
D ifferential
Equations

& Applications

Volume 16, Number 1 (2024), 19–38 doi:10.7153/dea-2024-16-02
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Abstract. This paper explores the existence and stability of implicit neutral Caputo fractional q -
difference equations within four distinct classes, incorporating various delay types such as finite,
infinite, and state-dependent delays. To establish the existence of solutions, we utilize the fixed
point theorem of Krasnoselskii in Banach spaces. The concluding section provides illustrative
examples that highlight the obtained results.

1. Introduction

Fractional calculus have been found in several areas of engineering, mathemat-
ics, physics, and other applied sciences [2, 3, 4, 14, 15, 41]. Recently, in [3, 29]; the
authors studied the existence of solutions of Caputo’s fractional differential equations
and inclusions. Several monographs and papers have been studied implicit fractional
differential equations; see for instance [2, 3, 16] and the references therein.

The study of functional and neutral functional differential equations with has re-
ceived great attention in the last years, we refer to the monographs of Hale [22], Hale
and Verduyn Lunel [25], Hino et al. [27], Kolmanovskii and Myshkis [30], and the
references therein.

The notion of q -calculus (quantum calculus) has a rich history [8, 28]. The subject
of q -difference calculus has been developed over the years. For some interesting results
about this subject we refer the reader to [20, 21]. The general theory of linear q -
difference equations is investigated in the works of Adams [8] and Carmichael [19].
Meanwhile, Ahmad et al. conducted a study on several existence results for various
types of nonlinear fractional q -difference equations in [10, 11]. The positive solutions
of q -difference equations were examined by El-Shahed and Hassan [20]. Finally, the
authors of [37] delved into the topological structure of solution sets for fractional q -
difference inclusions, using Filippov’s theorem.

Differential equations with infinite delay are a type of mathematical equations
that describe the behavior of systems that have an infinite delay in their response to
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changes in the system. The delay can be modeled by introducing an infinite delay term
in the equation, which represents the time between the occurrence of an event and the
system’s response to that event, and it approaches infinity. The study of differential
equations with infinite delay is an active area of research and it has a wide range of
applications in fields such as physics, engineering, biology, and economics. Many
researchers have expressed interest in the study of differential equations with infinite
delay, see [7, 6, 5, 23].

In contrast to the analysis of Lyapunov and exponential stability, Ulam-Hyers sta-
bility analysis directs its focus toward the behavior of a function under perturbations,
as opposed to the stability of a dynamical system or equilibrium point. Notably, the
authors of [40, 39, 32, 1, 4, 7] have delved into Ulam stability concerning fractional
differential problems under varying conditions. Furthermore, considerable attention
has been directed towards exploring the stability of diverse functional equation types,
particularly Ulam-Hyers and Ulam-Hyers-Rassias stability. This theme is pervasive in
resources such as the book authored by Benchohra et al. [17, 18]. Research conducted
by Luo et al. [33] and Rus [36] has also delved into the stability of operatorial equations
using the Ulam-Hyers methodology.

In [38], we considered the following fractional q -difference problem:⎧⎨
⎩

(cD
q )() =( ,());  ∈ := [0, ],

(0) = 0 ∈ �,

where q ∈ (0,1),  ∈ (0,1],  > 0,  :×� → � is a given continuous function, �

is a real (or complex) Banach space with norm ‖ · ‖, and cD
q is the Caputo fractional

q -difference derivative of order  .
In [31], the authors proved some existence of solutions for the following problem

with implicit fractional q -difference equations in Banach algebras:⎧⎨
⎩

cD
q

(
()

h( ,())

)
= 

(
 ,(),c D

q

(
()

h( ,())

))
;  ∈ := [0, ],

(0) = 0 ∈ R,

where q∈ (0,1),  ∈ (0,1],  > 0, cD
q is the Caputo fractional q-difference derivative

of order  , h :×R→ R∗,  :×R2 → R are given functions, and R∗ = R−{0}.
In the present paper we prove some existence and Ulam stability results for the

Cauchy problem of implicit neutral fractional q -difference equation with finite delay⎧⎨
⎩
() = ();  ∈ [−,0],

cD
q (()−( ,)) =( ,(),cD

q (()−( ,)));  ∈ := [0, ],
(1)

where q ∈ (0,1),  ∈ (0,1],  , > 0,  ∈ �,  : ×� → R,  : ×R×R → R

are given continuous functions, cD
q is the Caputo fractional q -difference derivative of

order  , and � := C([−,0],R) is the space of continuous functions on [−,0].
For any  ∈, we define  by

() = ( +), for  ∈ [−,0].



