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FUNDAMENTAL SOLUTIONS: A BRIEF REVIEW

PRIYANK OZA ∗ , KHUSBOO AGARWAL AND JAGMOHAN TYAGI

(Communicated by J. I. Dı́az)

Abstract. We review briefly the fundamental solutions to some of the most important partial
differential operators. These are very crucial in analysis and partial differential equations (PDEs).
Among several applications, these are used, for instance, in studying regularity and growth of
solutions.

1. Introduction

Fundamental solutions play an important role in formulation and solving of many
local and non-local boundary value problems. The goal of this note is to discuss the
fundamental solutions to some of the most important partial differential operators. Let
us recall the definition of the fundamental solution to a linear operator L.

DEFINITION 1. Let L be a linear differential operator. We call a distribution E, a
fundamental solution of L if

LE =  (1.1)

in the sense of distribution. Here,  is the Dirac delta function, also called the Dirac
distribution.

One may see the book La théorie des distributions by Schwartz [52] for the details,
where the author developed the theory of distributions in order to provide tools for solv-
ing PDEs. Let us go over some of the historical appearances of the topic. Before the
first edition of the first part of the book, even the question of existence of a fundamen-
tal solution was not well posed. Even a generally adopted definition of a fundamental
solution was not there before Schwartz [52]. In 1948, Schwartz posed the question of

Mathematics subject classification (2020): 35A08, 35M10, 35J50, 35J70, 35E05, 35H20, 17B70,
35Q05, 26D10, 35R03, 47G20.

Keywords and phrases: Fundamental solutions, Gauss hypergeometric function, Lauricella hyperge-
ometric functions, confluent Horn function, operators of mixed type, generalized Euler-Poisson-Darboux
equation, Grushin-type spaces, p -Laplacian, fractional operators, Pucci’s extremal operator, partial differen-
tial equations on the Heisenberg group.

The research of Priyank Oza was financially supported by Council of Scientific & Industrial Research (CSIR) under
the grant no. 09/1031(0005)/2019–EMR–I. The third author thanks DST/SERB for the financial support under the grant
CRG/2020/000041.

∗ Corresponding author.

c© � � , Zagreb
Paper DEA-16-03

39

http://dx.doi.org/10.7153/dea-2024-16-03


40 P. OZA, K. AGARWAL AND J. TYAGI

the existence of a fundamental solution to the not identically vanishing constant coeffi-
cient linear partial differential operator. The question was independently answered by
Malgrange [49] and Ehrenpreis [25]. Following that, several researchers contributed to
the finding of explicit general formulae for fundamental solutions. We refer to the book
[50] for the details on solutions to linear partial differential operators. If u is a solu-
tion of the homogeneous equation Lu = 0 then E +u is also a fundamental solution of
(1.1). Using this definition, the additive and multiplicative constants can be computed.
For example, the fundamental solutions of Laplace operator are upto some additive and
multiplicative constants. We ignore these constants for time being.

This note is organized as follows. In Section 1, we review the fundamental solu-
tions to the well-known operators. In Section 2, we derive the fundamental solution to
fully nonlinear parabolic partial differential equations. In Section 3 and 4, we review
fundamental solutions in the Heisenberg group and a Grushin-type space, respectively.

Let us consider the Laplace operator − on R
N , N � 2. The fundamental solution

(x) of − is given by

(x) :=

{
|x|2−N for N > 2,

− log |x| for N = 2,
(1.2)

for x ∈ RN \ {0}. More precisely, the fundamental solution of the Laplace operator is
the function

(x) :=

⎧⎨
⎩

1
N(N−2)(N) |x|2−N for N > 2,

− 1
2 log |x| for N = 2,

for x ∈ RN \ {0}. Here, (N) is the volume of the unit ball in RN . Let us consider
p-Laplace operator, defined as

−pu := −div(|u|p−2u) in R
N , (1.3)

where 1 � p < . (1.3) is the Laplace operator when p = 2. (1.3) is called degenerate
elliptic when p > 2 and for 1 < p < 2, it is called singular at points where u = 0.
The fundamental solution p(x) of p -Laplacian is given by

p(x) :=

⎧⎨
⎩|x| p−N

p−1 , if p �= N,

− log |x|, if p = N,
(1.4)

x ∈ RN \ {0}. When p = , (1.3) is called infinity Laplacian, which is defined as
follows:

−u := −〈D2u·u,u〉 = −
N


i, j=1

 2u
xix j

u
xi

u
x j

. (1.5)

The cone functions

(x) := a|x|+b (1.6)
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are solutions of (1.5) in RN \ {0}, where a and b are constants. These are called the
fundamental solutions of (1.5), see [20, 48].

Next, let us consider the Hardy-Sobolev operator:

−u− u
|x|2 in R

N \ {0}, (1.7)

where

−<  � (N−2)2

4
.

When −<  < (N−2)2
4 , the fundamental solutions to (1.7) are given by

+
 (x) = |x|2−N+p and −

 (x) = |x|−p, x ∈ R
N \ {0}, (1.8)

where p := N−2
2 −

√
(N−2)2

4 − . When  = (N−2)2
4 , the fundamental solutions are

given by

+(x) = |x|− (N−2)
2 log

(
1
|x|
)

and −(x) = |x|− (N−2)
2 , x ∈ R

N \ {0},

see [18, 41] for the details.
For a given  , satisfying 0 <  �<, Pucci’s extremal operators are defined

as follows:

M +
 ,(M) :=  

ei>0

ei + 
ei<0

ei,

and

M−
 ,(M) :=  

ei>0

ei + 
ei<0

ei, (1.9)

where ei ’s are the eigenvalues of M and M ∈ SN . Here, SN denotes the set of all N×N
real symmetric matrices. In case when  = = 1, it is easy to see that

M +
 ,(D2u) = M−

 ,(D2u) = u.

