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Abstract. This paper is concerned with the existence of global weak solution for a nonlinear
viscoelastic problem with internal damping and a logarithmic source term and Dirichlet boundary
initial conditions, and with the study of the asymptotic behavior of the problem, involving: a)
exponential decay of total energy of solutions for initial data in the set of stability created by the
Nehari manifold, b) the exponential growth of the logarithmic source term for negative initial
energy. In the existence of global weak solution we employed similar ideas as in the work of S.
Cordeiro, J. Ferreira, et al., 2021, where the Faedo-Galerkin method was combined with Aubin-
Lions lemmas for the passage to the limit in the nonlinear terms. In the study of the exponential
decay of the total energy and in the growth of the logarithmic term of the energy we adapted the
perturbed energy methods in a work of Messaoudi & Tatar, 2006 and 2003.

1. Introduction

The existing theory of elasticity accounts for materials that have a capacity to store
mechanical energy with no dissipation (of energy). On the other hand, a Newtonian vis-
cous fluid in a nonhydrostatic stress state has a capacity for dissipating energy without
storing it. Materials that are outside the scope of these two theories would be those
for which some, but not all, of the work done to deform them can be recovered. Such
materials possess a capacity for storage and dissipation of mechanical energy. This is
the case of ‘viscoelastic’ materials.

Viscoelastic materials are those for which the behavior combines liquid-like and
solid-like characteristics. Viscoelasticity is important in areas such as: biomechanics,
power industry or heavy construction, Synthetic polymers, Wood, Human tissue and
cartilage, Metals at high temperature, Concrete.

Polymers, for instance, are viscoelastic materials, since they occupy an intermedi-
ate position between viscous liquids and elastic solids. The formulation of Boltzmann’s
superposition principle leads to a memory term involving a relaxation function of ex-
ponential type. But, it has been observed that relaxation functions of some viscoelastic
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materials are not necessarily of this type, see [19, 20]. In the present work, we are
concerned with the following initial boundary value problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ut |ρRutt +M(‖u‖2)(−Δu)−Δutt +
∫ t
0 g(t− s)Δu(s)ds+ut

= u|u|p−2
R

ln |u|k
R

in Ω× (0,∞),

u = 0 on ∂Ω× [0,∞),

u(x,0) = u0(x) in Ω,

ut(x,0) = u1(x) in Ω,

(1)

where Ω ⊂ R
n (n � 1) is a bounded domain with smooth boundary ∂Ω , p > 2 and

ρ > 0 are constants, and g : R
+ → R

+ and M : [0,∞) → R are C1 functions. The
notations ‖ · ‖ , | · | , | · |R and | · |Rn are defined in Section 2.

From the physical point of view, this is also the type of problems that usually arises
in viscoelasticity. It has been considered with a power source term first by Dafermos
[11], where the general decay was discussed.

As mentioned in [17], the logarithmic nonlinearity appears in several branches of
physics such as inflationary cosmology, nuclear physics, optics, and geophysics. With
all this specific underlying meaning in physics, the global-in-time well-posedness of
solution to the problem of evolution equation with such logarithmic-type nonlinearity
captures lots of attention, see [17] for the references related to each branch listed above.

A problem related to the present work is the nonlinear viscoelastic wave equation

|ut |ρRutt −Δu−Δutt +
∫ t

0
g(t− τ)Δu(τ)dτ − γΔut = b|u|p−2

R
u,

considered by Messaoudi & Tatar, [20], who used the potential well method to prove
existence of global solution. They established results on decay of energy and growth
of solution for suitable values of ρ , p and under the assumption of decay of function
g . When γ = 0 this hypothesis on g is dropped in [19] by improving Zuazua’s method
for the proof of asymptotic decay of energy.

Another problem related to (1) when ρ = 0, with a power source term, is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt −Δu+
∫ t
0 g(t− s)Δu(τ)dτ +aut = b|u|p−2

R
u in Ω×R

+,

u(x,0) = u0(x) in Ω,

ut(x,0) = u1(x) in Ω,

(2)

which has been extensively studied. When g = 0, Zuazua [23] proved that the energy
related to the problem (2) decays exponentially depending on the nature of the bound-
ary, while for g �= 0, Cavalcanti et al. [9] studied (2) for a localized damping a(x)ut

and b < 0, showing an exponential rate of decay by assuming that the kernel g decays
exponentially. It is also possible to prove the exponential decay when a = 0 using the
ideas introduced by Muñoz Rivera [15] for small initial data. For nonexistence results,



Differ. Equ. Appl. 15, No. 4 (2023), 395–429. 397

Messaoudi [14] considered (2) for b > 0 and with a nonlinear mechanical damping of
the form aut |ut |m−2 .

For blow-up results related to the problem (2), see Messaoudi [14], who considered
b > 0 and a nonlinear mechanical damping of the form aut |ut |m−2 . It is also possible
to prove finite-time blow-up when g = 0 and a = 0 and with the source term bu|u|p−2

(see [5]). We recommend [20] for a wider exposition of references relating the existence
in time for the problem (2) and the terms involving a , b , g and the source.

In [10] a Klein-Gordon equation of Kirchhoff Carrier type was studied, with a
strong damping −Δut and a logarithmic source u ln |u|R :

utt +M(‖u‖2)(−Δu)+M1(|u|2)u−Δut = u ln |u|R (3)

proving the global existence of weak solution by using the potential well technique and
the exponential decay of total energy by means of Nakao’s Lemma. The present work
uses ideas similar to [10] to prove the existence of global weak solutions for initial data
in the stability set created from the Nehari manifold.

An important class of viscoelastic Kirchhoff equations with a logarithmic term
source is that with time varying delay. For instance, we mention the recent work of
Nadia Mezour et. al [17] and the references contained therein, where the global and
local existence of solutions for the equation

|ut |ρRutt −M(‖∇u‖)Δu−Δutt +
∫ t

0
h(t− τ)Δu(s)ds

+ μ1g1(ut(x,t))+ μ2g2(ut(x,t − τ(t))) = νu ln |u|R

is proved in a suitable Sobolev space using the energy method combined with Faedo-
Galerkin procedures.

Our work studies the interaction between the dissipation and the source term and
how they interact asymptotically. We prove that, when the initial data are in a stable
set, we have global existence. To achieve our goal, we use the potential well method.
Moreover, we show that the energy for the problem (1), i.e, the sum of kinetic and
potential energies of (1), has an exponential decay for initial data in a subset of a stable
set by employing a perturbed energy method. Then we show the exponential growth
of the logarithmic term of the energy for a sufficiently large constant ρ and negative
initial energy.

This work is structured as follows. Section 2 presents the notation and results
underlying the methods used in this paper. In section 3 we describe the set of sta-
bility of solutions built by the Nehari manifold by considering a functional energy J ,
representing the viscoelastic potential energy of the problem (1) including the source
and damping terms. Next, in section 4, we state and prove a theorem on global ex-
istence of a weak solution for the problem (1). Section 5 establish conditions for the
well-posedness of the problem (1). Finally in the sections 6 and 7 we prove results on
asymptotic behavior of some terms of the total energy, including exponential decay of
total energy and exponential growth of logarithmic term of total energy.



398 FERREIRA, SHAHROUZI, AITZHANOV, CORDEIRO AND ROCHA

2. Preliminaries and assumptions

DEFINITION 1. Let B be a Banach space and u : [0,T ] → B a measurable func-
tion. The vector function spaces Lp(0,T ;B) , 1 � p � ∞ , are defined by:

Lp(0,T ;B) =

{
u :

(∫ T

0
‖u‖p

Bdt

)1/p

< ∞

}
, 1 � p < ∞,

and
L∞(0,T ;B) = {u : ess sup0<t<T‖u(t)‖B < ∞} .

DEFINITION 2. If V and W are Banach spaces and 1 � p � ∞ , then we define

Wp(0,T ;V,W ) := { f ∈ Lp(0,T ;V )| f ′ ∈ Lp(0,T ;W )}.
The spaces in the Definition 2 are Banach spaces with the natural norms.
Now we present two well-known compactness results. The compactness is needed

to extract a strongly convergent sequence in the set of approximate solutions.

LEMMA 1. (Aubin-Lions lemma, Lions [12], Lemma 1.3, p. 12) Let Q = Ω×(0,T)
be an open and bounded set of R

n ×R . We denote Lp(0,T ;Lp(Ω)) by Lp(Q) . If gm ,
∀m ∈ N , and g are functions on Lp(Q) , 1 < p < ∞ , such that

‖gm‖Lp(Q) � C, gm → g a.e. in Q

then gm −⇀ g weakly in Lp(Q) .

LEMMA 2. (Aubin-Lions lemma, Lions [12], Theorem 5.1, p. 58) Let B0 , B and
B1 be Banach spaces, Bi , i = 0,1 , reflexive spaces with B0 ↪→ B compactly, B ↪→ B1

continously. Define

W = {u : u ∈ Lp0(0,T ;B0);ut ∈ Lp1(0,T ;B1)}
where T > 0 and 1 < pi < ∞ , i = 0,1 . Then W ⊂ Lp0(0,T ;B) , equipped with the norm

‖w‖ = ‖u‖Lp0(0,T ;B0) +‖ut‖Lp1 (0,T ;B1),

is a Banach space and W ↪→ Lp0(0,T ;B) is compact.

For simplicity of notation, hereafter we denote by | · | the Lebesgue space L2(Ω)
norm, ‖ · ‖=

∫
Ω |∇(·)|2

Rndx the H1
0 (Ω) norm, where | · |Rn is the norm in R

n .
We start by setting several hypotheses for the problem (1).

(H.1) M ∈C1([0,∞),R) is such that M(λ ) � m0 ∀λ ∈ [0,∞) , where m0 > 0.

(H.2) g : R
+ → R

+ is a Lebesgue integrable and absolutely continuous function such
that

1−
∫ ∞

0
g(s)ds =: l > 0.
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(H.3) There exist positive constants ξ1 and ξ2 satisfying

−ξ1g(t) � g′(t) � −ξ2g(t) for almost all t � 0.

We will need the very useful relation∫ t

0
g(t− τ)(∇u(τ),∇ut(t))dτ =

1
2
(g′ 
∇u)(t)− 1

2
(g 
∇u)′(t)

+
d
dt

{
1
2

(∫ t

0
g(s)ds

)
|∇u(t)|2

}

− 1
2
g(t)|∇u(t)|2, (4)

which can be checked directly, where

(g 
 y)(t) =
∫ t

0
g(t− s)|y(t)− y(s)|2ds.