Differ. Equ. Appl. 16, No. 1 (2024), 19–38. 21

Next we consider the Cauchy problem of implicit neutral fractional q -difference
equation with infinite delay⎧⎨

⎩
() = ();  ∈ (−,0],

cD
q (()−( ,)) =( ,(),cD

q (()−( ,)));  ∈,
(2)

where  : (−,0]→ R,  :×k→ R,  :×R×R→ R are continuous functions,
and k is a phase space.

For any  ∈, we define  ∈ k by

() = ( +); for  ∈ (−,0].

In the third section of this paper, we study the Cauchy problem of implicit neutral
fractional q -difference equation with state-dependent delay⎧⎨
⎩
() = ();  ∈ [−,0],

cD
q (()−( ,( ,))) =( ,(),cD

q (()−( ,( ,))));  ∈,

(3)
where ∈�,  :×�→R,  :×�→R,:×R×R→R are given continuous
functions.

Finally, we treat the last Cauchy problem of implicit neutral fractional q -difference
equation with state dependent delay⎧⎨
⎩
() = ();  ∈ (−,0],

cD
q (()−( ,( ,))) =( ,(),cD

q (()−( ,( ,))));  ∈,

(4)
where  : (−,0]→R,  :×k→ R,  :×k→ R,  :×R×R→ R are given
continuous functions.

It is important to highlight that our study draws inspiration from the publications
mentioned earlier and can be seen as a natural extension and continuation of the re-
search outlined in [38, 31]. This serves to contribute to the progress of theories pertain-
ing to q -difference equations.

2. Preliminaries

Let (C(),‖ · ‖) be the Banach space of continuous functions  : → R with
norm

‖‖ := sup
∈

| ()|,

and let L1() be the space of measurable functions  : → R which are Lebesgue
integrable with the norm

‖‖1 =
∫

| ()|d .
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Set

[1]q =
1−q1

1−q
,

where 1 is a real number.

DEFINITION 1. ([28]) The q analogue of the power (1−2) is defined by

(1−2)(0) = 1, (1 −2)( ) = −1
j=0 (1−2q

j); 1,2 ∈ R,  ∈ N.

In general,

(1−2)() = 1


j=0

(
1−2q j

1−2q j+

)
; 1,2, ∈ R.

DEFINITION 2. ([28]) The q-gamma function of xi∈R−{0,−1,−2, . . .}; is given
by

q( ) =
(1−q)(−1)

(1−q)−1
.

Notice that q(1+  ) = [ ]qq( ).

DEFINITION 3. ([28]) The q -derivative of order  ∈ N of a function  :→ R

is given by (D0
q)() = (),

(Dq)() := (D1
q)() =

()− (q)
(1−q)

;  �= 0, (Dq)(0) = lim
→0

(Dq)(),

and
(D

q )() = (DqD
−1
q )();  ∈,  ∈ {1,2, . . .}.

Set I := {tq :  ∈ N}∪{0}.

DEFINITION 4. ([28]) The q -integral of a function  : I → R is given by

(Iq)() =
∫ 

0
()dqs =




=0

(1−q)q(tq ),

provided that the series converges.

Notice that (DqIq)() = (), and if  is continuous at 0, then

() = (0)+ (IqDq)().

DEFINITION 5. ([9]) The Riemann-Liouville fractional q -integral of order  ∈
R+ := [0,) of a function  :→ R is given by (I0

q)() = (), and

(Iq )() =
∫ 

0

(−q)(−1)

q()
()dqs;  ∈.
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LEMMA 1. ([34]) For  ∈ R+ and κ ∈ (−1,) , we have

(Iq (−a)(κ))() =
q(1+κ)

(1+κ+)
(−a)(κ+); 0 < a <  <  .

In particular,

(Iq 1)() =
 ()

q(1+)
=



q(1+)
.

DEFINITION 6. ([35]) The Riemann-Liouville fractional q -derivative of order
 ∈ R+ of a function  : → R is given by (D0

q)() = (), and

(D
q )() = (Dn

qI
n−
q )();  ∈,

where n denotes the integer part of  +1.