Consider a function

(x) :=

⎧⎪⎪⎨
⎪⎪⎩
|x|− , if  > 0,

− log |x|, if  = 0,

−|x|− , if  < 0

for x ∈ RN \ {0}. A direct computation shows that the fundamental solutions of the
Pucci extremal operators M−

 , and M +
 ,, are given by

(N−1)
 −1

and (N−1)
 −1

, (1.10)
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respectively. We refer to [2, 21] for the details. By the well-known theory of elliptic
partial differential equations, if  is a fundamental solution of a linear operator L then
L is interpreted as the Dirac mass at the origin. It is important to mention that this is
not true for fully nonlinear operators as was seen by Labutin [47]. Labutin showed that
if  �= , then M +

 ,((N−1)
 −1

) is not the Dirac mass at the origin but it vanishes near

the origin in a reasonable weak sense.
Next, we consider partial trace operators, P±

k . Let SN be as mentioned above.
For A ∈ SN , partial trace operators (truncated Laplacian) are defined as follows:

P−
k

(
A
)

:=
k


i=1

ei(A) and P+
k

(
A
)

:=
N


i=N−k+1

ei(A), (1.11)

for 1 � k � N. Here, {ei} is the ordered eigenvalues of A, i.e., e1(A) � e2(A) . . . �
eN(A). The fundamental solution of P+

k , i.e., the classical radial solution, (x) of
equation

P+
k

(
D2u

)
= 0 in R

N \ {0}, (1.12)

is given by

(x) =

⎧⎪⎪⎨
⎪⎪⎩
−c1|x|+ c2 if k = 1,

−c1 log |x|+ c2 if k = 2,

c1|x|2−k + c2 if k > 2,

(1.13)

where c1 � 0 and c2 ∈ R are constants. We mention that the radial solutions of (1.12)
are concave and increasing only if k = N, i.e., in case of Laplacian.

The fundamental solution of the fractional Laplacian (−)s in RN \{0} is given
by

(x) :=

{
a(N,s)|x|−N+2s, if N �= 2s,

− 1
 log(|x|) if N = 2s,

(1.14)

where a(N,s) is a dimensional constant and (−)s stands for the fractional Laplacian
and is defined as follows:

(−)su(x) = CN,sP.V.

∫
RN

u(x)−u(y)
|x− y|N+2s dy = CN,s lim

→0

∫
RN\B(x)

u(x)−u(y)
|x− y|N+2s dy, u ∈ S,

where P.V. stands for in the principal value sense, S is the Schwartz space of rapidly
decreasing functions, s ∈ (0,1) is fixed and

CN,s :=
1∫

RN
1−cos(1)
| |N+2s d

, (1.15)

which is a normalization constant, see [13]. Here, 1 is the first coordinate of  =
(1,2, . . . ,N) ∈ R

N .
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Let K0 be a family of symmetric kernels, K : RN \ {0} −→ R satisfying


C(N,s)
|x|N+2s � K(x) � 

C(N,s)
|x|N+2s , x �= 0, (1.16)

where c(N,s) is a positive constant. Consider a class of nonlinear integral operators
defined as follows:

MI
+u(x) = sup

I∈L0

I u(x) and MI
−u(x) = inf

I∈L0
I u(x), (1.17)

where L0 denotes a class of all linear operators I of the following form:

I u(x) =
∫

RN

(
u(x+ y)+u(x− y)−2u(x)

)
K(y)dy for x ∈ R

N . (1.18)

Here, K : RN → R denotes a kernel which belongs to the family K0 and u is such that
the integrand in (1.18) is integrable in RN \B(0,) for  > 0 and u is of class C1,1(x)
in the sense of Caffarelli and Silvestre [15]. In particular, I u is well defined at x,
when u ∈C1,1(x) and is bounded and continuous. The fundamental solutions of MI

+

in RN \ {0} is given by

N+(|x|) :=

⎧⎪⎪⎨
⎪⎪⎩
|x|−N++2s if N+ > 2s,

− log(|x|) if N+ = 2s,

−|x|−N++2s if N+ < 2s,

(1.19)

and

N−(|x|) = −|x|−N−+2s, (1.20)

where N+ = N+(,,N) and N− = N−(,,N) are dimensional constants. Also, the
functions given by

N+(|x|) = −N+(|x|) and N−(|x|) = −N−(|x|) (1.21)

are the fundamental solutions of MI
−. We refer to Theorem 1.1 [30] for the details.

Next, consider a nonlocal analogue of partial trace operators, J ±
k defined as

follows:

J +
k := sup

V∈Wk

JW u(x), (1.22)

and

J −
k := inf

V∈Wk

JW u(x), (1.23)
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where Wk denotes the family of k -dimensional orthonormal sets in RN . For any V ∈
Wk, let 〈W 〉 be denote the k -dimensional subspace generated by W. Then, we define

JW u(x) :=
C(k,s)

2

∫
RN

(
u

(
x+

k


i=1

ii

)
+u

(
x−

k


i=1

ii

)
−2u(x)

)

×
( k


i=1

2
i

)− (k+2s)
2

d12 . . .k,

where C(k,s) is a positive constant given by (1.15). JW is equivalently defined as

JW u(x) =
C(k,s)

2

∫
〈V 〉

(
u(x+ y)+u(x− y)−2u(x)

)
|y|−(k+2s)dH k(y), (1.24)

where H k denotes the k -dimensional Hausdorff measure in RN . It is interesting to
note that J ±

k u −→ P±
k (D2u) as s → 1. Also, for k = N, J±N u = (−)su. The funda-

mental solution of the truncated fractional Laplacian JW in RN \ {0} is given by

(x) := |x|−(k−2s), (1.25)

upto a multiplicative constant. For the details, see Corollary 5.2 [12]. The case k = N,
was studied by Felmer and Quaas [29].

Further, we consider the following fractional p-Laplace operator:

L u := P.V.