Let us assume that p > 2, ρ > 0 and n = 1, 2 or 3, and in order to guarantee the
Sobolev embedddings, hereafter we assume

2 < p � 3, 0 < ρ � 2 if n = 3, (5)

p > 2, ρ > 0 if n = 1 or 2. (6)

Let us denote M̂(s) =
∫ s
0 M(τ)dτ . If u(t),ut(t) ∈ H1

0 (Ω) , we define the following
functionals

I (t) := M̂(‖u‖2)−
∫ t

0
g(s)ds‖u‖2−

∫
Ω
|u|p

R
ln |u|k

R
dx, (7)

J (t) :=
1
2

(
M̂(‖u‖2)−

∫ t

0
g(s)ds‖u‖2

)
+

1
2
‖ut‖2

+
k
p2

∫
Ω
|u|p

R
dx+

1
2
(g 
∇u)(t)− 1

p

∫
Ω
|u|p

R
ln |u|k

R
dx, (8)

E (t) :=
1

ρ +2
‖ut(t)‖ρ+2

ρ+2 +J (t), (9)

where E (t) is called the total energy of (1).

3. Potential well

In this section, we present the potential well corresponding to the logarithmic non-
linearity. It is well known that the energy of a PDE system is, in some sense, split into
kinetic and potential energy. Following the idea presented in [21], see also [18], we
can construct a stability set as follows. We will prove that there is a valley, or a “well”,
of depth d created in the potential energy. If this height d is strictly positive, we find
that for solutions with initial data in the “good part” of the well, the potential energy
of the solution can never escape the well. In general, it is possible for the energy from
the source term to cause a blow-up in finite time. However, in the good part of the well
it remains bounded. As a result, the total energy of the solution remains finite on any
time interval [0,∞) , which provides the global existence of the solution.
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3.1. Abstract setting: Nehari manifold

The method of Nehari manifold goes back to Nehari’s work [24, 25]. He consid-
ered a boundary value problem for a certain nonlinear second-order ordinary differential
equation in an interval (a,b) and showed that it has a nontrivial solution, which may
be found by constrained minimization of the Euler-Lagrange functional corresponding
to the problem. For the basic critical point theory and its applications to nonlinear
boundary value problems for elliptic equations, see e.g. [2, 3, 4, 22].

Let E be real Banach space and J ∈C1(E,R) a functional. If J′(u)= 0 and u �= 0,
then

u ∈ N := {u ∈ E\{0} : J′(u)u = 0}.
Thereby N is a natural constraint for the set of nontrivial solutions. It is called

the Nehari manifold though it is not a manifold in general. Assume without loss of
generality that J(0) = 0 and denote

d := inf
u∈N

J(u). (10)

The minimum energy d for potential energy along the Nehari manifold will de-
termine the high of the well and will be used to construct a stability set from which
the total energy of the system will never escape. However some assumptions on J are
required in order to guarantee that d > 0. For this purpose we mention next some fun-
damental results from Ambrossetti and Rabinowitz, which will be useful for proving
that d > 0.

DEFINITION 3. (Brézis-Coron-Nirenberg, 1980) Let E be a Banach space, J ∈
C1(E,R) and c∈R . The function J satisfies (PS)c condition if any sequence (un)⊂E
such that

J(un) → c, J′(un) → 0

has a convergent subsequence.

LEMMA 3. Consider

J(u) =
∫

Ω

( |∇u|2
2

+
u2

2
−F(u)

)
dx,

where F(u) =
∫ u
0 f (s)ds, with f satisfying

( f 1) f ∈C(R) , and for some 2 < p < 2∗ , c0 > 0 ,

| f (s)| � c0(|s|+ |s|p),

( f 2) there exists α > 2 such that for every s ∈ R ,

αF(s) � s f (s).
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( f 3) f (s) = o(|s|), |s| → 0 .

Then any sequence (un) ⊂ E such that

d := sup
n

J(un), J′(un) → 0,

contains a convergent subsequence.

Proof. The proof follows from an adaptation of the proof of Lemma 3.11 in [22].
�

THEOREM 1. (Ambrossetti & Rabinowitz, 1973 [1]) Let E be a Hilbert space,
J ∈C2(E,R) , e ∈ E and r > 0 be such that ‖e‖ > r and

inf
‖u‖=r

J(u) > J(0) � J(e).

If J satisfies (PS)c condition, then c is a critical value for J .

3.2. Constructing the stability set

We start by introducing a functional J : H1
0 (Ω) → R by

J(u) := − 1+C2
p

m0 + l−1

[
1
p

∫
Ω
|u|p

R
ln |u|k

R
dx− k

p2

∫
Ω
|u|p

R
dx

]

+
1
2

∫
Ω
|∇u|2Rndx+

1
2

∫
Ω
|u|2Rdx,

where Cp stands for the optimal constant in the Poincaré inequality. For all u ∈ H1
0 (Ω)

and λ > 0, we have

J(λu) = − λ p(1+C2
p)

m0 + l−1

[ k
p

∫
Ω
|u|p

R
dx lnλ +

1
p

∫
Ω
|u|p

R
ln |u|k

R
dx− k

p2

∫
Ω
|u|p

R
dx
]

+
λ 2

2

∫
Ω
|∇u|2

Rndx+
λ 2

2

∫
Ω
|u|2

R
dx. (11)

The functional K : H1
0 (Ω) → R is defined by K(u) :=

[
d

dλ J(λu)
]

λ=1 . More pre-
cisely,

K(u) = − 1+C2
p

m0 + l−1

∫
Ω
|u|p

R
ln |u|k

R
dx+

∫
Ω
|∇u|2Rndx+

∫
Ω
|u|2Rdx.

Defining f ∈C1(R) by

f (s) :=

{
(1+C2

p)|s|p−2s ln |s|k
(m0+l−1) , s �= 0

0, s = 0
(12)
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and denoting F(u) :=
∫ u
0 f (s)ds , we see that

J(u) =
∫

Ω

[ |∇u|2
Rn

2
+

|u|2
R

2
−F(u)

]
dx.

Associated with J , we have the well-known Nehari manifold

N =
{
u ∈ H1

0 (Ω)\ {0} : K(u) = 0
}

.

LEMMA 4. The following statements hold:

(i) Assume m0 + l− 1 > 0 . For any u ∈ H1
0 (Ω) \ {0} , if g(λ ) := J(λu) , then there

exists λ (u) such that g′(λ ) > 0 if λ < λ (u) and g′(λ ) < 0 if λ > λ (u) . In
particular, λ (u) is the unique λ > 0 such that λu ∈ N and the maximum of
J(λu) for λ � 0 is achieved at λ = λ (u) .

(ii) There exists δ > 0 such that λ (u) � δ for all u ∈ S , where S = {u ∈ H1
0 (Ω) :

‖u‖= 1} . Consequently N ∩B(0,δ ) = /0 , which yields that N is a closed subset
of H1

0 (Ω) .

Proof. (i) Let u ∈ H1
0 (Ω) be fixed. Taking the derivative with relation to λ in

(11), we get

g′(λ )
λ

= −aλ p−2 lnλ k +bλ p−2 + c =: h(λ )

where c := ‖u‖2 , a :=
1+C2

p
m0+l−1

∫
Ω |u|p

R
dx and b :=

1+C2
p

m0+l−1

∫
Ω |u|p

R
ln |u|k

R
dx . Note that

a, c > 0 since u �= 0 and m0 + l − 1 > 0. Also we can see that h is positive near to
zero, limλ→0 h(λ ) = −∞ , and that there exists a unique critical point λ∗ for h , namely

λ∗ = ln−1 (p−2)b−a
(p−2)a . These facts suffice to prove (i).

(ii) We suppose by contradiction that there exists a sequence (un) ∈ S such that

0 < λn := λ (un) < 1 and λn → 0. Denoting μ :=
1+C2

p
m0+l−1 , it follows from the equation

g′(λn) =
[

d
dλ

J(λun)
]

λ=λn

= 0

that

‖un‖2 =
μ
∫

Ω |λnun|pR ln |λnun|kRdx

λ 2
n

.

Since un ∈ S , it follows that

1 � μk
∫

Ω |λnun|p+1
R

dx

λ 2
n

� μkCp+1
∗ λ p−1

n ‖un‖p+1 � μkCp+1
∗ λ p−1

n ,

where C∗ is the embedding constant for H1
0 (Ω) ↪→ Lp+1(Ω) . Hence,

1 � μkCp+1
∗ λ p−1

n → 0,
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which is a contradiction. Thus the proof of (ii) is complete. Consequently, if u ∈ N ,
we have

N � u =
u

‖u‖‖u‖⇒ ‖u‖ = λ
(

u
‖u‖

)
� δ . �

As a consequence of Lemma 4 (i), we can define, as in the Mountain Pass Theorem
due to Ambrossetti and Rabinowitz,

d = inf
u∈H1

0 (Ω)
u �=0

sup
λ>0

J(λu), (13)

which is equivalent to the definition given in (10). Furthermore, from Lemma 4 (i),
if d is attained, then d > 0. Whether d is attained or not, by the continuous embed-

ding H1
0 (Ω) ⊂ Lp(Ω) and the inequality

∫
Ω F(u)dx � 1+C2

p
m0+l−1(|u|2 + ‖u‖p

p) , it is easy

to check that if C2
p(C

2
p +1) < m0 + l−1, then d > 0. However this imposes a restric-

tion on the domain through the Poincaré constant. Theorem 1 makes such restriction
unnecessary by showing that d is indeed attained and it is a critical value of J . The
critical point where d is attained is called ground state. In short:

THEOREM 2. If 0 < m0 + l − 1 , then d is a critical value of J . In particular,
d > 0 .

Proof. Observe that Lemma 4 (ii) implies the existence of r > 0 such that B(0,r)∩
N = /0 . Consequently from Lemma 4 (i), J is strictly increasing on each ray starting
at zero and ending on ∂B(0,r) . Thus, inf‖u‖=r J(u) > J(0) . The equation (11) shows
that for any u �= 0, limλ→∞ J(λu) = −∞ . Thus, there exists e ∈ H1

0 (Ω) such that
J(e) < J(0) = 0, that is,

inf
‖u‖=r

J(u) > J(0) > J(e).

Since J is (PS)d (Lemma 3), it follows from Theorem 1 that d is a critical value
for J . �

We now introduce
W = {u ∈ H1

0 (Ω) : J(u) < d}
and partition it into two parts, as follows:

W1 = {u ∈ W : K(u) > 0}∪{0},
W2 = {u ∈ W : K(u) < 0} .