DEFINITION 7. ([35]) The Caputo fractional q -derivative of order  ∈ R+ of a
function  :→ R is given by (CD0

q)() = (), and

(CD
q )() = (In−

q Dn
q)();  ∈.

LEMMA 2. ([35]) Let  ∈ R+. Then the following equality holds:

(Iq
CD

q )() = ()−
n−1


j=0

 j

q(1+ j)
(Dj

q)(0).

In particular, if  ∈ (0,1), then

(Iq
CD

q )() = ()− (0).

LEMMA 3. Let  : ×� → R,  : ×R×R → R such that (·,w) ∈ C()
and (·, , ) ∈ C(), for each w ∈ �, and  , ∈ R. Then, (1) is equivalent to the
problem of obtaining the solutions of the integral equation⎧⎨

⎩
() = ();  ∈ [−,0],

() =( ,( ,)+(0)−(0,0)+ (Iq )(),());  ∈,

and if (·) ∈C(), is the solution of this equation, then⎧⎨
⎩
() = ();  ∈ [−,0],

() = ( ,)+(0)−(0,0)+ (Iq )();  ∈.

From Lemma 3, we conclude the following corollary.
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COROLLARY 1. The solutions of the problem (1) are the fixed points of the oper-
ator � : C([−, ]) →C([−, ]) given by⎧⎨

⎩
(�)() = ();  ∈ [−,0],

(�)() = ( ,)+(0)−(0,0)+ (Iq )();  ∈,
(5)

where  ∈C() such that

() =( ,(),()),

or
() =( ,( ,)+(0)−(0,0)+ (Iq )(),()).

Let  > 0 and ג :  → R be a continuous and positive function. We put the
following inequalities

|(�)()− ()|�  ;  ∈. (6)

|(�)()− ()|� ;()ג  ∈. (7)

|(�)()− ()|� ג();  ∈. (8)

DEFINITION 8. ([3, 36]) The problem (1) is Ulam-Hyers stable if there exists
c� > 0 where for each  > 0 and for each solution  ∈ C() of (6) there exists a
solution  ∈C() of (1) with

|()− ()|� c�;  ∈.

DEFINITION 9. ([3, 36]) The problem (1) is generalized Ulam-Hyers stable if
there exists c� : C(R+,R+) with c�(0) = 0 such that for each  > 0 and for each
solution  ∈C() of the inequality (6) there exists a solution  ∈C() of (1) with

|()− ()|� c�();  ∈.

DEFINITION 10. ([3, 36]) The problem (1) is Ulam-Hyers-Rassias stable with
respect to ג if there exists c�,ג > 0where for each  > 0 and for each solution  ∈
C() of (8) there exists a solution  ∈C() of (1) with

|()− ()|� c�,גג();  ∈.

DEFINITION 11. ([3, 36]) The problem (1) is generalized Ulam-Hyers-Rassias
stable with respect to ג if there exists c�,ג > 0 where for each solution  ∈ C() of
(7) there exists a solution  ∈C() of (1) with

|()− ()|� c�,גג();  ∈.

Let (k,‖ · ‖k) be a phase space. It is a semi-normed linear space of functions
mapping (−,0] into R, and satisfying the following [23]:



Differ. Equ. Appl. 16, No. 1 (2024), 19–38. 25

(A1) If z : (−, ] → R continuous on  and z ∈ k, for all  ∈ (−,0], then there
are constants 1,2,3 > 0 such that for any  ∈ , the following conditions
hold:

(i) z is in k;

(ii) ‖z()‖ � 1‖z‖k,

(iii) ‖z‖B � 2 sup∈[0, ] ‖z()‖+3 sup∈(−,0] ‖z‖k,

(A2) For the function z(·) in (A1), z is a k-valued continuous function on .

(A3) The space k is complete.

EXAMPLE 1. Let k be the set of all functions  : (−,0] → R which are contin-
uous on [−,0],  � 0, with the semi-norm

‖‖k = sup
∈[−,0]

‖()‖.

Then we have 1 = 2 = 3 = 1. The quotient space k̂ = k/‖ · ‖k is isometric to the
space C([−,0],R) of all continuous functions from [−,0] into R with the supremum
norm, this means that functional differential equations with finite delay are included in
our axiomatic model.