∫
RN

|u(x,t)−u(y,t)|p−2
(
u(x,t)−u(y,t)

)
|x− y|N+sp dy. (1.26)

Vázquez [55] considered the following evolution equation:⎧⎨
⎩

tu+L u = 0 in RN , N � 1 and t > 0,

lim
t−→0

u(x,t) = u0(x),
(1.27)

where u0 ∈ L2(RN). Author gave the fundamental solution, i.e., a function u(x,t) such
that

lim
t−→0

∫
RN

u(x,t)(x)dx = C(0), (1.28)

for every  ∈ C
c (RN) and some positive constant C. More precisely, author proved

the following result:

THEOREM 1. (see [55, Theorem 1.1]) For every C > 0, there exists a unique
self-similar solution,  of (1.27) with initial data C (x). Moreover, it is of the form

(x,t;C) = Csp t−F(C−(p−2)xt− ),
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where

 =
N

N(p−2)+ sp
,  =

1
N(p−2)+ sp

for positive, continuous, radially symmetric (r = |x|t− ) and decreasing function with
the property that

F(r) ≈ r−(N+sp) as r −→ .

Here, by f (r)≈ g(r), we mean that 0 < c1 � f (r)g(r) � c2, for some positive constants
c1,c2 depending on N,s, p.

Barros-Neto and Gelfand [7] constructed fundamental solutions for the following
Tricomi operators:

yuxx +uyy in R
2. (1.29)

It can be viewed as a prototype of mixed elliptic-hyperbolic operators. Consider the
sets D+ and D− in RN defined as follows:

D± =
{
(x,y) ∈ R

2 : ± (9x2 +4y3) > 0
}

.

The fundamental solutions F± of the Tricomi operators with pole at a variable point
(a,0) on the x -axis are given by

F± := C±E±(x,y), (1.30)

where

E+(x,y) =

⎧⎨
⎩

(9x2 +4y3)−
1
6 in D+,

0 otherwise ,

E−(x,y) =

⎧⎨
⎩
|9x2 +4y3|− 1

6 in D−,

0 otherwise ,

and

C+ = − ( 1
6 )

2
2
3 3

1
2( 2

3 )
,

C− =
3( 4

3 )

2
2
3 

1
2( 5

6 )
.

These solutions satisfy the following equation:

yuxx +uyy =  (x−a,y), (1.31)
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where  (x−a,y) is the Dirac measure concentrated at (a,0). Further, the same authors
[8] calculated fundamental solutions for the Tricomi operator, relative to an arbitrary
point, say (a,b) in the plane. Exploiting the invariance of the Tricomi operator under
the translations parallel to x -axis, solving (1.31) is equivalent to solving

yuxx +uyy =  (x,y−b). (1.32)

Here, b ∈ R is arbitrary and  (x,y− b) is the Dirac measure concentrated at (0,b).
The authors showed the existence of four fundamental solutions {Ei}4

i=1, supported in
four disjoint regions, say {Di}4

i=1. For the details, we refer to Figure 2 [8]. Consider a
function

E(a,b;a0,b0) = (a+a0)−
1
6 (a0−b)−

1
6 F

(
1
6
,
1
6
;1;

)
,

where

 =
(a−a0)(b+a0)
(a+a0)(b−a0)

.

The fundamental solutions for the Tricomi operator relative to the point (0,b) are given
as follows:

Ei(x,y;0,b) =

⎧⎨
⎩

1

2
1
3
E(x,y;0,b) in Di,

0 otherwise,

for i = 1,2, and

Ei(x,y;0,b) =

⎧⎨
⎩
− 1

2
1
3
E(x,y;0,b) in Di,

0 otherwise,

for i = 3,4.
The authors further extended the results of [7, 8] in [9]. They constructed the fun-

damental solutions for the Tricomi operator relative to any point in the elliptic, parabolic
or hyperbolic region of the operator. As mentioned above, the translation invariance of
the operator along the x -axis allows us to consider the case when (x,y) = (0,b), where
b∈R is an arbitrary point. Consider the three cases: (i) b> 0, (ii) b = 0, and (iii) b< 0.

Case (i): b > 0. In this case, the fundamental solution is given by

F(x,y;0,b) :=
(−v)−

1
6

2
1
3

F

(
1
6
,
1
6
,1;

u
v

)
,

where

u(x,y) =

⎧⎨
⎩

9(x2 +a2)+4y3 +12ay
3
2 for y � 0,

9(x2 +a2)+4y3−12a(−y)
3
2 otherwise,
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and

v(x,y) =

⎧⎨
⎩

9(x2 +a2)+4y3−12ay
3
2 for y � 0,

9(x2 +a2)+4y3 +12a(−y)
3
2 otherwise,

where a = 2b
3
2

3 .

Case (ii): b = 0. In this case, the fundamental solutions are given by (1.30).

Case (iii): b < 0. The fundamental solution in this case is given by

F(x,y;0,b) :=
(−)−

1
6

2
1
3

F

(
1
6
,
1
6
,1;




)
,

where

(x,y) =

⎧⎨
⎩

9(x2−a2)+4y3 +12ay
3
2 for y � 0,

9(x2−a2)+4y3 +12a(−y)
3
2 otherwise,

and

(x,y) =

⎧⎨
⎩

9(x2 −a2)+4y3−12ay
3
2 for y � 0,

9(x2 −a2)+4y3−12a(−y)
3
2 otherwise,

where a = 2(−b)
3
2

3 . Using a method of Delache and Leray [23], Barros-Neto and Car-
doso [5] determined the fundamental solutions for a generalized Tricomi operator

T := yx +
 2

y2 in R
N+1, (1.33)

relative to an arbitrary point (0,b), b < 0, in RN+1. We recall that the case N = 1 was
studied in [7], see (1.30). Consider the case when N is even and look at the region

DN
b,− :=

{
(x,y) ∈ R

N+1 : 9(|x|2−a2)+12a(−y)
3
2 +4y3 < 0,y < b

}
.