LEMMA 5. W1 is open.

Proof. We know from Lemma 4 (ii) that N ∩B(0,δ ) = /0 . Hence for all 0 �= u ∈
B(0,δ ) , it follows that K(u) > 0, since every ray starting from zero does not intersect
the Nehari manifold inside the ball (see Lemma 4 (i)). Further, 0 ∈ A := {u ∈ H1

0 (Ω) :
J(u) < d}∩B(0,δ )⊂W1 , where A is open. Therefore, W1 an open set in H1

0 (Ω) . �

We refer to W1 as the “good” part and W2 as the “bad” part of the well. Then we
define by W1 the stability set for the problem (1).
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4. Existence of a global weak solution

DEFINITION 4. Let T > 0. A function u ∈ C1([0,T ],H1
0 (Ω)) is called a weak

solution of (1) on [0,T ] if for any ω ∈ H1
0 (Ω) and t ∈ [0,T ]⎧⎪⎪⎪⎨

⎪⎪⎪⎩

d
dt (|ut(t)|ρut(t),ω)+M(‖u(t)‖2)(∇u(t),∇ω)+ (∇utt(t),∇ω)

−∫ t
0 g(t− s)(∇u(s),∇ω)ds+(ut ,ω) = (u(t)|u(t)|p−2 ln |u(t)|k,ω)

u(0) = u0 , ut(0) = u1.

(14)

LEMMA 6. If u is a weak solution of (1) on [0,T ] , then E ′(t) � 0 , ∀t ∈ [0,T ] .

Proof. Setting ω = ut in the equation in (14), it follows that

(|ut(t)|ρutt(t),ut(t))+M(‖u(t)‖2)(∇u(t),∇ut(t))+ (∇utt(t),∇ut(t))

−
∫ t

0
g(t− s)(∇u(s),∇ut(t))ds+(ut(t),ut(t))

= (u(t)|u(t)|p−2 ln |u(t)|k,ut(t)).

Noting that ρ/[2(ρ + 1)]+ 1/[2(ρ + 1)]+ 1/2 = 1 from the generalized Hölder
inequality, the nonlinear term

∫
Ω |ut |ρRutt utdx in the above definition makes sense.

Thus we get

d
dt

{
1

ρ +2
‖ut(t)‖ρ+2

ρ+2 +
1
2
M̂(‖u‖2)+

1
2
|∇ut(t)|2 +

k
p2

∫
Ω
|u|p

R
dx− 1

p

∫
Ω
|u|p

R
ln |u|k

R
dx

}

= −|ut(t)|2 +
∫ t

0
g(t− s)(∇u(s),∇ut(t))ds. (15)

Combining (15) with (4) and then using the hypotheses (H.2) and (H.3) , we
obtain

E ′(t) = −|ut(t)|2 +
1
2
(g′ 
∇u)(t)− 1

2
g(t)|∇u(t)|2 � 0. � (16)

LEMMA 7. Suppose that 0 < m0 + l−1 � 1 and that the hypothesis (H.1)–(H.3)
and the conditions over p and ρ hold. Assume there exists a solution u : [0,T ] →
H1

0 (Ω) for the problem (1) with initial data u0 ∈ W1 and u1 ∈ H1
0 (Ω) such that 0 <

E (0) < (m0+l−1)d
1+C2

p
.

Then K(t) � 0 for all 0 � t � T . Consequently I (t) � 0 and

E (0) � 1
ρ +2

‖ut(t)‖ρ+2
ρ+2 +

p−2
2p

(m0 + l−1)‖u‖2

+
1
2
‖ut‖2 +

k
p2

∫
Ω
|u|p

R
dx+

1
2
(g 
∇u)(t) (17)

for all t ∈ [0,T ] .
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Proof. First, we will show that I (t) � 0 for all 0 < t � T . We notice that

m0 + l−1
1+C2

p
J(u)(t) = − 1

p

∫
Ω
|u|p

R
ln |u|kdx+

k
p2

∫
Ω
|u|p

R
dx

+
m0 + l−1
2(1+C2

p)

∫
Ω
|∇u|2Rndx+

m0 + l−1
2(1+C2

p)

∫
Ω
|u|2Rdx

� − 1
p

∫
Ω
|u|p

R
ln |u|k

R
dx+

k
p2

∫
Ω
|u|p

R
dx+

m0 + l−1
2

∫
Ω
|∇u|2

Rndx

� E (t).

It follows from Lemma 6 that

J(u)(t) �
1+C2

p

m0 + l−1
E (t) �

1+C2
p

m0 + l−1
E (0) < d.

Claim: u(t) ∈ W1 , ∀t ∈ [0,T ]
Indeed, the proof is similar to [21]. Since W1 is an open set and u : [0,T ]→H1

0 (Ω)
is continuous, we suppose by contradiction that there exists the first t1 ∈ (0,T ] such that
u(t1) ∈ ∂W1 . Then we have the following possibilities:

(i) J(u(t1)) = d, (18)

(ii) u(t1) �= 0 and K(u(t1)) = 0. (19)

We have just seen that J(u(t)) < d for all t ∈ (0,T ] . Thus, (i) never occurs. Now,
supposing that K(u(t1)) = 0, u(t1) �= 0, it follows that u(t1) ∈ N and from Lemma 4,
item (i), that λ = λ (u(t1)) = 1 is the unique λ > 0 for which λu(t1) ∈ N , and the
maximum of J(λu(t1)) is achieved when λ = λ (u(t1)) . Hence, we have

sup
λ�0

J(λu(t1)) = J(λu(t1))|λ=1 = J(u(t1)) < d, (20)

which contradicts with definition of d . Thus (ii) does not occur either. This proves our
claim. Therefore, since m0+l−1

1+C2
p

K(u)(t) � I (t) and K(u)(t) � 0, for all t ∈ [0,T ] , we

have also proved that I (t) � 0, for all t ∈ [0,T ] .
Finally, note that the following inequalities hold for all 0 < t � T :

E (0) � E (t) =
1

ρ +2
‖ut(t)‖ρ+2

ρ+2 +J (t)

=
1

ρ +2
‖ut(t)‖ρ+2

ρ+2 +
(

1
2
− 1

p

)(
M̂(‖u‖2)−

∫ t

0
g(s)ds‖u‖2

)

+
1
2
‖ut‖2 +

k
p2

∫
Ω
|u|p

R
dx+

1
2
(g 
∇u)(t)+

1
p
I (t)

� 1
ρ +2

‖ut(t)‖ρ+2
ρ+2 +

p−2
2p

(
M̂(‖u‖2)−

∫ t

0
g(s)ds‖u‖2

)

+
1
2
‖ut‖2 +

k
p2

∫
Ω
|u|p

R
dx+

1
2
(g 
∇u)(t)
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which imply the bound (17). �

THEOREM 3. Suppose that 0 < m0 + l−1 and that the hypotheses (H.1)–(H.3)
and the conditions (5) and (6) over p and ρ hold. Further, assume that the initial data

u0 ∈ W1, u1 ∈ H1
0 (Ω) (21)

are such that

0 < E (0) <
(m0 + l−1)d

1+C2
p

. (22)

Then there exists a function u : [0,T ] → H1
0 (Ω)∩H2(Ω) in the class

u,ut ∈C(0,T ;H1
0 (Ω))

utt ∈ L2(0,T ;H1
0 (Ω))

such that for all ω ∈ H1
0 (Ω) we have

d
dt

1
ρ +1

(|ut |ρut ,ω)+M(‖u‖2)(∇u,∇ω)+ (∇utt ,∇ω)

−
∫ t

0
g(t− s)(∇u(s),∇ω)ds+(ut ,ω) = (u|u|p−2

R
ln |u|k

R
,ω)

In particular the function u is a solution for the problem (1).

Proof. Let (ων)ν∈N ⊂H1
0 (Ω)∩H2(Ω) be a basis of L2(Ω) from the eigenvectors

of the operator −Δ . It is known that (ων)ν∈N is a complete and orthonormal system of
H1

0 (Ω) . Let Vm = span[ω1, · · · ,ωm] be the space generated by the first m eigenvector
of the system (ων)ν∈N and um(t) = ∑m

j=1 g jm(t)ω j be a solution in the interval [0,tm)
of the approximate problem

(|um
t (t)|ρum

tt ,ω)+M(‖um(t)‖2)(∇um(t),∇ω)+ (∇um
tt (t),∇ω)

−
∫ t

0
g(t− s)(∇um(s),∇ω)ds+(um

t ,ω) (23)

=(um|um|p−2 ln |um|k,ω) ∀ω ∈Vm

um(0) = u0m → u0 strongly in H1
0 (Ω) (24)

um
t (0) = u1m → u1 strongly in H1

0 (Ω). (25)

The solutions (um) exist by Carathéodory’s Theorem.

First a priori estimate: Setting ω = um
t in the equation (14), we see that um satis-

fies (15) in the interval [0,tm] . By continuity of E and the fact that W1 is open, we can
suppose that 0 < E (u0m) < m0+l−1

1+C2
p

d and u0m ∈ W1 for all m . Hence, from Lemma 7

we infer that

p−2
2p

(m0 + l−1)‖um(t)‖2 +
1
2
‖um

t (t)‖2 � E (u0m,u1m) (26)
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for all t ∈ [0, tm] . By continuity of E once again, there exists L1 > 0 independent of
t ∈ [0, tm] and m such that

‖um(t)‖2 +‖um
t (t)‖2 < L1. (27)

Hence, we can extend the approximate solution um(t) to the interval [0,T ] . It follows,
in particular, from (27) that

(um),(um
t ) are bounded in L∞(0,T ;H1

0 (Ω)).

Second a priori estimate: Taking ω = um
tt in (23), we have

∫
Ω
|um

t (t)|ρ
R
|um

tt |2Rdx+‖um
tt‖2

= −(um
t ,um

tt )−M(‖um(t)‖2)(∇um,∇um
tt )

+
∫ t

0
g(t− s)(∇um(s),∇um

tt )ds+(um|um|p−2
R

ln |um|k
R
,um

tt )

+
C2

p

4η
‖um

t ‖2 +C2
pη‖utt‖2 +m

(
1

4η
‖um‖2 + η‖um

tt ‖2
)

+‖um
tt‖
∫ t

0
|g(t− s)|‖um(s)‖ds+

(∫
Ω

∣∣∣um|um|p−2
R

ln |um|k
R

∣∣∣2
R

dx

)1/2

|um
tt |

�
C2

p

4η
‖um

t ‖2 +C2
pη‖um

tt ‖2 +m

(
1

4η
‖um‖2 + η‖um

tt ‖2
)

+ η‖utt‖2 +
1

4η

∫ t

0
|g(t− s)|‖um(s)‖2ds

+
1

4η

(∫
Ω

∣∣∣um|um|p−2
R

ln |um|k
R

∣∣∣2
R

dx

)
+C2

pη‖um
tt ‖2.