3. Existence and stability results with finite delay

Let C :=C([−, ],R) be the Banach space of continuous functions from [−, ]
into R with the norm

‖‖C := sup
∈[−, ]

|()|.

DEFINITION 12. A solution of the problem (1) is a function  ∈ C that sat-
isfies the initial condition () = () on [−,0], and the equation cD

q (()−
( ,()) =( , ,(cD

q )()) on .

Consider the following hypotheses:

(H1) The function  satisfies:

|( ,)−( , )|� ‖−‖�,

for  ∈ and  , ∈ �, where 0 <  < 1.

(H2) There exist continuous functions 1,2,3 :→ R+ with 3() < 1 such that

|( , , )|� 1()+ 2()| |+ 3()| |, for each  ∈ and  , ∈ R.
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Set
∗ = sup

∈[−,0]
|()|, 1

∗ = sup
∈

1(), 2
∗ = sup

∈
2(),

3
∗ = sup

∈
3(), ∗ := sup

∈
|( ,0)|.

THEOREM 1. Suppose that the hypotheses (H1), (H2), and the condition

2 +
2

∗

(1− 3
∗)q(1+)

< 1,

hold. Then the problem (1) has at least one solution on [−, ].

Proof. Consider the operators A,B : C([−, ]) →C([−, ]) defined by⎧⎨
⎩

(A)() = 0;  ∈ [−,0],

(A)() = (0)−(0,0)+ (Iq )();  ∈,
(9)

where  ∈C() with () =( ,(),()), and⎧⎨
⎩

(B)() = ();  ∈ [−,0],

(B)() = ( ,);  ∈.
(10)

Set

 � max

⎧⎨
⎩∗,

2h∗ +∗+  (1
∗+2

∗)
(1−3

∗)q(1+)

1−2− 2
∗

(1−3
∗)q(1+)

⎫⎬
⎭ ,

and let  = { ∈C([−, ]) : ‖‖C � } be the closed and convex ball in C.
We shall prove in three steps that A and B satisfy the conditions of Krasnoselskii’s

fixed point theorem [12, 13].

Step 1. A +B ∈  whenever  , ∈  .
Let  , ∈  . Then, for each  ∈ [−,0] we have

|A()+B ()|= () � ∗ �  ,

and for each  ∈, we have

|(A)()+(B )()|� |( ,)|+ |(0)|+ |(0,0)|+
∫ 

0

(−q)(−1)

q()
|()|dqs,

where  ∈C() with
() =( ,(),()).
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By using (H2), for each  ∈ we have

|()| � 1()+ 2()|()|+ 3()|()|
� 1

∗ + 2
∗+ 3

∗|()|.
This gives

|()| � 1
∗ + 2

∗
1− 3

∗ .

Thus

‖A()+B( )‖ � |(0)|+ |(0,0)|+ |(0,0)−(0,0)|+ (1
∗ + 2

∗)
(1− 3

∗)q(1+)
+|( ,)−( ,0)|+ |( ,0)|

� ∗ +∗ + ‖0‖� +
(1

∗ + 2
∗)

(1− 3
∗)q(1+)

+ ‖‖� +∗

� ∗ +∗ + +
(1

∗ + 2
∗)

(1− 3
∗)q(1+)

+ +∗

= 2h∗ +∗+
(1

∗ + 2
∗)

(1− 3
∗)q(1+)

+ 
(

2 +
2

∗

(1− 3
∗)q(1+)

)
�  .

Hence, we get
‖A()+B( )‖C �  .

This proves that A +B ∈  whenever  , ∈  .

Step 2. A :  →  is compact and continuous.

Claim 1. A is continuous.
Let {}∈N be a sequence such that  →  in  . Then we have

|(A )()− (A)()|�
∫ 

0

( −q)(−1)

q()
|( ()−())|dqs;  ∈,

where  , ∈C() such that

 () =( , (), ()),

and
() =( ,(),()).

Since  →  as  →  and  is continuous, we get

 () →() as  → , for each  ∈.

Hence

‖A( )−A()‖ � 1
∗ + 2

∗
1− 3

∗ ‖ −‖ → 0 as  → .
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Claim 2. A() is bounded and equicontinuous.
We have A() ⊂  and  is bounded, thus A() is bounded. Next, let

1,2 ∈  , such that 1 < 2 and let  ∈  . Then, there exists  ∈ C() with
() =( ,(),()), such that

|(A)(1)− (A)(2)| �
∫ 1

0

|(2 −q)(−1)− (1−q)(−1)|
q()

|()|dqs

+
∫ 2

1

|(2−q)(−1)|
q()

|()|dqs.