The Fundamental solution of (1.33) with support in the closure of DN
b,− is given by

E−(x,y;0,b) =

⎧⎪⎨
⎪⎩


1
2−N

2

2
1
3 31−N

(
3
2−N

2

) (−u)
1
2− N

2 (−v)−
1
6 F

(
2
3−N

2 , 1
6 , 3

2−N
2 ; u

v

)
in DN

b,−,

0 otherwise.
(1.34)
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Next, consider the case when N > 1 is odd. The fundamental solution of (1.33) sup-
ported in the closure of DN

b,− is given by

E−(x,y;0,b) = Am

m−1


j=0

(−1) jc j

(
v−u

9

)− j− 1
6

 (m− j−1)(u(.))

+ (−1)mAmcm

(
− v

9

)−m− 1
6

F

(
1
6
,m+

1
6
,m+1,

u
v

)
�DN

b,−(x,y),

(1.35)

where �DN
b,−

is the indicator function of the set DN
b,−. Further, the same authors [6]

calculated fundamental solutions for a class of operators given by

1
2
x,s +


s

 s

,  ∈ C\ {0}, (1.36)

where

x,s =
 2

 s2 −
N


i=1

 2

xi
2 .

In case when N is even, the fundamental solution of (1.36) with pole at (0,s0) is given
as

F even
 (x,s;0,s0) =

2r1−N

(1−N)N+1

(
s0

s

)
F

(
,1−,

3
2
− N

2
;
−r2

4s0s

)
, (1.37)

where

F

(
,1−,

3
2
− N

2
;
−r2

4s0s

)
=




i=0

()i(1−)i

i!
(

3
2 − N

2

)
i

(−r2

4s0s

)i

for r =
(
N

i=1 x2
i +(s− s0)2

) 1
2

and N+1 = 2
N+1

2


(

N+1
2

) . Here, (a)i denotes the general

Pochhammer symbol defined as (a)i := (a+i)
(a) . For the details, see Theorem 2.1 [6].

Further, when N is odd, say, N = 2M +1, for some M > 0. The fundamental solution
of (1.36) is given as

F odd
 (x,s;0,s0) = −s2

0

(
 + N

2 − 1
2

)


N
2 
(
 + 1

2

) r1−N−2F

(
, +

N
2
− 1

2
,2;

−4s0s
r2

)
,

(1.38)

for 2 �= 0,−1,−2, . . . . Authors used the Delache and Leray’s method [23] to get these
explicit representation of fundamental solutions. We mention that in [23], authors gave
fundamental solutions to the operators of the form

1
2
�x,s +


s

 s

,  ∈ C\ {0}, (1.39)
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where

�x,s =
 2

 t2
−x,s.

Hasanov and Karimov [42] constructed the fundamental solutions in terms of Lau-
ricella’s hypergeometric functions of three variables for the following equation:

uxx +uyy +uzz +
2
x

ux +
2
y

uy +
2
z

uz = 0 (1.40)

in R
+
3 :=

{
(x,y,z) : x > 0,y > 0,z > 0

}
for constant , , such that 0 < , , < 1

2 .
The fundamental solutions of (1.40) are given by

q1(x,y,z;x0,y0,z0)

= k1(r2)−−−−
1
2 F (3)

A

(
+ + +

1
2
;, ,;2,2 ,2; , ,

)
,

q2(x,y,z;x0,y0,z0)

= k2(r2)−−−
3
2 (xx0)1−2

×F(3)
A

(
−+ + +

3
2
;1−, ,;2−2,2 ,2; , ,

)
,

q3(x,y,z;x0,y0,z0)

= k3(r2)−+−− 3
2 (yy0)1−2

×F(3)
A

(
− + +

3
2
;,1− ,;2,2−2 ,2; , ,

)
,

q4(x,y,z;x0,y0,z0)

= k4(r2)−−+− 3
2 (zz0)1−2

×F(3)
A

(
 + − +

3
2
;, ,1− ;2,2 ,2−2; , ,

)
,

q5(x,y,z;x0,y0,z0)

= k5(r2)+−− 5
2 (xx0)1−2(yy0)1−2

×F(3)
A

(
−− + +

5
2
;1−,1− ,;2−2,2−2 ,2; , ,

)
,

q6(x,y,z;x0,y0,z0)

= k6(r2)−+− 5
2 (xx0)1−2(zz0)1−2

×F(3)
A

(
−+ − +

5
2
;1−, ,1− ;2−2,2 ,2−2; , ,

)
,

q7(x,y,z;x0,y0,z0)

= k7(r2)−++− 5
2 (yy0)1−2 (zz0)1−2

×F(3)
A

(
− − +

5
2
;,1− ,1− ;2,2−2 ,2−2; , ,

)
,
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q8(x,y,z;x0,y0,z0)

= k8(r2)++− 7
2 (xx0)1−2(yy0)1−2 (zz0)1−2

×F(3)
A

(
−− − +

7
2
;1−,1− ,1− ;2−2,2−2 ,2−2; , ,

)
,

where ki, i = 1,2, . . . ,8 are constants, r2 = (x− x0)2 +(y− y0)2 +(z− z0)2, and

F(3)
A (a;b1,b2,b3;c1,c2,c3;x,y,z) =




i, j,k=0

(a)i+ j+k(b1)i(b2) j(b3)k

(c1)i(c2) j(c3)ki! j!k!
xiy jzk,

|x|+ |y|+ |z|< 1.

