
(96) and (97) show that for all vvvvv ∈V ,

(ηηηηη∗ (t) ,vvvvv)H ×V = (E ∗∇ϕ(t),ε(vvvvv))H − (Ceθ (t),ε(vvvvv))H ,

+
(∫ t

0
G (σσσσσ(s)−A ε(u̇uuuu(s))−E ∗∇ϕ(t),ε(uuuuu(s)))ds,ε(vvvvv)

)
H

,
(100)

λ ∗(t) = S (ε (uuuuu(t)) ,α(t)) . (101)

We substitute (100) in (99)) and use (49) to see that (51) is satisfied.
We write now (73) for ηηηηη = ηηηηη∗ and use (96) to find (52). From (77) and (96) we

see that (53) is satisfied.
We write (80) for λ = λ ∗ and use (96) and (101) to find that (54) is satisfied
Next, (55), The regularities (56), (57), (59) and (60) follow from Lemmas 1, 2, 3

and 4. The regularity σσσσσ ∈C(0,T ;H ) follows from Lemmas 5.
Let now t1, t2 ∈ [0,T ] , from (21), (31), (32) and (98), we conclude that there exists

a positive constant C > 0 verifying

‖DDDDD(t1)−DDDDD(t2)‖H � C (‖ϕ (t1)−ϕ (t2)‖W +‖uuuuu(t1)−uuuuu(t2)‖V ) .

The regularity of uuuuu and ϕ given by (56) and (57) implies

DDDDD ∈C(0,T ;H). (102)

We choose φ ∈ D(Ω)d in (52) and using (44) we find

divDDDDD(t) = q0(t), ∀t ∈ [0,T ], (103)

Property (61) follows from (38),(102) and (103) which concludes the existence part the
Theorem 1. The uniqueness of the solution is a consequence of the uniqueness of the
fixed point of operator Λ , and the unique solvability of the Problems P1

η , P2
η , P3

η ,
Pλ and Pη,λ which completes the proof. �
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[4] H. BRZIS, Equations et inéquations non linéaires dans les espaces vectoriels en dualit, Ann. Inst.
Fourier 18 (1968), 115–175.

[5] A. DJABI, A. MEROUANI, Bilateral contact problem with friction and wear for an elastic-viscoplastic
materials with damage, Taiwanese J. Math. (2015), 1161–1182.
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[8] M. FRÉMOND, K. L. KUTTLER, B. NEDJAR, M. SHILLOR, One-dimensional models of damage,
Adv. Math. Sci. Appl. 8 (2) (1998), 541–570.

[9] W. HAN, M. SHILLOR, M. SOFONEA, Variational and numerical analysis of a quasistatic viscoelas-
tic poblem with normal compliance, friction and damage, J. Comput. Appl. Math., 137 (2001), 377–
398.

[10] W. HAN, M. SOFONEA, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies
in Advanced Mathematics 30, Americal Mathematical Society and International Press, (2002).

[11] A. HAMIDAT, A. AISSAOUI,A quasi-static contact problem with friction in electro viscoelasticity with
long-term memory body with damage and thermal effects, International Journal of Nonlinear Analysis
and Applications (2022).

[12] F. MACERI, P. BISEGNA, The unilateral frictionless contact of a piezoelectric body with a rigid
support, Math. Comp. Modelling 28 (1998), 19–28.

[13] A. MEROUANI, S. DJABI, A monotony method in quasistatic processes for viscoplastic materials,
Stud. Univ. Babes-Bolyai Math. (2008),

[14] A. MEROUANI, F. MESSELMI, Dynamic evolution of damage in elastic-thermo-viscoplastic materi-
als, Electron. J. Differential Equations 129 (2010), 1–15.

[15] M. ROCHDI, M. SHILLOR, M. SOFONEA, Analysis of a quasistatic viscoelastic problem with friction
and damage, Adv. Math. Sci. Appl. 10 (2002), 173–189.

[16] M. SHILLOR, M. SOFONEA, J. J. TELEGA, Models and Analysis of Quasistatic Contact, Lecture
Notes in Physics 655, Springer, Berlin, (2004).

[17] M. SOFONEA, EL H. ESSOUFI, Quasistatic frictional contact of a viscoelastic piezoelectric body,
Adv. Math. Sci. Appl. 14 (2004), 25–40.

[18] M. SOFONEA, W. HAN, M. SHILLOR, Analysis and Approximations of Contact Problems with Adhe-
sion Or Damage, Pure and Applied Mathematics Chapman and Hall/CRC Press, Boca Raton, Florida
(2005).

[19] M. SOFONEA, A. MATEI, Mathematical models in contact mechanics, Cambridge University Press
398, (2012).

(Received August 15, 2022) Ahmed Hamidat
University of El Oued, Fac, Exact Sciences

Lab Laboratory of Operator Theory and PDE:
Foundations and Applications

39000, El Oued, Algeria
e-mail: hamidat-ahmed@univ-eloued.dz

Adel Aissaoui
University of El Oued, Department of Mathematics, Fac, Exact Sciences

Lab Laboratory of Operator Theory and PDE:
Foundations and Applications

39000, El Oued, Algeria
e-mail: aissaoui-adel@univ-eloued.dz

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