Hence

|(A)(1)− (A)(2)| � 1
∗ + 2

∗
1− 3

∗
∫ 1

0

|(2−q)(−1)− (1−q)(−1)|
q()

dqs

+
1

∗ + 2
∗

1− 3
∗

∫ 2

1

|(2 −q)(−1)|
q()

dqs

→ 0 as 1 → 2.

As a consequence of the above claims, the Arzelá-Ascoli theorem implies that A : →
 is continuous and compact.

Step 3. B is a contraction mapping.
Let  , ∈  . From (H1), for each  ∈, we have

|(B)()− (B )()| � |( ,)−( ,)|
� ‖ −‖�.

Thus
‖B()−B( )‖ � ‖−‖.

Hence
‖B()−B( )‖C � ‖−‖C,

which implies that the operator B is a contraction.

As a consequence of the three above steps, from Krasnoselskii’s fixed point theo-
rem [12, 13], the operator equation (A+B)() =  has at least a solution. �

Now, we prove a result about the generalized Ulam-Hyers-Rassias stability of the
problem (1).

The hypotheses:

(H3) There exist functions 1,2,3,4 ∈C(, [0,)) with 3() < 1 such that

(1+ | |)|( , , )|� 1()ג()+2()ג()| |+3()| |,
for each  ∈ and  , ∈ R, and

(1+‖w− z‖�)|( ,w)−( ,z)| � 4()ג()‖w− z‖�,

for each  ∈ and w,z ∈ �,
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(H4) There exists κג > 0 such that for each  ∈, we have

(Iq ()(ג � κגג().

Set ∗ג = sup
∈

()ג and

∗
i = sup

∈
i(), i ∈ {1,2,3,4}.

THEOREM 2. Suppose that the hypotheses (H3), (H4) and the conditions ∗
ג4

∗ <
1, and

∗
3 +2∗

ג4
∗ +

∗
ג2

∗

q(1+)
−2∗

3
∗
ג4

∗ < 1,

hold. Then the problem (1) is generalized Ulam-Hyers-Rassias stable.

Proof. Let � be the operator defined in (5). It’s clear that (H3) implies (H1) with
 = ∗

ג4
∗, and; (H3) implies (H2) with 1 ≡ 1ג, 2 ≡ 2ג and 3 ≡ 3.

Let  be a solution of (7), and  is a solution of (1). Thus, we have  () =
();  ∈ [−,0], and

 () = ( ,)+(0)−(0,0)+ (Iq z)();  ∈,

where z ∈C() such that z() =( , (),z()).
From the inequality (7) for each  ∈, we have

|()−( ,)−(0)+(0,0)− (Iq )()| � (Iq ,()(ג

where  ∈C() such that () =( ,(),()).
From (H3) and (H4), for each  ∈, we get

|()− ()| � |()−( ,)−(0)+(0,0)− (Iq )()|
+|( ,)−( ,)+ |( ,0)−( ,0)|+(Iq (− z))()|

� (Iq ∗2+()(ג
+()ג4

∫ 

0

(−q)(−1)

q()
(|(()|+ |z())|)dqs

� (Iq ∗2+()(ג
+()ג4

∗
1 +∗

2

1−∗
3

(Iq ()(ג

� κג()+2∗
κ+()ג4

∗
1 + ∗

2|()|
1+|()|

1−∗
3

()ג

�
[
2∗

4 +κ

(
1+

∗
1 +∗

2

1−∗
3

)]
()ג

:= c,,גג().

Hence, we conclude the generalized Ulam-Hyers-Rassias stability of problem (1). �
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4. Existence and stability results with infinite delay

Consider the space

 := { : (−, ] → R :  ∈ k for  ∈ and  | ∈C()}.

In the present section, we are concerned with the problem (2).
The hypotheses:

(H01) The function  satisfies the Lipschitz condition:

|( ,)−( , )|� ‖−‖k,

for  ∈ and  , ∈ k, where 0 <  < 1.