Yagdijan [57] considered a generalized Tricomi operator, also known as Gellerstedt
operator,

T u := utt − tmxu, (1.41)

for m∈N, x∈RN , t ∈R. Let m = 2k, and N = 1, the fundamental solution supported
in the forward cone,

D1(x0, t0) :=
{

(x,t) ∈ R
N+1, |x− x0| < 1

k+1

(
tk+1− tk+1

0

)}
,

is given by

E1(x,t;0,t0) =

⎧⎨
⎩

ckE(x,t;0,t0) in D1(0, t0)

0 otherwise,

relative to the point (0,t0), where ck = (k+1)−
k

k+1 2−
1

k+1 and

E(x, t;0, t0) := (x+(t)+(t0))− (−x+(t0)+(t))−F(,;1; ).

Here F(,;1; ) is the hypergeometric function and

 =
(x+(t)−(t0))(x−(t)+(t0))
(x+(t)+(t0))(x−(t)−(t0))

, (t) :=
tk+1

k+1
, :=

k
2
(1).

Similarly, when N > 1 is odd or even, one may see the fundamental solutions to (1.41)
in [57].

Garipov and Mavlyaviev [35] gave the fundamental solution for axisymmetric
Helmholtz equation:

L (u) :=
N−1


i=1

 2u

x2
i

+
 2u

x2
N

+
k
xN

u
xN

+ 2u = 0

in R
N
+ =

{
(x1,x2 . . . ,xN) : xN > 0,N > 2

}
,
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where k > 0. The fundamental solutions are given as follows:

q1(M,M0) = C1r
−(k+N−2)H3

(
k+N−2

2
,
k
2
;k;

−4xNx(0)
N

r2 ,
 2r2

4

)
,

q2(M,M0) = C2r
−(k+N−2)

(−4xNx(0)
N

r2

)1−k

H3

(
N
2
− k

2
,1− k

2
;2− k;

−4xNx(0)
N

r2 ,
 2r2

4

)
,

where r2 = N
i=1

(
xi − x(0)

i

)2

and H3 is the confluent Horn-Kummer function given

by

H3(a,b;c;, ) =



i=0




j=0

(a)i− j(b)i

(c)i

 i

i!
 j

j!
. (1.42)

The solutions have power-singularity r2−N as r −→ 0.
Further, the same authors obtained the fundamental solutions for two multidimen-

sional elliptic equations in [36]. In particular, they considered the following equations:

Lu := xm
N

N


i=1

(
 2u

x2
i

+ 2u

)
+
 2u

x2
N

= 0 for m > 0, N > 2, (1.43)

and

Tu := exN
N


i=1

(
 2u

x2
i

+ 2u

)
+
 2u

x2
N

= 0 for N > 2. (1.44)

Fundamental solutions for (1.43) are given as

q1
(M,M0) = C3r

−(+N−2)H3

(
+N−2

2
,

2

; ;
r2− r2

1

2 ,
 2r2

4

)
,

and

q2
(M,M0) = C4r

−(+N−2)
(

r2 − r2
1

r2

)1−
H3

(
N
2
− 

2
,1− 

2
;2−  ;

r2− r2
1

r2 ,
 2r2

4

)
,

(1.45)

for some positive constants C3 and C4 and  = m
m+2 . Here, r and r1 are as follows:

r2 =
N−1


i=1

(
xi − x(0)

i

)2

+
4

(m+2)2

(
x

m+2
2

N −
(

x(0)
N

)m+2
2
)2

,

r2
1 =

N−1


i=1

(
xi − x(0)

i

)2

+
4

(m+2)2

(
x

m+2
2

N +
(

x(0)
N

)m+2
2
)2

.
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Also, these solutions have power singularity r2−N as r −→ 0. Next, the fundamental
solutions of (1.44) are provided by the functions

q1
(M,M0) = C5r

−(−1)
1 H3

(
−1

2
,
1
2
; ;

r2
1 − r2

r2
1

,
 2r2

1

4

)
,

and

q2
(M,M0)

= C6r
−(−1)
1

(
r2 − r2

1

r2

)1−
(

H3

(
N
2
− 

2
,
1
2
;1;

r2
1 − r2

r2
1

,
 2r2

1

4

)
log

(
r2
1 − r2

r2
1

)

+



i=0




j=0

(
N−1

2

)
i− j

(
1
2

)
i

(1)i

(

(

n−1
2

+ i− j

)
+

(
1
2

+ i

)
−2(1+ i)

)

×

(
r21−r2

r21

)
i!

(
 2r21

4

)
j!

)
, (1.46)

where H3 is given by (1.42) and (z) = ′(z)
(z) .

Next, consider the following equation studied by Ergashev [26]:

L N
(a)∗ :=

N


i=1

uxixi +
m


j=1

2a j

x j
ux j = 0

in R
N
m := {(x1,x2, . . . ,xN) : x1 > 0,x2 > 0, . . . ,xm > 0}, (1.47)

where N � 2 is the Euclidean dimension and m is the number of singular coefficients
of (1.47) such that 0 < m � N and a j ∈ R with 0 < 2a j < 1, j = 1, . . . ,m, (a) =
(a1,a2, . . . ,am). Let x := (x1,x2, . . . ,xN) be any point and  := (1,2, . . . ,N) be a
fixed point in RN

m. The 2m fundamental solutions of (1.47) are given by:
(i)

F (m)
A

[
a,b1, . . . ,bm;

c1, . . .cm;

]
,

(ii)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x11)1−c1F(m)
A

[
a+1−c1,b1+1−c1,b2,...,bm;

2−c1,c2,...cm; 
]
,

...

(xmm)1−cmF (m)
A

[
a+1−cm,b1,b2,...,bm−1,bm+1−cm;

c1,c2,...,cm−1,2−cm; 
]
,
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(iii)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x11)1−c1(x22)1−c2F (m)
A

[
a+2−c1−c2,b1+1−c1,b2+1−c2,b3,...,bm;

2−c1,2−c2,c3,...cm; 
]
,

...