The first a priori estimate allows us to find a constant C > 0 such that

‖utt‖2 � (2C2
p +m+1)η‖um

tt ‖2

+
1

4η

(∫
Ω

∣∣∣um|um|p−2
R

ln |um|k
R

∣∣∣2 dx

)
+C.

The constant η can be chosen small enough for that η(2C2
p +m+1) � 1

2 . Notice that
from the elementary inequality∣∣∣ξ |ξ |p−2

R
lnξ
∣∣∣
R

� c0(|ξ |R + |ξ |p
R
),

it follows that ∫
Ω

∣∣∣um|um|p−2
R

ln |um|k
R

∣∣∣2 = k2c0

∫
Ω
(|um|R + |um|p

R
)2dx.
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Since the assumptions on p assure the embeddings H1
0 (Ω) ↪→ L2p(Ω) and H2

0 (Ω) ↪→
Lp+1(Ω) , there exists a positive constant C̃ independently on m and t such that∫

Ω
|um|um|p−2

R
ln |um|k

R
|2 � ˜̃C. (28)

Therefore, there is a positive constant L2 independent of m and t such that

‖um
tt ‖2 � L2.

This is the second a priori estimate, from which we have

(um
tt ) is bounded in L∞(0,T ;H1

0 (Ω)). (29)

Third a priori estimate: We set ω = −Δum
t in (23). We have

M(‖um‖2)
d
dt
|Δum|2 +

d
dt
|Δum|2

� 1
2

(‖um
t ‖2(ρ+1)‖um

tt ‖2(ρ+1)
)2 +

1
2
|Δum

t |2

+
1
2
‖g‖L∞(0,∞)

∫ t

0
|Δum(s)|2ds+

1
2
‖g‖L1(0,∞)|Δum

t |2 +‖um
t ‖2

+
1
2
|um|um|p−2 ln |um|k|2 +

1
2
|Δum

t |2.

Due to the first and second a priori estimates and (28), we get

d
dt

(
M(‖um‖2)|Δum|2 + |Δum

t |2
)

� d
dt

M(‖um‖2)|Δum|2
(

1
2
‖g‖L1(0,∞) +1

)
|Δum

t |2

+
1
2
‖g‖L∞(0,∞)

∫ t

0
|Δum(s)|2ds+C. (30)

Since {‖um(t)‖} is uniformly bounded for t ∈ [0,T ] and m ∈ N , and M ∈ C1[0,∞) ,
there exists M̃ > 0 such that d

dt (M(‖u‖2)) � M̃ . Integrating the inequality (30) from 0
to t we obtain

M(‖um‖2)|Δum|2 + |Δum
t |2

� M̃
∫ t

0
|Δum(s)|2ds+

(
1
2
‖g‖L1(0,∞) +1

)∫ t

0
|Δum

t (s)|2ds

+
1
2
‖g‖L∞(0,∞)T

∫ t

0
|Δum(s)|2ds+C

= C1

∫ t

0
|Δum(s)|2ds+C2

∫ t

0
|Δum

t (s)|2ds+C

� C3

∫ t

0
(m0|Δum(s)|2 + |Δum

t (s)|2)ds+C.
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Hence,

m0|Δum|2 + |Δum
t |2 � C3

∫ t

0
(m0|Δum(s)|2 + |Δum

t (s)|2)ds+C.

It follows from Gronwall inequality that there is a constant L3 > 0 independent of m
and t such that

m0|Δum|2 + |Δum
t |2 � L3.

In particular,
|Δum|2 is bounded in L∞(0,T ;L2(Ω)).

Combining the above boundedness with the first a priori estimate, we obtain

(um) is bounded in L2(0,T ;H1
0 (Ω)∩H2(Ω)), (31)

(um
t ) is bounded in L2(0,T ;H1

0 (Ω)). (32)

Passage to the limit: From the estimates (31), (32) and (29), there exists a subse-
quence of (um) , also denoted by (um) , such that

um ∗−⇀ u weakly star in L∞(0,T ;H1
0 (Ω)∩H2(Ω)), (33)

um
t −⇀ ut weakly in L2(0,T ;H1

0 (Ω)), (34)

um
tt −⇀ utt weakly in L2(0,T ;H1

0 (Ω)). (35)

Note that from (31), (32) we have

(um) is bounded in L2(0,T ;H1
0 (Ω)∩H2(Ω)), (36)

(um
t ) is bounded in L2(0,T ;L2(Ω)). (37)

Thus, putting B0 = H1
0 (Ω)∩H2(Ω) , B = H1

0 (Ω) , B1 = L2(Ω) , and

W = {u : u ∈ L2(0,T,B0);ut ∈ L2(0,T,B1)}
equipped with the norm

‖w‖ = ‖u‖L2(0,T,B0) +‖ut‖L2(0,T,B1)

results from (36) and (37) that

(um) is bounded in W.

Then, by Aubin-Lions Lemma (Lemma 2) we extract a subsequence of (um) which we
continue to denote by (um) , such that

um → u strongly in L2(0,T ;H1
0 (Ω)). (38)

In particular

um → u a.e in Ω× (0,T),
‖um‖→ ‖u‖ a.e in (0,T ).
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Since M is continuous, it follows from the Dominated Convergence Theorem that

M(‖um‖2) → M(‖u‖2) strongly in L2(0,T ). (39)

Therefore

(M(‖um‖2)∇um,∇w) → (M(‖u‖2)∇u,∇w) strongly in L2(0,T ). (40)

Clearly the convergence in (40) is also valid in D′(0,T ) for every w ∈ H1
0 (Ω) . Now,

since that f (s) = s|s|p−2
R

ln |s|k
R

is continuous, we have the convergence

um|um|p−2
R

ln |um|k
R
→ u|u|p−2

R
ln |u|k

R
a.e. in Ω× (0,T). (41)

It follows from (28) and (41) and Lemma 1 that

um|um|p−2
R

ln |um|k
R
−⇀ u|u|p−2

R
ln |u|k

R
weakly in L2(0,T ;L2(Ω)). (42)

Hence, as before, for every w ∈ H1
0 (Ω) ,

(um|um|p−2
R

ln |um|k
R
,w) → (u|u|p−2

R
ln |u|k

R
,w) in D′(0,T ). (43)

Let us make the similar analysis for the nonlinear term that induces the sequence
|um

t |ρum
t .

We know that

(um
t ) is bounded in L2(0,T ;H1

0 (Ω)), (44)

(um
tt ) is bounded in L2(0,T ;L2(Ω)) (45)

Thus, from (44), (45) and Lemma 2 we have, up to a subsequence,

um
t → ut strongly in L2(0,T ;L2(Ω)). (46)

Therefore

|um
t |ρRum

t → |ut |ρRut a.e. in Ω× (0,T). (47)

Note that

‖|um
t |ρRum

t ‖2
L2(0,T ;L2(Ω)) =

∫ T

0
‖um

t (s)‖2(ρ+1)
2(ρ+1)ds

� C
∫ T

0
‖um

t ‖2(ρ+1)(s)ds � CTLρ+1
1 . (48)

Combining (47), (48) and Aubin-Lions Lemma (Lemma 1), we deduce

|um
t |ρRum

t −⇀ |ut |ρRut weakly in L2(0,T ;L2(Ω)). (49)

Convergence (49) implies

(|um
t |ρRum

t ,w) → (|ut |ρRut ,w) in D ′(0,T ). (50)
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Multiplying (23) by θ ∈ D(0;T ) and integrating the obtained result over (0;T ) , we
obtain

− 1
ρ +1

∫ T

0
(|um

t (t)|ρ
R
um
t ,ω)θ ′(t)dt +

∫ T

0
M(‖um(t)‖2)(∇um(t),∇ω)θ (t)dt

+
∫ T

0
(∇um

tt (t),∇ω)θ (t)dt−
∫ T

0

∫ τ

0
g(τ − s)(∇um(s),∇ω)θ (t)dsdτ (51)

+
∫ T

0
(um

t ,ω)θ (t)dt =
∫ T

0
(um|um|p−2

R
ln |um|k

R
,ω)θ (t)dt ∀ω ∈Vm

The convergences (35), (36), (37), (40), (43) and (50) are sufficient to pass to the limit
in (51) in order to obtain, for all w ∈⋃m∈NVm ,

− 1
ρ +1

∫ T

0
(|ut(t)|ρRut ,ω)θ ′(t)dt +

∫ T

0
M(‖u(t)‖2)(∇u(t),∇ω)θ (t)dt

+
∫ T

0
(∇utt (t),∇ω)θ (t)dt−

∫ T

0

∫ τ

0
g(τ − s)(∇u(s),∇ω)θ (τ)dsdτ (52)

+
∫ T

0
(ut ,ω)θ (t)dt =

∫ T

0
(u|u|p−2

R
ln |u|k

R
,ω)θ (t)dt. (53)

This means that

d
dt

1
ρ +1

(|ut |ρRut ,ω)+M(‖u‖2)(∇u,∇ω)+ (∇utt ,∇ω)

−
∫ t

0
g(t− s)(∇u(s),∇ω)ds+(ut ,ω) = (u|u|p−2

R
ln |u|k

R
,ω) (54)

holds in D ′(0,T ) .
As

⋃
m∈NVm is dense in H1

0 (Ω) , (54) is valid for all ω in H1
0 (Ω) .

Verification of initial data: From the convergences (38) and (46), we infer that

um → u in C([0,T ],H1
0 (Ω)).

Hence

um(0) → u(0) in H1
0 (Ω).

Also

um(0) → u0 in H1
0 (Ω).

Hence u(x,0) = u0(x) . Furthermore, by the compact embedding L∞(0,T,H1
0 (Ω)) ⊂

L2(0,T,L2(Ω)) and the bound (29), we have, up to a subsequence, that

um
tt → utt strongly in L2(0,T,L2(Ω)). (55)

Therefore, the convergences (32) and (55) imply

um
t → ut strongly in W2(0,T ;L2(Ω),L2(Ω)).
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Thus, it follows that

um
t → u strongly in C([0,T ];L2(Ω)).