(H02) There exist functions 1,2,3,4 ∈C(,R+) with 3() < 1 such that

(1+ | |)|( , , )|� 1()ג()+2()ג()| |+3()| |,

for each  ∈ and  , ∈ R, and

(1+‖w− z‖k)|( ,w)−( ,z)| � 4()ג()‖w− z‖k,

for each  ∈ and w,z ∈ k,

THEOREM 3. From the hypotheses (H01), (H2) and the condition

2
∗

q(1+)
+ 3

∗ +  − 3
∗ < 1,

the problem (2) has at least one solution defined on (−, ].

Proof. Define the operators A,B :→ by⎧⎨
⎩

(A)() = 0;  ∈ (−,0],

(A)() = 0−(0,0)+ (Iq )();  ∈,
(11)

where  ∈C() with () =( ,(),()), and⎧⎨
⎩

(B)() = ();  ∈ (−,0],

(B)() = ( ,);  ∈.
(12)

Let  (·) : (−, ] → R be a function defined by,

 () =
{
(),  ∈ (−,0],
0;  ∈.
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Then  = () for all  ∈ (−,0]. For each w ∈ C() with w() = 0 for each
 ∈ (−,0], we denote by w the function defined by

w() =
{

0,  ∈ (−,0],
w()  ∈.

If (·) satisfies,

() = ( ,),

then, () = w()+ ();  ∈ , and then  = w + , for every  ∈. Thus,
the function w(·) satisfies

w() = ( ,).

Let

C0 = {w ∈ : w() = 0 for  ∈ (−,0]},
be the Banach space with norm ‖ · ‖ , with

‖w‖ = sup
∈(−,0]

‖w‖k + sup
∈

‖w()‖ = sup
∈

‖w()‖, w ∈C0.

Consider the operator P : C0 →C0 be defined by

(Pw)() = ( ,). (13)

Then the operators A+B and A+P have the same fixed points. Set

 �
(1− 3

∗)[2h∗ + |0|(1+ )]+ 1
∗

q(1+)

1− 3
∗ −  + 3

∗ − 2
∗

q(1+)

,

and define the ball  = { ∈  : ‖‖T � } in . We can prove as in Theorem 1
that the operators P and B satisfy the conditions of Krasnoselskii’s fixed point theorem
[12, 13]. This implies that the operator A + B has at least a fixed point which is a
solution of problem (2).

From Theorem 3, we can conclude the following result about the generalized
Ulam-Hyers-Rassias stability of problem (2). �

THEOREM 4. Assume that the hypotheses (H02) and (H4) hold. If ∗
ג4

∗ < 1, and

∗
3 +2∗

ג4
∗ +

∗
ג2

∗

q(1+)
−2∗

3
∗
ג4

∗ < 1,

then the problem (2) has a solution and it is generalized Ulam-Hyers-Rassias stable.
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5. Existence and stability results with state dependent delay

5.1. The finite delay case

Set R := R − = {( ,) : ( ,)∈×C(), ( ,)� 0}. We always assume
that  :×C()→ R is continuous and the function  
−→  is continuous from R
into C().

As in Theorems 1 and 2, we conclude the following results.

THEOREM 5. Assume that the hypotheses (H1) and (H2) hold. If

2 +
2

∗

(1− 3
∗)q(1+)

< 1,

then the problem (3) has at least one solution defined on [−, ].

THEOREM 6. Assume that the hypotheses (H3) and (H4) hold. If ∗
ג4

∗ < 1, and

∗
3 +2∗

ג4
∗ +

∗
ג2

∗

q(1+)
−2∗

3
∗
ג4

∗ < 1,

then (3) has at least a solution and it is generalized Ulam-Hyers-Rassias stable.

5.2. The infinite delay case

Set R ′ := R ′
− = {( ,) : ( ,) ∈ ×k ( ,) � 0}. We always assume

that the functions  : ×k → R and  ∈ R ′ 
−→  ∈ k are continuous.
In the sequel we will make use of the following hypothesis:

(C) There exists a continuous bounded function L : R ′
− → (0,) such that

‖‖k � L()‖‖k, for any  ∈ R ′.

LEMMA 4. ([26]) If  ∈, then

‖‖k = (3 +L′)‖‖k +2 sup
∈[0,max{0,}]

‖()‖,

where
L′ = sup

∈R′
L().