(x11)1−c1(xmm)1−cmF(m)
A

[
a+2−c1−cm,b1+1−c1,b2,...,bm+1−cm;

2−c1,2−c2,c3,...,cm; 
]
,

(x22)1−c2(x33)1−c3F (m)
A

[
a+2−c2−c3,b1,b2+1−c2,b3+1−c3,b4...,bm;

c1,2−c2,2−c3,...,cm; 
]
,

...

(xm−1m−1)1−cm−1(xmm)1−cmF (m)
A

[
a+2−cm−1−cm,b1,b2,...,bm−2,bm−1+1−cm−1,bm+1−cm;

c1,c2,...,cm−2,2−cm−1,2−cm; 
]

...
(n)

(x11)1−c1 . . . (xmm)1−cmF (m)
A

[
a+m−c1−c2, . . .−cm,b1+1−c1, . . . ,bm+1−cm;

2−c1,2−c2, . . .2−cm;

]
,

where a = a1 + . . .an − 1+ N
2 , bi = ai, ci = 2ai, 1 � i � m. Also, the fundamental

solutions have singularity at r = 0. For the details, we refer to [26]. Fundamental
solutions for the generalized Euler-Poisson-Darboux equation were given by Hasanov
et al. [43]:

utt +
2
t

ut = uxx +uyy +
2a
x

ux +
2
y

uy, x > 0, y > 0, t > 0, (1.48)

are the following:

q1(x,y, t;x0,y0,z0)

= k1(r2)−−−−
1
2 FA

(
+ + +

1
2
;, ,,2,2 ,2; , ,

)
,

q2(x,y, t;x0,y0,z0)

= k2(r2)−−−
3
2 (xx0)1−2

×F(3)
A

(
−+ + +

3
2
;1−, ,,2−2,2 ,2; , ,

)
,

q3(x,y, t;x0,y0,z0)

= k3(r2)−+−− 3
2 (yy0)1−2

×F(3)
A

(
− + +

3
2
;,1− ,,2,2−2 ,2; , ,

)
,

q4(x,y, t;x0,y0,z0)

= k4(r2)−−+− 3
2 (tt0)1−2

×F(3)
A

(
 + − +

3
2
;, ,1− ,2,2 ,2−2; , ,

)
,
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q5(x,y, t;x0,y0,z0)

= k5(r2)+−− 5
2 (xx0)1−2(yy0)1−2

×F(3)
A

(
−− + +

5
2
;1−,1− ,,2−2,2−2 ,2; , ,

)
,

q6(x,y, t;x0,y0,z0)

= k6(r2)−+− 5
2 (xx0)1−2(tt0)1−2

×F(3)
A

(
−+ − +

5
2
;1−, ,1− ,2−2,2 ,2−2; , ,

)
,

q7(x,y, t;x0,y0,z0)

= k7(r2)−++− 5
2 (yy0)1−2 (tt0)1−2

×F(3)
A

(
− − +

5
2
;,1− ,1− ,2,2−2 ,2−2; , ,

)
,

q8(x,y, t;x0,y0,z0)

= k8(r2)++− 7
2 (xx0)1−2(yy0)1−2 (tt0)1−2

×F(3)
A

(
−− − +

7
2
;1−,1− ,1− ;2−2,2−2 ,2−2; , ,

)
,

where k1,k2, . . .k8 are constants and r2 = (x− x0)2 + (y− y0)2 − (t − t0)2. For the
details, we refer to Section 3 [43].

Ergashev [27] determined the fundamental solutions for the equation

N


i=1

uxixi +
21

x1
ux1 +

22

x2
ux2 +

23

x3
ux3 − 2u = 0 (1.49)

in R
3+
N :=

{
(x1,x2, . . . ,xN) : x1 > 0,x2 > 0,x3 > 0

}
, where N is the dimension of the

Euclidean space, N � 3, i ∈R are constants such that 0 <i <
1
2 , for i = 1,2,3.  =

1 +1 +3−1. Also, i =
4xkx0k

r2
, k = 1,2,3, 4 =− 1

4
2r2 and  = (1,2,3,4)

for some real or pure imaginary constant  . Let r2 =N
i=1(xi−x01)2. The fundamental

solutions of (1.49) are given as follows:

q1(x,x0) = k1(r2)−H0
4,3(,1,2,3;21,22,23;),

q2(x,x0) = k2(r2)21−−1(x1x01)1−21

×H0
4,3(1+−21,1−1,2,3;2−21,22,23;),

q3(x,x0) = k3(r2)22−−1(x2x02)1−22

×H0
4,3(1+−22,1,1−2,3;21,2−22,23;),

q4(x,x0) = k4(r2)23−−1(x3x03)1−23

×H0
4,3(1+−23,1,2,1−3;21,22,2−23;),

q5(x,x0) = k5(r2)21+22−−2(x1x01)1−21(x2x02)1−22

×H0
4,3(2+−21−22,1−1,1−2,3;2−21,2−22,23;),
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q6(x,x0) = k6(r2)21+23−−2(x1x01)1−21(x3x03)1−23

×H0
4,3(2+−21−23,1−1,2,1−3;2−21,22,2−23;),

q7(x,x0) = k7(r2)22+23−−2(x2x02)1−22(x3x03)1−23

×H0
4,3(2+−22−23,1,1−2,1−3;21,2−22,2−23;),

q8(x,x0) = k8(r2)21+22+23−−2(x1x01)1−21(x2x02)1−22(x3x03)1−23

×H0
4,3(3+−21−22−23,1−1,1−2,1−3;