Hence

um
t (0) → ut(0) in L2(Ω).

Since

um
t (0) → u1 in H1

0 (Ω).

it follows that ut(x,0) = u1(x) . �

5. Uniqueness of global weak solution

In the previous section, we proved that if initial data are in the stability set W1 , the
problem (1) possesses a global weak solution. In this section we prove the uniqueness
of the weak solutions for ρ � 1 and initial data in a neighborhood of W1 containing
zero.

THEOREM 4. Assume that all the hypotheses of the Theorem 3 hold and that

• ρ � 1 , if n = 1 or 2 and 1 � ρ � 2 , if n = 3 ,

• p > 2 , if n = 1 or 2 and 11
5 � p � 3 , if n = 3 ,

• (2E (0))ρ/2Cρ+1
∗ Cp < 1 ,

where C∗ and Cp are constants from the embedding H1
0 (Ω) ↪→ L2(ρ+1)(Ω) and the

Poicanré inequality. Then the solution for the problem (1) is unique.

Proof. Let u, ũ solutions for the problem (1) with initial data u(0) = u0 = ũ(0)
and ut(0) = u1 = ũt(0) . Denoting U = u− ũ , we see that U , u and ũ satisfy the
equation

(M(‖U‖2)∇U,∇ω)− (
∫ t

0
g(t− s)∇U(s)ds,∇ω)+ (∇Utt ,∇ω)+ (Ut ,ω)

= (M(‖ũ‖2)∇ũ,∇ω)− (M(‖u‖2)∇u,∇ω)+ (M(‖U‖2)∇U,∇ω) (56)

+(u|u|p−2
R

ln |u|k
R
− ũ|ũ|p−2

R
ln |ũ|k

R
+ |ũ|ρ

R
ũtt −|ut|ρRutt ,ω), ∀ω ∈ H1

0 (Ω).

Setting ω = Ut in (56), we obtain

1
2

d
dt

[
|∇Ut |2 + M̂(|∇U |2)−

∫ t

0
g(s)ds|∇U |2 +g 
∇U

]
� G(t), (57)
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where

G(t) = (M(‖ũ‖2)∇ũ−M(‖u‖2)∇u+M(‖U‖2)∇U,∇Ut)

+ (u|u|p−2
R

ln |u|k
R
− ũ|ũ|p−2

R
ln |ũ|k

R
+ |ũ|ρ

R
ũtt −|ut|ρRutt ,Ut). (58)

Now, we need to estimate G(t) .

Claim: there exists a constant C1 > 0 such that

(M(‖ũ‖2)∇ũ−M(‖u‖2)∇u+M(‖U‖2)∇U,∇Ut) � C1‖U‖‖Ut‖, (59)

for all t ∈ [0,T ] . Indeed: by the Mean Value Theorem, there exists μ ∈ (0,1) such that

M(‖u‖2)−M(‖ũ‖2) = M′(‖u‖2 + μ(‖ũ‖2−‖u‖2))(‖u‖2−‖ũ‖2).

We have

|M(‖ũ‖2)∇ũ−M(‖u‖2)∇u|
� |M(‖ũ‖2)∇ũ−M(‖ũ‖2)∇u|+ |M(‖u‖2)∇u−M(‖ũ‖2)∇u|
� M(‖ũ‖2)‖u− ũ‖+ |M′(‖u‖2 + μ(‖ũ‖2−‖u‖2))|R|‖u‖−‖ũ‖|R|∇u|
� m̃‖U‖ (60)

where m̃ is obtained from the fact that u, ũ ∈ L∞(0,T ;H1
0 (Ω)) and that M ∈C1(0,∞) .

Using Hölder inequality, we obtain (59).

Claim: there exist a constant C2 > 0 such that∫
Ω

(
u|u|p−2 ln |u|k − ũ|ũ|p−2 ln |ũ|k

)
Utdx � C2‖U‖‖Ut‖. (61)

Indeed, since
d
dξ

(
ξ |ξ |p−2 ln |ξ |k

)
= k(p−1)|ξ |p−2 ln |ξ |+k|ξ |p−2 , from the elemen-

tary inequality ∣∣∣ξ |ξ |p−2
R

lnξ
∣∣∣
R

� c0(|ξ |R + |ξ |p
R
),

we have
∣∣∣ d
dξ

(
ξ |ξ |p−2 ln |ξ |k

)∣∣∣�C(|ξ |+ |ξ |p−1 + |ξ |p−2) . By the Mean Value Theo-

rem, there exists θ ∈ (0,1) such that, if we denote u := u+ θ (u− ũ) , then∫
Ω

(
u|u|p−2 ln |u|k − ũ|ũ|p−2 ln |ũ|k

)
Ut

� C
∫

Ω

(
|u|R + |u|p−1

R
+ |u|p−2

R

)
UUtdx

� C
(∫

Ω
(|u|R + |u|p−1

R
+ |u|p−2

R

)s
dx
) 1

s
(∫

Ω
|U |rdx

) 1
r
(∫

Ω
|Ut |qdx

) 1
q

� C̃
(
‖u‖s +‖u‖p−1

s(p−1) +‖u‖p−2
s(p−2)

)
‖U‖r‖Ut‖q, (62)
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where
1
s

+
1
r

+
1
q

= 1. In order to have suitable embeddings for our estimate, we set s ,

r and q as follows: s =
p−1
p−2

and r = q = 2(p−1) if n = 1 or 2, and s = r = q = 3

if n = 3. Hence,∫
Ω

(
u|v|p−2

R
ln |u|k

R
− ũ|ũ|p−2

R
ln |ũ|k

R

)
Utdx � ˜̃C

(
‖ũ‖+‖ũ‖p−1 +‖ũ‖p−2

)
‖U‖‖Ut‖.

(63)

Since u, ũ ∈ L∞(0,T ;H1
0 (Ω)) , there exists C2 > 0 satisfying (61).

For the next nonlinear term of G(t) , we use the following identity:

|ũt |ρ ũtt −|ut |ρutt = −1
2

(
|ũt |ρ + |ut|ρ

)
Utt +

1
2

(
|ũt |ρ −|ut|ρ

)
(ũtt +utt). (64)

Multiplying (64) by Ut and integrating over Ω , we obtain∫
Ω

(
|ũt |ρ ũtt −|ut |ρutt

)
Utdx � 1

2

(
‖ut‖ρ

2(ρ+1) +‖ũt‖ρ
2(ρ+1)

)
‖Utt‖2(ρ+1)|Ut |

+
1
2

∫
Ω
(|ũt |ρR −|ut|ρR)(utt + ũtt)Utdx. (65)

Recalling that u, ũ∈ L∞(0,T ;H1
0 (Ω)) and using the embedding H1

0 (Ω) ↪→ L2(ρ+1)(Ω) ,
results for the first term of the right side of the inequality (65) that there exists a constant
C3 > 0 such that(

‖ut‖ρ
2(ρ+1) +‖ũt‖ρ

2(ρ+1)

)
‖Utt‖2(ρ+1)|Ut | � C3‖Utt‖‖Ut‖, t ∈ [0,T ]. (66)

The second term of the right side of the inequality (65) can be estimated as follows: By
Mean Value Theorem there exists a function λ : (0,T ) → (0,1) such that∣∣∣|vt |ρR −|ṽt |ρR

∣∣∣� ρ |vt + λ (vt − ṽ)t |ρ−1
R

|vt − ṽt |R.

Using generalized Hölder inequality with

1
r

ρ −1

+
1
3r

r− (ρ −1)

+
1
3r

r− (ρ −1)

+
1
3r

r− (ρ −1)

= 1,

where r � ρ , if n = 1 or 2, or r = 6 if n = 3, and the embeddings H1
0 (Ω) ↪→ Lr(Ω)

and H1
0 (Ω) ↪→ L

3r
r−(ρ−1) (Ω) , we obtain

1
2

∫
Ω
(|ut |ρR −|ũt |ρR)(utt + ũtt)Utdx

� ρ
2
‖ut+λ (ut−ũt)‖ρ−1

Lr(Ω)‖ut−ũt‖
L

3r
r−(ρ−1) (Ω)

‖utt+ũtt‖
L

3r
r−(ρ−1) (Ω)

‖Ut‖
L

3r
r−(ρ−1) (Ω)

.

(67)
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Since ut , ũt ,utt , ũtt ∈ L∞(0,T ;H1
0 (Ω)) , there exists C4 > 0 such that

∫
Ω

1
2
(|ũt |ρR −|ut |ρR)(utt + ũtt)Ut � C4‖Ut‖2. (68)

Therefore, we get the following estimate for G :

G(t) � C1‖U‖‖Ut‖+C2‖U‖‖Ut‖+C3‖Utt‖‖Ut‖+C4‖Ut‖2, (69)

and by the Young inequality, we obtain

G(t) �
(

C1

2
+

C2

2

)
‖U‖2 +

(
C1

2
+

C2

2
+

C3

2
+C4

)
‖Ut‖2 +

C3

2
‖Utt‖2 (70)

for all t ∈ [0,T ] . Now, set ω = Utt in (56). We have

(M(‖U‖2)∇U,∇Utt )− (
∫ t

0
g(t− s)∇U(s)ds,∇Utt )+‖Utt‖2 +(Ut ,Utt) = H(t), (71)

where

H(t) = (M(‖ũ‖2)∇ũ−M(‖u‖2)∇u+M(‖U‖2)∇U,∇Utt )

+ (u|u|p−2
R

ln |u|k
R
− ũ|ũ|p−2

R
ln |ũ|k

R
+ |ũ|ρ

R
ũtt −|ut|ρRutt ,Utt). (72)

Hence,

‖Utt‖2 = −(M(‖U‖2)∇U,∇Utt )+ (
∫ t

0
g(t− s)∇U(s),∇Utt )+ (Ut ,Utt)+H(t). (73)

For the first term of the right side of the inequality (73), we use the Young inquality.
Thus,

(M(‖U‖2)∇U,∇Utt) � m̃

(
1

4η
‖U‖2 + η‖Utt‖2

)
(74)

where m̃ = supt∈[0,T ] M(‖U‖2) .
For the second term, we have

(
∫ t

0
g(t− s)∇U(s),∇Utt )

=
∫ t

0
g(t− s)(∇U(s)−∇U,∇Utt)ds+

∫ t

0
g(t− s)(∇U,∇Utt)