As in Theorems 3 and 4, we conclude the following result:

THEOREM 7. Assume that the hypotheses (C), (H01) and (H2) hold. If

2
∗

q(1+)
+ 3

∗ +  − 3
∗ < 1,

then the problem (4) has at least one solution defined on (−, ].
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THEOREM 8. Assume that the hypotheses (C), (H02) and (H4) hold. If ∗
ג4

∗ <
1, and

∗
3 +2∗

ג4
∗ +

∗
ג2

∗

q(1+)
−2∗

3
∗
ג4

∗ < 1,

then (4) has a solution and it is generalized Ulam-Hyers-Rassias stable.

6. Some examples

EXAMPLE 2. Consider the implicit fractional 1
4 -difference equations

⎧⎨
⎩

cD
1
2
1
4
(()−( ,) =( ,(),cD

1
2
1
4
(()−( ,));  ∈ [0,1],

() = 2+2;  ∈ [−2,0],
(14)

where

( ,x,y) =
2

1+ |x|+ |y|
(

e−7 +
1

e+5

)
(2 + xt2 + y);  ∈ [0,1], x,y ∈ R,

and

( ,z) =
4

1+ |z−2|
(

e−7 +
1

e+5

)
;  ∈ [0,1], z ∈C([−2,0]),

The hypothesis (H1) is satisfied with  = 2e−5. Also, the hypothesis (H2) is satisfied

with ()ג = 2 and 1() = 2() = 3() =
(
e−7 + 1

e+5

)
 . A simple computation

show that all conditions of Theorems 1 and 2 are satisfied. Hence, our problem (14) has
at least a solution defined on [−2,1], and it is generalized Ulam-Hyers-Rassias stable.

EXAMPLE 3. Consider now the following problem⎧⎨
⎩

cD
1
2
1
4
(()−( ,) =( ,(),cD

1
2
1
4
(()−( ,));  ∈ [0,1],

() = 1+2;  ∈ (−,0],
(15)

where

( ,x,y) =
2

1+ |x|+ |y|
(

e−7 +
1

e+5

)
(2 + xt2 + y);  ∈ [0,1], x,y ∈ R,

and

( ,z) =
4

1+ z

(
e−7 +

1
e+5

)
;  ∈ [0,1], z ∈ k ,

where
k = { ∈C((−,0],R) : lim

‖‖→
e () exists in R}.
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The norm of k is given by

‖‖ = sup
∈(−,0]

e |()|.

Let  : (−,1] → R such that  ∈ k for  ∈ (−,0], then

lim
‖‖→

e () = lim
‖‖→

e(−)()

= e− lim
‖‖→

e () < .

Hence  ∈ k . Finally we prove that

‖‖ = 2 sup{|()| :  ∈ [0, ]}+3 sup{‖‖ :  ∈ (−,0]},
where 2 = 3 = 1 and 1 = 1.

If  +  � 0 we get

‖‖ = sup{|()| :  ∈ (−,0]},
and if  +  � 0, then we have

‖‖ = sup{|()| :  ∈ [0, ]}.
Thus for all  +  ∈ [0,1], we get

‖‖ = sup{|()| :  ∈ (−,0]}+ sup{|()| :  ∈ [0, ]}.
Then

‖‖ = sup{‖‖ :  ∈ (−,0]}+ sup{|()| :  ∈ [0, ]}.
(k ,‖ · ‖) is a Banach space. We conclude that k is a phase space. Simple computa-
tions show that all conditions of Theorems 3 and 4 are satisfied.

EXAMPLE 4. In this example, we consider the following problem⎧⎨
⎩

cD
1
2
1
4
(()−( ,( ,))) =( ,(),cD

1
2
1
4
(()−( ,( ,)));  ∈ [0,1],

() = 2+2;  ∈ [−2,0],
(16)

where

( ,x,y) =
2

1+ |x|+ |y|
(

e−7 +
1

e+5

)
(2 + xt2 + y);  ∈ [0,1], x,y ∈ R,

and

( ,z) =
4

1+‖z−(z())‖
(

e−7 +
1

e+5

)
;  ∈ [0,1], z ∈C([−2,0]),
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where  ∈C(R, [0,2]),

( ,) = −((0)), ( ,) ∈×C([−2,0],R).

The hypothesis (H1) is satisfied with  = 2e−5. Also, the hypothesis (H2) is satisfied
with

()ג = 2 1() = 2() = 3() =
(

e−7 +
1

e+5

)
 .