2−21,2−22,2−23;),

where ki = 1,2, . . . ,8 are constants and H0
4,3 is a confluent hypergeometric function of

four variables given by

H0
4,3(a,b1,b2,b3;d1,d2,d3;x,y,z,t) =




m,n,k,l=0

(a)m+n+k−l
(b1)m(b2)n(b3)k

(d1)m(d2)n(d3)k

xm

m!
ym

n!
zk

k!
tl

l!
,

for |x|+ |y|+ |z|< 1.
Recently, Hasanov et al. [44] studied the following generalized Gellerstedt equa-

tion:

ymzktluxx + xnzktluyy + xnymtluzz + xnymzkutt = 0 (1.50)

in R4
+ =

{
(x,y,z, t) : x > 0,y > 0,z > 0,t > 0

}
for positive constants k, l,m,n. Consider

P(r) = r−−−−−1,

where  = n
2(n+2) ,  = m

2(m+2) ,  = k
2(k+2) ,  = l

2(l+2) , and

r2 =
(

2
n+2

x
n+2
2 − 2

n+2
x

n+2
2

0

)2

+
(

2
m+2

y
m+2

2 − 2
m+2

y
m+2

2
0

)2

+
(

2
k+2

z
k+2
2 − 2

k+2
z

k+2
2

0

)2

+
(

2
l +2

t
l+2
2 − 2

l +2
t

l+2
2

0

)2

.

Let

F (4)
A (a;b1,b2,b3,b4;c1,c2,c3,c4;x1,x2,x3,x4)

=



m,n,p,q

(a)m+n+p+q(b1)m(b2)n(b3)p(b4)q

(c1)m(c2)n(c3)p(c4)qm!n!p!q!
xmynzptq

for |x|+ |y|+ |z|+ |t|< 1. The fundamental solutions of (1.50) are the following:

g1(x,y,z, t;x0,y0,z0, t0)

= k1P×F(4)
A ( + + +  +1;, ,, ;2,2 ,2,2 ; , ,, ),

g2(x,y,z, t;x0,y0,z0, t0)

= k2P 1−2 ×F(4)
A (2−+ + +  ;1−, ,, ;2−2,2 ,2,2 ; , ,, ),
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g3(x,y,z, t;x0,y0,z0, t0)

= k3P1−2F (4)
A (2+− + +  ;,1− ,, ;2,2−2 ,2,2 ; , ,, ),

g4(x,y,z, t;x0,y0,z0, t0)

= k4P1−2F (4)
A (2++ − +  ;, ,1− , ;2,2 ,2−2,2 ; , ,, )

g5(x,y,z, t;x0,y0,z0, t0)

= k5P1−2

×F(4)
A (2++ + −  ;, ,,1−  ;2,2 ,2,2−2 ;m,n, p, q),

g6(x,y,z, t;x0,y0,z0, t0)

= k6P 1−21−2

×F(4)
A (3−− + +  ;1−,1− ,, ;2−2,2−2 ,2,2 ; , ,, ),

g7(x,y,z, t;x0,y0,z0, t0)

= k7P 1−2 1−2

×F(4)
A (3−+ − +  ;1−, ,1− , ;2−2,2 ,2−2,2 ; , ,, ),

g8(x,y,z, t;x0,y0,z0, t0)

= k8P 1−21−2

×F(4)
A (3−+ + −  ;1−, ,,1−  ;2−2,2 ,2,2−2 ; , ,, ),

g9(x,y,z, t;x0,y0,z0, t0)

= k9P1−2 1−2

×F(4)
A (3+− − +  ;,1− ,1− , ;2,2−2 ,2−2,2 ; , ,, ),

g10(x,y,z, t;x0,y0,z0, t0)

= k10P1−2  1−2

×F(4)
A (3+− + −  ;,1− ,,1−  ;2,2−2 ,2,2−2 ; , ,, ),

g11(x,y,z, t;x0,y0,z0, t0)

= k11P1−2 1−2

×F(4)
A (3++ − −  ;, ,1− ,1−  ;2,2 ,2−2,2−2 ; , ,, ),

g12(x,y,z, t;x0,y0,z0, t0)

= k12P 1−21−21−2

×F(4)
A (4−−−+ ;1−,1− ,1−, ;2−2,2−2 ,2−2,2 ; , ,, ),

g13(x,y,z, t;x0,y0,z0, t0)

= k13P 1−21−2 1−2

×F(4)
A (4−−+− ;1−,1− ,,1− ;2−2,2−2 ,2,2−2 ; , ,, ),
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g14(x,y,z, t;x0,y0,z0, t0)

= k14P 1−21−21−2

×F(4)
A (4−+−− ;1−,1− ,1−, ;2−2,2−2 ,2−2,2 ; , ,, ),

g15(x,y,z, t;x0,y0,z0, t0)

= k15P1−2 1−2 1−2

×F(4)
A (4+−−− ;,1− ,1−,1− ;2,2−2 ,2−2,2−2 ; , ,, ),

g16(x,y,z, t;x0,y0,z0, t0)

= k16P 1−21−21−2 1−2

×F(4)
A (5−−−− ;1−,1− ,1−,1− ;2−2,2−2 ,2−2,2−2 ; , ,, ),

where ki, i = 1,2, . . . ,16 are constants and  , ,, defined using r, l,m,n,k. For the
details, we refer to Theorem 4.1 [44].

2. Fundamental solution to fully nonlinear parabolic PDE

In this section we will state a result which helps us in computing the Pucci’s ex-
tremal operator in the case of radial solutions. For the details, see [21, 31]. Since this
is short and interesting, so we are presenting it here for the sake of completeness.

LEMMA 1. Let  : (0,) −→ R ba a C2 function. For x ∈ RN \ {0} define
u(x) = (|x|) , then the eigenvalues of D2u (the Hessian of u), are  ′′(|x|) , which

is simple, and  ′(|x|)
|x| which has multiplicity N−1.