� 1
4η

(g 
∇U)(t)+ η
∫ t

0
g(t− s)ds|∇Utt |2 +

∫ t

0
g(t− s)

(
|∇U |2
4η

+ η |∇Utt |2
)

� 1
4η

(g 
∇U)(t)+ (1− l)

(
2η‖Utt‖2 +

1
4η

‖U‖2

)
. (75)
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For the third term, we use the Poincaré and Young inequalities:

(Ut ,Utt ) �
C2

p

4η
‖Ut‖2 + ηC2

p‖Utt‖2. (76)

To estimate H(t) , we can proceed in the same way as to obtain the estimate for
G(t) . Then, it follows that there exists positive constants C5 and C6 such that

(M(‖ũ‖2)∇ũ−M(‖u‖2)∇u+M(‖U‖2)∇U,∇Utt) � C5‖U‖‖Utt‖ (77)

and

(u|u|p−2
R

ln |u|k
R
− ũ|ũ|p−2

R
ln |ũ|k

R
,Utt ) � C6‖U‖Utt‖. (78)

Furthermore,

∫
Ω

(
|ũt |ρ ũtt + |ut|ρutt

)
Utt

� 1
2

(
‖ut‖ρ

2(ρ+1) +‖ũt‖ρ
2(ρ+1)

)
‖Utt‖2(ρ+1)|Utt |

+
ρ
2
‖ut+λ (ut−ũt)‖ρ−1

Lr(Ω)‖ut−ũt‖
L

3r
r−(ρ−1) (Ω)

‖utt+ũtt‖
L

3r
r−(ρ−1) (Ω)

‖Utt‖
L

3r
r−(ρ−1) (Ω)

� 1
2
Cρ+1
∗ Cp

(
‖ut‖ρ +‖ũt‖ρ

)
‖Utt‖2 +C7‖Ut‖‖Utt‖

� Cρ+1
∗ Cp(2E (0))ρ/2‖Utt‖2 +C7‖Ut‖‖Utt‖. (79)

Thus, we obtain the following estimate for H(t) :

H(t) � (C5 +C6)‖U‖‖Utt‖+Cρ+1
∗ Cp(2E (0))ρ/2‖Utt‖2 +C7‖Ut‖‖Utt‖. (80)

From the Young inequality, it follows

H(t) � (C5 +C6)

(
1

4η
‖U‖2 + η‖Utt‖2

)

+Cρ+1
∗ Cp(2E (0))ρ/2‖Utt‖2 +C7

(
1

4η
‖Ut‖2 + η‖Utt‖2

)
. (81)
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From the estimates (74), (75), (76) and (81), the inequality (73) takes the form:

‖Utt‖2 � m̃

(
1

4η
‖U‖2 + η‖Utt‖2

)
+

1
4η

(g 
∇U)(t)

+ (1− l)

(
2η‖Utt‖2 +

1
4η

‖U‖2

)
+(C5 +C6)

(
1

4η
‖U‖2 + η‖Utt‖2

)

+Cρ+1
∗ Cp(2E (0))ρ/2‖Utt‖2 +C7

(
1

4η
‖Ut‖2 + η‖Utt‖2

)

+
C2

p

4η
‖Ut‖2 + ηC2

p‖Utt‖2. (82)

Hence,[
1−Cρ+1

∗ Cp(2E (0))ρ/2−η(m̃+2(1− l)+ (C5+C6)+C2
p)

]
‖Utt‖2

� 1
4η

(m̃+1− l+C5 +C6)‖U‖2 +
1

4η
(g 
∇U)(t)+

1
4η

(C7 +C2
p)‖Ut‖2. (83)

Since by hypothesis we assumed 1−Cρ+1
∗ Cp(2E (0))ρ/2 > 0, we can take η > 0 suf-

ficiently small such that

1−Cρ+1
∗ Cp(2E (0))ρ/2−η(m̃+2(1− l)+ (C5 +C6)+C2

p) > 0.

Combining (83) with (70), we deduce that there exist positive constants C8 , C9 e C10

such that

G(t) � C8‖U‖2 +C9‖Ut‖2 +C10(g 
∇U)(t), ∀t ∈ [0,T ]. (84)

Finally, integrating (57) from 0 to t ∈ [0,T ] and employing Gronwall inequality, we
obtain

‖U(t)‖2 +‖Ut(t)‖2 +(g 
∇U)(t) = 0, ∀t ∈ [0,T ]. (85)

therefore u(t)= ũ(t) for all t ∈ [0,T ] . This prove the uniqueness of weak solution. �

REMARK 1. Throughout this section, the reader will realize the recurrent men-
tion of Mean Value Theorem (MVT), for which the use demanded diferentiability of
real functions involving the nonlinear terms, namely, ξ |ξ |p−2

R
ln |ξ |R , |ξ |ρ

R
and M(ξ ) .

Consequently, the derivative in the formula of MVT depends on objects which depends
on t . However, as a function of t , such derivatives remains bounded due to their argu-
ments depend, on norm in H1

0 (Ω) , of functions the vary in a ball of L∞(0,T,H1
0 (Ω)) .

This shows the Lipschitz character of the nonlinearities, but the same not happens for
| · |ρ

R
near zero when 0 < ρ < 1. We recommend [26] for a study of well-posedness of

a kind of equation with |ut |ρRutt and 0 < ρ < 1.
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6. Exponential decay

According to what we have just proved, if the initial data are in the stable set W1 ,
we guarantee the existence of a global weak solution and the associated energy E (t) is
always non-negative and non-increasing. We shall prove that in fact if a global weak
solution exists with small positive initial energy, then the total energy has an exponential
decay property. For this purpose we will assume a fourth hypothesis over the problem
(1):

(H.4) M(τ)τ � M̂(τ) , τ � 0

THEOREM 5. Considering (H.4) , the hypotheses of Theorem 3, and in addition
I(0) > 0 . Then there exists ζ > 0 such that if 0 < E (0) < ζ , then there exist positive
constants C0 and μ such that

E (t) � C0e
−μt (t > 0). (86)

Proof. Let us define the functional

F (t) := E (t)+
ε

ρ +1

∫
Ω
|ut |ρRutudx+ ε

∫
Ω

∇u∇utdx− ε
2

∫
Ω
|u|2

R
dx+ θ χ(t) (87)

where

χ(t) = −
∫

Ω
∇ut

∫ t

0
g(t− s)(∇u(t)−∇u(s))dsdx

−
∫

Ω

|ut |ρRut

ρ +1

∫ t

0
g(t− s)(u(t)−u(s))dsdx

and ε and θ are small positive constants so that there exist positive constants α1 and
α2 satisfying

α1F (t) � E (t) � α2F (t). (88)

Such choices for ε and θ are possible due to (17). Indeed, we have

∫
Ω
|ut |ρRutudx � 1

2

∫
Ω
|ut |2(ρ+1)

R
dx+

1
2

∫
Ω
|u|2Rdx

� |Ω|ρ/(ρ+1)C2(ρ+1)
p (2E (0))ρ

∫
Ω
|∇ut |2Rndx+

C2
p

2

∫
Ω
|∇u|2Rndx

also ∫
Ω

∇ut

∫ t

0
g(t− s)(∇u(t)−∇u(s))dsdx

� 1
2

∫
Ω
|∇ut |2Rndx+

1
2
‖g‖L1 |Ω|(g 
∇u)(t)
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and ∫
Ω
|ut |ρRut

∫ t

0
g(t− s)(u(t)−u(s))dsdx

� 1
2

∫
Ω
|ut |2(ρ+1)

R
dx+

1
2
‖g‖L1C2

p(g 
∇u)(t)

� |Ω|ρ/(ρ+1)C2(ρ+1)
s

∫
Ω
|∇ut |2Rndx+

1
2
‖g‖L1C2

p(g 
∇u)(t)

where Cs and Cp are the embedding H1
0 (Ω) ↪→ L2(ρ+1)(Ω) and the Poincaré constants,

respectively. By mean of (17) there exists a constant C > 0 such that

|F (t)−E (t)| � CεE (t).

Denoting

F(t) := E (t)+
ε

ρ +1

∫
Ω
|ut |ρRutudx+ ε

∫
Ω

∇u∇utdx− ε
2

∫
Ω
|u|2

R
dx (89)

and differentiating (89) and next adding and subtracting ε
∫ t
0 g(t − s)ds‖u‖2 to its ex-

pression, we obtain

F ′(t) = E ′(t)− εM(‖u‖2)(‖u‖2)+ ε
∫ t

0
g(t− s)(∇u(s)−∇u(t),∇u(t))ds

+ ε
∫ t

0
g(t− s)ds‖u‖2 + ε

∫
Ω
|u|p

R
ln |u|k

R
dx+ ε

∫
Ω
|∇ut |2Rndx

+ ε
1

ρ +1

∫
Ω
|ut |ρ+2

R
dx. (90)

Now we pick α ∈ (0,1) and estimate
∫

Ω |u|p
R

ln |u|k
R
dx from the formulae (9):

∫
Ω
|u(t)|p

R
ln |u(t)|kRdx

= α
∫

Ω
|u(t)|p

R
ln |u(t)|k

R
dx+(1−α)

∫
Ω
|u(t)|p

R
ln |u(t)|k

R
dx

� α
{

p
ρ +2

‖ut(t)‖ρ+2
ρ+2 +

p
2

[
M̂(‖u‖2)−

∫ t

0
g(s)ds‖u‖2

]
+

p
2
‖ut‖2

+
k
p

∫
Ω
|u(t)|p

R
dx+

p
2
(g 
∇u)(t)− pE (t)

}

+(1−α)
∫

Ω
|u(t)|p

R
ln |u(t)|k

R
dx. (91)

Exploit Young’s inequality, it derives, for any δ > 0,

∫ t

0
g(t− s)(∇u(s)−∇u(t),∇u(t))ds � 1

4δ
(g 
∇u)(t)+ δ

∫ t

0
g(t− s)ds‖u‖2. (92)
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The logarithmic term
∫

Ω |u|p
R

ln |u|k
R
dx can be estimated as follows:

∫
Ω
|u|p

R
ln |u|k

R
dx � k

∫
Ω
|u|p+1

R
dx � kCp+1

∗ ‖u‖p+1

=
kCp+1

∗
l +m0−1

‖u‖p−1(l +m0−1)‖u‖2 � β (l +m0−1)‖u‖2

� β
(

M̂(‖u‖2)−
∫ t

0
g(s)ds‖u‖2

)
.

where

β :=
kCp+1

∗
l +m0−1

[
2p

(p−2)(l +m0−1)
E (0)

](p−1)/2

. (93)

Shortly

∫
Ω
|u|p

R
ln |u|k

R
dx � β

(
M̂(‖u‖2)−

∫ t

0
g(s)ds‖u‖2

)
. (94)

Combining (91), (92), (94) and noting that E ′(t) � 1
2(g′ 
∇u)(t) , it follows

F ′(t) � 1
2
(g′ 
∇u)(t)− εM(‖u‖2)(‖u‖2)+ ε

{
1
4δ

(g 
∇u)(t)+ δ
∫ t

0
g(s)ds‖u‖2

}

+ ε
∫ t

0
g(t− s)ds‖u‖2 + εα

{
p

ρ +2
‖ut‖ρ+2

ρ+2 +
p
2

[
M̂(‖u‖2)−

∫ t

0
g(s)ds‖u‖2

]

+
p
2
‖ut‖2 +

k
p

∫
Ω
|u(t)|p

R
dx+

p
2
(g 
∇u)(t)− pE (t)

}

+ ε(1−α)β
(

M̂(‖u‖2)−
∫ t

0
g(s)ds‖u‖2

)

+ ε
∫

Ω
|∇ut |2Rndx+ ε

1
ρ +1

∫
Ω
|ut |ρ+2

R
dx.