A simple computation show that all conditions of Theorems 5 and 6 are satisfied.

EXAMPLE 5. Now, we treat the following implicit fractional 1
4 -difference equa-

tions⎧⎨
⎩

cD
1
2
1
4
(()−( ,) =( ,(),cD

1
2
1
4
(()−( ,));  ∈ [0,1],

() = 1+2;  ∈ (−,0],
(17)

where

( ,x,y) =
2

1+ |x|+ |y|
(

e−7 +
1

e+5

)
(2 + xt2 + y);  ∈ [0,1], x,y ∈ R,

and

( ,z) =
4

1+ |z(−(()))|
(

e−7 +
1

e+5

)
;  ∈ [0,1], z ∈ k,

where  ∈C(R, [0,)) and k is the phase space defined in Example 2.
Simple computations show that from the Theorem 3, the problem (17) has at

least one solution on (−,1], and the Theorem 4 implies the generalized Ulam-Hyers-
Rassias stability.

Conclusion

In this paper, we have presented an analysis of the existence of solutions for a
class of implicit neutral Caputo fractional q -difference equations with finite, infinite,
and state-dependent delays. Our approach utilizes Krasnoselskii’s fixed point theorem
to obtain the results. Furthermore, we have illustrated the practical applications of our
results through specific examples. We hope that our analysis can inspire further research
in this area and contribute to the development of more complex q -difference systems.
In our future work, we aim to expand the study to higher order differential equations,
with different types of conditions and impulsive effects.
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[4] S. ABBAS, M. BENCHOHRA AND G. M. N’GUÉRÉKATA, Advanced Fractional Differential and
Integral Equations, Nova Science Publishers, New York, 2015.

[5] M. S. ABDO, Boundary value problem for fractional neutral differential equations with infinite delay,
Abhath Journal of Basic and Applied Sciences. 1 (1) (2022), 1–18.

[6] M. S. ABDO, S. K. PANCHAL, Weighted fractional neutral functional differential equations, J. Sib.
Fed. Univ. Math. Phys. 11 (5) (2018), 535–549,
https://doi.org/10.17516/1997-1397-2018-11-5-535-549 .

[7] M. S. ABDO, S. K. PANCHAL, H. A. WAHASH, Ulam-Hyers-Mittag-Leffler stability for a  -Hilfer
problem with fractional order and infinite delay, Results Appl. Math. 7 (2020), 100115,
https://doi.org/10.1016/j.rinam.2020.100115

[8] C. R. ADAMS, On the linear ordinary q-difference equation, Annals Math. 30 (1928), 195–205.

[9] R. AGARWAL, Certain fractional q-integrals and q-derivatives, Proc. Camb. Philos. Soc. 66 (1969),
365–370.

[10] B. AHMAD, Boundary value problem for nonlinear third order q-difference equations, Electron. J.
Differential Equations 2011 (2011), no. 94, pp 1–7.

[11] B. AHMAD, S. K. NTOUYAS AND L. K. PURNARAS, Existence results for nonlocal boundary value
problems of nonlinear fractional q -difference equations, Adv. Difference Equ. 2012, 2012:140.

[12] B. AHMAD, J. J. NIETO, A. ALSAEDI, Existence of solutions for nonlinear fractional differential
equations with non-separated type integral boundary conditions, Acta Math. Sci. 31 (2011) 2122–
2130.

[13] A. ANGURAJ, P. KARTHIKEYAN, J. J. TRUJILLO, Existence of solutions to fractional mixed inte-
grodifferential equations with nonlocal initial condition, Adv. Differential Equations (2011) 1–12,
ID690653.

[14] D. BALEANU, K. DIETHELM, E. SCALAS AND J. J. TRUJILLO, Fractional Calculus Models and
Numerical Methods, World Scientific, Singapore, 2012.

https://doi.org/10.17516/1997-1397-2018-11-5-535-549
https://doi.org/10.1016/j.rinam.2020.100115


Differ. Equ. Appl. 16, No. 1 (2024), 19–38. 37

[15] D. BALEANU, Z. B. GUVENC, J. A. TENREIRO MACHADO (eds.), New Trends in Nanotechnology
and Fractional Calculus, Applications, Springer, Dordrecht, 2010.

[16] M. BENCHOHRA, F. BERHOUN AND G. M. N’GUÉRÉKATA, Bounded solutions for fractional order
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