Thus

F ′(t) � 1
2
(g′ 
∇u)(t)+ ε

(α p
2

+1
)
‖ut‖2 + ε

(
α p
2

+
1
4δ

)
(g 
∇u)(t)

+ ε
(

1
ρ +1

+
α p

ρ +2

)
‖ut(t)‖ρ+2

ρ+2 + ε
(
−M(‖u‖2)+

∫ t

0
g(s)ds

)
‖u‖2

+ ε
α p
2

(
M̂(‖u‖2)−

∫ t

0
g(s)ds‖u‖2

)

+ ε(1−α)β
(

M̂(‖u‖2)−
∫ t

0
g(s)ds‖u‖2

)

+ εδ
∫ t

0
g(s)ds‖u(t)‖2 +

εαk
p

∫
Ω
|u(t)|p

R
dx− εα pE (t). (95)
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Note that by embeddings H1
0 (Ω) ↪→ Lp+1(Ω) and H1

0 (Ω) ↪→ Lρ+2(Ω) we obtain∫
Ω
|u|p

R
dx � |Ω|1/(p+1)Cp

∗ ‖u‖p = |Ω|1/(p+1)Cp
∗ ‖u‖2(‖u‖2)(p−2)/2

� |Ω|1/(p+1)Cp
∗

2p
(p−2)(m0 + l−1)

E (t)
(

2p
(p−2)(m0 + l−1)

E (0)
)(p−2)/2

= |Ω|1/(p+1)Cp
∗

(
2p

(p−2)(m0 + l−1)

)p/2

E (0)(p−2)/2E (t) (96)

and

‖ut‖ρ+2
ρ+2 � Cρ+2

∗∗ ‖ut‖ρ+2 = Cρ+2
∗∗ ‖ut‖2(‖ut‖2)2ρ � 2Cρ+2

∗∗ (2E (0))2ρE (t). (97)

The hypotheses (H3) and (H4) and the estimate (96) and (97) lead us to

F ′(t) �
[
1
2
− ε

ξ2

(
α p
2

+
1
4δ

)]
(g′ 
∇u)(t)+ ε

(α p
2

+1
)
‖ut‖2

+ ε
[
−1+

(α p
2

+(1−α)β
)

+
δ (1− l)

m0 + l−1

](
M̂(‖u‖2)−

∫ t

0
g(s)ds‖u‖2

)

+ ε
[(

1
ρ +1

+
α p

ρ +2

)
2Cρ+2

∗∗ (2E (0))2ρ

+
αk
p
|Ω|1/(p+1)Cp

∗

(
2p

(p−2)(m0 + l−1)

)p/2

E (0)(p−2)/2−α p

]
E (t). (98)

Next steps are devoted to deal with estimates of derivative of χ . We have

χ ′(t) = M(‖u‖2)
∫

Ω
∇u(t)

∫ t

0
g(t− s)(∇u(t)−∇u(s))ds

−
∫

Ω

(∫ t

0
g(t− s)∇u(s)ds

)(∫ t

0
g(t− s)(∇u(t)−∇u(s))ds

)
dx

+
∫

Ω
ut

∫ t

0
g(t− s)(u(t)−u(s))dsdx

−
∫

Ω
u|u|p−2

R
ln |u|k

∫ t

0
g(t− s)(u(t)−u(s))dsdx

− 1
ρ +1

∫
Ω
|ut |ρRut

∫ t

0
g′(t − s)(u(t)−u(s))dsdx

− 1
ρ +1

(∫ t

0
g(s)ds

)∫
Ω
|ut |ρ+2

R
dx

−
∫

Ω
∇ut(t)

∫ t

0
g′(t− s)(∇u(t)−∇u(s))dsdx−

(∫ t

0
g(s)ds

)∫
Ω
|∇ut |2Rndx.

(99)

Next we estimate some of the terms of (99). The estimate for the first term is
obtained by using Young inequality followed by Hölder inequality in the second inte-
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grand:

M(‖u‖2)
∫

Ω
∇u(t)

∫ t

0
g(t− s)(∇u(t)−∇u(s))ds

� mδ
∫

Ω
|∇u|2Rndx+

m
4δ

(∫ t

0
g(s)ds

)
(g 
∇u)(t) (100)

where m = maxτ>0 M(τ) .
The second term is handled as follows:∫

Ω

(∫ t

0
g(t− s)∇u(s)ds

)(∫ t

0
g(t− s)(∇u(t)−∇u(s))ds

)
dx

� δ
∫

Ω

∣∣∣∫ t

0
g(t− s)∇u(s)ds

∣∣∣2dx+
1
4δ

∫
Ω

∣∣∣∫ t

0
g(t− s)(∇u(t)−∇u(s))ds

∣∣∣2dx

= δ
∫

Ω

∣∣∣∫ t

0
g(t− s)∇u(s)ds

∣∣∣2dx+
1
4δ

(∫ t

0
g(s)ds

)
(g 
∇u)(t). (101)

The first expression of (101) leads us to∫
Ω

∣∣∣∫ t

0
g(t− s)∇u(s)ds

∣∣∣2dx

�
(∫ t

0
g(s)ds

)∫
Ω

∫ t

0
g(t− s)(|∇u(t)−∇u(s)|+ |∇u(t)|)2dsdx

=
(∫ t

0
g(s)ds

)(∫
Ω

∫ t

0
g(t− s)|∇u(t)−∇u(s)|2dsdx

+2
∫

Ω

∫ t

0
g(t− s)|∇u(t)−∇u(s)||∇u(t)|dsdx+

∫
Ω

∫ t

0
g(t− s)|∇u(t)|2dsdx

)

�
(∫ t

0
g(s)ds

)(
2(g 
∇u)(t)+2

(∫ t

0
g(s)ds

)∫
Ω
|∇u(t)|2Rndx

)
. (102)

Connecting (102) to (101), it follows
∫

Ω

(∫ t

0
g(t− s)∇u(s)ds

)(∫ t

0
g(t− s)(∇u(t)−∇u(s))ds

)
dx

�
(

2δ +
1
4δ

)(∫ t

0
g(s)ds

)
(g 
∇u)(t)+2δ (1− l)2

∫
Ω
|∇u(t)|2Rndx. (103)

The estimate of third expression of (99) is obtained by mean of Young and Poincaré
inequalities:

∫
Ω

ut

∫ t

0
g(t− s)(u(t)−u(s))dsdx � δ

∫
Ω
|u|2

R
dx+

C2
p

4δ

(∫ t

0
g(s)ds

)
(g 
∇u)(t)

� δC2
p

∫
Ω
|∇u|2Rndx+

C2
p

4δ

(∫ t

0
g(s)ds

)
(g 
∇u)(t).

(104)
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The fourth term requires the elemental logarithmic identity:∣∣∣∣ξ |ξ |p−2 ln |ξ |
∣∣∣∣� c0(|ξ |+ |ξ |p) (∀ξ ∈ R).

Hence

−
∫

Ω
u|u|p−2

R
ln |u|k

∫ t

0
g(t− s)(u(t)−u(s))dsdx

� kc0

∫
Ω
(|u|R + |u|p

R
)
∫ t

0
g(t− s)|u(t)−u(s)|dsdx

� δkc0

∫
Ω
(|u|R + |u|p

R
)2dx+

k
4δ

(∫ t

0
g(t− s)|u(t)−u(s)|ds

)2

dx

� δkc0C
2
p‖u‖2 +2δkc0C

p+1
∗ ‖u‖p+1 + δkc0C

2p
r ‖u‖2p

+
kc0C2

p

4δ

(∫ t

0
g(s)ds

)
(g 
∇u)(t) (105)

where Cr is a constant obtained from the embedding H1
0 (Ω) ↪→ L2p(Ω) . Note that we

obtain directly from (17) the following inequality:

‖u‖2 � 2p
(p−2)(m0 + l−1)

E (0).

Thus the fourth term of (99) is estimated as

−
∫

Ω
u|u|p−2

R
ln |u|k

R

∫ t

0
g(t− s)(u(t)−u(s))dsdx

�
[

δkC2
p +2δkCp+1

∗

(
2p

(p−2)(m0 + l−1)
E (0)

)(p−1)/2

+ δkC2p
r

(
2p

(p−2)(m0 + l−1)
E (0)

)p−1]
‖u‖2

+
kC2

p

4δ

(∫ t

0
g(s)ds

)
(g 
∇u)(t). (106)

For the fifth term we own that g′ < 0 and the H1
0 (Ω) ↪→ L2(ρ+1)(Ω) embedding

in order to obtain

− 1
ρ +1

∫
Ω
|ut |ρRut

∫ t

0
g′(t− s)(u(t)−u(s))dsdx

� δC2(ρ+1)
s

ρ +1
(2E (0))ρ

∫
Ω
|∇ut |2Rndx+

g(0)C2
p

4δ (ρ +1)
(−g 
∇u)(t). (107)

Finally the seventh term is estimated as follows:

−
∫

Ω
∇ut(t)

∫ t

0
g′(t− s)(∇u(t)−∇u(s))dsdx

� δ
∫

Ω
|∇ut |2Rndx+

g(0)
4δ

(−g′ 
∇u)(t). (108)
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The estimates (100), (103), (104), (106), (107), (108) and (98) induce the follow-
ing estimate for the derivative of F :

F ′(t) � A

(
M̂(‖u‖2)−

∫ t

0
g(s)ds‖u‖2

)
+B(g′ 
∇u)(t)+C‖ut‖2−DE (t) (109)

where A , B and D are constants depending on α , δ , ε and θ , and C depends further
on t . For the instance

A = ε
[
−1+

(α p
2

+(1−α)β
)

+
δ (1− l)

m0 + l−1

]

+
θδ

m0 + l−1

[
m+2(1− l)2 +C2

p + kc0C
2
p

+2kc0C
p+1
∗

(
2p

(p−2)(m0 + l−1)
E (0)

)(p−1)/2

+ kc0C
2p
r

(
2p

(p−2)(m0 + l−1)
E (0)

)p−1]
(110)

B =
[
1
2
− ε

ξ2

(
α p
2

+
1
4δ

)]

−θ
[

m
4δξ2

(1− l)+
(

2δ +
1
4δ

)
(1− l)

ξ2
+

C2
p

4δξ2
(1− l)

+
kc0C2

p

4δ
(1− l)

ξ2
+

g(0)C2
p

4δ (ρ +1)
+

g(0)
4δ

]
(111)

C =
[

ε
(α p

2
+1
)
−θ

(∫ t

0
g(s)ds

)]
+ θδ

[
C2(ρ+1)

s

ρ +1
(2E (0))ρ +1

]
(112)

D = ε
[

α p−
(

1
ρ +1

+
α p

ρ +2

)
2Cρ+2

∗∗ (2E (0))2ρ

− αk
p
|Ω|1/(p+1)Cp

∗

(
2p

(p−2)(m0 + l−1)
E (0)

)p/2

E (0)(p−2)/2
]
. (113)

The constants α , δ , ε and θ will be chosen next in order to obtain A < 0,
B,D > 0 and C(t) < 0 for all t far from zero.

We start by imposing that E (0) is small enough for that β defined in (93) is less
than 1, and assume that α := 1−β

p−2β . Hence α belongs to the interval (0,1) . In order
to obtain D > 0 we suppose that E (0) is even smaller satisfying(

p−2β
(1−β )(ρ +1)

+
p

ρ +2

)
2Cρ+2

∗∗ (2E (0))2ρ

+
k
p
|Ω|1/(p+1)Cp

∗

(
2p

(p−2)(m0 + l−1)
E (0)

)p/2

E (0)(p−2)/2 < α p. (114)
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Let t0 > 0 and denote a :=
∫ t0
0 g(s)ds . We then put θ depending on ε in this way:

θ := α p+2
a ε . This implies

ε
(α p

2
+1
)
−θ

(∫ t

0
g(s)ds

)
� ε

(α p
2

+1
)
−θa < 0

which allows us to find δ0 > 0 such that if δ < δ0 , then C(t) < 0 for all t > t0 . The
choice of α is also enough for that

−1+
(α p

2
+(1−α)β

)
< 0

holds. Thus we can find δ even smaller and sufficient to make A < 0. Finally we set
ε so small so that the constant B becomes positive. The inequality for derivative of F
in (109) yields to the following shortened one

F ′(t) � −DE (t), (t > t0).

Recurring to (88) twice, the proof of theorem is completed. �

7. Exponential growth

In this section we shall prove that the logarithmic term of the total energy is un-
bounded when the initial data are large enough in some sense. That is, it will be proved
that the term

∫
Ω |u|p

R
ln |u|k

R
dx grows unboundedly as an exponential function. This will

be established here in spite of the strong exponential decreasingness of the relaxation
function g(t) .

THEOREM 6. Assuming that 0 < ρ � p−2 then the solution of problem (1) grows
up exponentially in the sense that there exist positive constants c,b and λ such that

∫
Ω
|u|p

R
ln |u|k

R
dx+ c � beλ t (115)

provided that l > 4
ρ+2 and that initial conditions satisfy E (0) < 0 .

Proof. Let us define the functional

F (t) = E (t)− εΨ(t) (116)

where Ψ(t) is defined by

Ψ(t) =
1

ρ +1

∫
Ω
|ut |ρRutudx+

∫
Ω

∇u∇utdx (117)

and ε is to be defined later.
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Firstly observe that we can find positive constants ai , i = 1, · · · ,5, such that ai =
ai(ρ , p,ε, l, |Ω|) such that

F (t) � a1

∫
Ω
|ut |ρ+2

R
dx+a2

∫
Ω
|∇ut(t)|2Rndx+

1
2
(g 
∇u)(t)

+a3

∫
Ω
|u|p

R
dx+a4

∫
Ω
|∇u|2Rndx−a5

∫
Ω
|u|p

R
ln |u|k

R
dx−a6. (118)

Indeed, by our assumption ρ � p−2, then p(ρ+1)
p−1 � ρ +2. Therefore

∫
Ω
|ut |ρRutu � 1

p

∫
Ω
|u|p

R
dx+

(p−1)|Ω|
p

+
p−1

p

∫
Ω
|ut |ρ+2

R
dx. (119)

Thus

F (t) �
(

1
ρ +2

− ε(p−1)
p(ρ +1)

)∫
Ω
|ut |ρ+2

R
dx+

1
2
(1− ε)

∫
Ω
|∇ut |2Rndx

+
(

k
p2 −

ε
p(ρ +1)

)∫
Ω
|u|p

R
dx+

1
2

(l +m0−1− ε)
∫

Ω
|∇u|2

Rndx

+
1
2
(g 
∇u)(t)− 1

p

∫
Ω
|u|p

R
ln |u|k

R
dx− ε(p−1)|Ω|

p(ρ +1)
. (120)

Choosing ε > 0 small enough we have (118) verified.
Secondly, differentiating F (t) with respect to t yields

F ′(t) = −
∫

Ω
|ut |2Rdx+

1
2
(g′ 
∇u)(t)− 1

2
g(t)

∫
Ω
|∇u(t)|2

Rndx

− ε
{

M(‖u‖2)
∫

Ω
|∇u|2

Rndx+
∫ t

0
g(t− s)(∇u(s),∇u(t))ds

−
∫

Ω
utudx+

∫
Ω
|u|p

R
ln |u|k

R
+

1
ρ +1

∫
Ω
|ut |ρ+2

R
dx+

∫
Ω
|∇ut |2Rndx

}
. (121)

The following estimate is obtained easily from Young inequality:

ε
∫ t

0
g(t− s)(∇u(s),∇u(t))ds � ε

2

∫ t

0
g(s)ds

∫
Ω
|∇u|2Rndx− ε

2
(g 
∇u)

� −ε
2
(g 
∇u). (122)

We will also use the estimate
∫

Ω
utudx � Cpδ

∫
Ω
|∇u|2Rndx+

1
4δ

∫
Ω
|ut |2Rdx (δ > 0) (123)

where Cp is obtained from the Sobolev embbeding H1
0 (Ω) ↪→ L2(Ω) .
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Now we add and subtract γεF (t) in the right side of the inequality (121) and
obtain

F ′(t) � γεF (t)− γε
{(

1
ρ +2

− ε(p−1)
p(ρ +1)

)∫
Ω
|ut |ρ+2

R
dx+

1
2
(1− ε)

∫
Ω
|∇ut |2Rndx

+
(

k
p2 −

ε
p(ρ +1)

)∫
Ω
|u|p

R
dx+

1
2

(l +m0−1− ε)
∫

Ω
|∇u|2Rndx

+
1
2
(g 
∇u)(t)− 1

p

∫
Ω
|u|p

R
ln |u|k

R
dx− ε(p−1)|Ω|

p(ρ +1)

}

−
∫

Ω
|ut |2Rdx+

1
2
(g′ 
∇u)(t)− 1

2
g(t)

∫
Ω
|∇u(t)|2Rndx

− εM(‖u2‖)
∫

Ω
|∇u|2

Rndx+
ε
2
(g 
∇u)(t)+ ε

∫
Ω

utudx

− ε
∫

Ω
|u|p

R
ln |u|k

R
dx− ε

1
ρ +1

∫
Ω
|ut |ρ+2

R
dx− ε

∫
Ω
|∇ut |2Rndx. (124)

Knowing that M(τ) � m0 > 1− l for all τ > 0, also that g′(t) � −ξ2g(t) and
using the estimates (120) and (123) in the inequality (124) yields

F ′(t) � γεF (t)− ε
[

γ
ρ +2

+
γε(p−1)
p(ρ +1)

]∫
Ω
|ut |ρ+2

R
dx

− ε
[ γ
2
(l +m0−1− ε)+m0−Cpδ

]∫
Ω
|∇u|2Rndx

−
[

γε(1− ε)
2

+ ε
]∫

Ω
|∇ut |2Rndx−

[
1− ε

4δ

]∫
Ω
|ut |2R

− ε
[
1− γ

p

]∫
Ω
|u|p

R
ln |u|k

R
dx− 1

2
[γε + ξ2− ε] (g 
∇u)(t)

− ε
[

kγ
p2 −

γε2

p2(ρ +1)

]∫
Ω
|u|p

R
dx− 1

2
g(t)

∫
Ω
|∇u|2

Rn +
γε2(p−1)|Ω|

p(ρ +1)
. (125)

Note that taking γ = p , the logarithmic term vanishes. Then we can find positive
values for ε and δ such that the terms in the brackets are all positive. Thus

F ′(t) � γεF (t)+ Λ, (t > 0) (126)

where

Λ :=
ε2(p−1)|Ω|

ρ +1
. (127)

Integrating (126), yields, for M(t) = −F (t)

M(t) �
(

M(0)− Λ
γε

)
eγεt +

Λ
γε

�
(

M(0)− Λ
γε

)
eγεt . (128)
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The initial data are assumed to satisfy M(0)− Λ
γε := b > 0, or

M(0)− Λ
γε

> 0

or even

−E (0)+ εΨ(0)− Λ
γε

> 0. (129)

Since E (0) < 0, we can choose ε even smaller in such way that (129) is guaran-
teed.

The inequalities (128) and (118) imply

a5

∫
Ω
|u|p

R
ln |u|k

R
dx+a6 � −F (t) = M(t) � beγεt . � (130)
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[3] P. DRÁBEK, J. MILOTA, Methods of Nonlinear Analysis, Applications to Differential Equations,
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Institute of Exact and Natural Sciences
Belém-PA, Brazil

e-mail: danielvrocha2011@gmail.com

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