Proof. By an easy computation, we get

D2u(x) =
 ′(|x|)
|x| I +

(
 ′′(|x|)
|x|2 −  ′(|x|)

|x|3
)

x⊗ x,

where I is an N ×N identity matrix and x⊗ x is an N ×N matrix whose (i, j)-th
entries are xix j. Hence we have

D2u(x)
x
|x| =  ′′(|x|) x

|x| and D2u(x) =
 ′(|x|)
|x|  ,

for every vector  ∈ RN such that  .x = 0 and thus the lemma follows. �
We prove the existence of fundamental solution h of the fully nonlinear parabolic

partial differential equation

ut −F(D2u) = 0 in R
N ×R (2.1)

for any positively homogeneous uniformly elliptic operator F, where F : SN −→ R is
a function satisfying the following condition:
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(H1) F is convex and positively homogeneous of degree 1, i.e.,

∀M ∈ SN and t � 0, F(tM) = tF(M).

(H2) There exist numbers 0 <  �  such that

M−
 ,(M) � F(M) � M +

 ,(M), ∀ M ∈ SN ,

where M−
 , and M +

 , are Pucci’s extremal operators defined as above.
(H3) F is invariant with respect to orthogonal changes of coordinates, i.e,

F(QtMQ) = F(M), for every real orthogonal matrixQ andM ∈ SN .

Felmer and Quaas [29] proved that if F is a function satisfying (H1)–(H3), then

F(M) = M +
 ,(M), ∀ M ∈ SN .

We consider the viscosity solution u of (2.1). Since by (H1), F(M) is a convex function
in M and by the celebrated work of Krylov [45, 46], u ∈C2,(), 0 <  < 1.

PROPOSITION 1. Let F satisfy (H1)–(H3). Then the fundamental solution h of
(2.1) is given by

h(x,t) =

⎧⎨
⎩

c2

t
1
2 (+1)

e−
|x|2
4 t , for x ∈ RN , t > 0,

0, for x ∈ RN , t < 0,
(2.2)

where  = (N−1)
 .

Proof. By (H1)–(H3), from Lemma 2.2 [29], (2.1) converts into

ut −M +
 ,(D2u) = 0 in R

N ×R, (2.3)

where 0 <  �<. Let us look at the radial solution of (2.3) for t > 0, i.e., u(x,t) =
u(|x|,t) = u(r, t) for t > 0. Now in the light of Lemma1, (2.3) converts into

ut −
(
urr +

(N−1)
r

ur

)
= 0 in (0,)× (0,). (2.4)

Let us seek a solution u(r,t) of (2.4) having the form

u(r,t) =
1
t

v

(
r

t

)
, r > 0, t > 0,

where the constants , and the function v : R −→ R have to be determined and
u, ur −→ 0 as r −→  for each fixed t > 0. An easy computation yields that

v′(s)st−−1 +v(s)t−−1 +t−−2v′′(s)+
(N−1)v′(s)t−−

r
= 0,
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where s = r
t

. Let us take  = 1
2 in the above equation and an easy simplification gives

that

v′′(s)+ v′(s)
[
(N −1)

s
+

s
2

]
+



v(s) = 0. (2.5)

Further, (2.5) can be rewritten as

v′′(s)+ v′(s)
[ 
s

+
s

2

]
+



v(s) = 0, (2.6)

where  = (N−1)
 . On multiplying (2.6) by s and choosing  = +1

2 yields that

(sv′(s))′ +
1

2
(s+1v(s))′ = 0.

An integration yields that

sv′(s)+
1

2
s+1v(s) = c1,

for some constant c1. Since v(s),v′(s)−→ 0 as s−→ so this implies that c1 = 0 and
again by a simple integration, we have

v(s) = c2e
− s2

4 ,

where c2 is some constant and therefore

u(x,t) = u(|x|,t) =
c2

t
1
2 (+1)

e−
|x|2
4 t

and we call it a fundamental solution of (2.1) and denote it by

h(x,t) =

⎧⎨
⎩

c2

t
1
2 (+1)

e−
|x|2
4 t , for x ∈ R

N , t > 0,

0, for x ∈ RN , t < 0.

It is easy to observe that h is singular at the point (0, 0). �

REMARK 1. It is an easy observation that the fundamental solution (2.2) of (2.1)
is monotone nonincreasing in r for each fixed t > 0.

REMARK 2. Let  = 1 =  in (2.3), then M +
 ,(D2u) = u and the function

given by (2.2) is the fundamental solution of

ut −u = 0 in R
N ×R.

For the details, see [28].
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REMARK 3. It is remarkable that (2.1) has special solutions of the form

u(x,t) = u(r,t) = t−v(t− r), r > 0, t > 0

with the exponent  = 1
2 ,  = (N−1)+

2 .

We mention here that using the arguments similar to 2.3.1 [28], solution to the
following initial-value problem:⎧⎨

⎩
ut −M +

 ,
(
D2u

)
= 0 in RN ×{t > 0},

u = g on RN ×{t = 0}
(2.7)

is given by

u(x, t) =
c2

t
1
2 (+1)

∫
RN

e−
|x−y|2
4t g(y)dy, for x ∈ R

N and t > 0. (2.8)

Further, we study the rate of the error in terms of the representation formula. We prove
the following results in the spirit of J. L. Vázquez, see Theorem 4.1 [54].

THEOREM 2. Let g ∈ L1(RN) and
∫
RN g(y)dy = M be its mass. Also, assume

that

N (g) :=
∫

RN
|g(y)y|dy < . (2.9)

Then for

P(x,t) :=
c2

t
1
2 (+1)

e−
|x|2
4t and  =

(N−1)


, (2.10)

we get

t
1
2 (+1)|u(x,t)−MP(x,t)| � CN (g)t−

1
2 (2.11)

and

‖u(x,t)−MP(x,t)‖L1(RN ) � C1N (g)t−
1
2 (+2−N), (2.12)

where C and C1 are positive constants.

Proof. Using (2.8), we have that

u(x, t)−MP(x,t) =
∫

RN
P(x− y,t)g(y)dy−P(x,t)

∫
RN

g(y)dy

=
∫

RN

(
P(x− y,t)−P(x,t)

)
g(y)dy

=
∫

RN

(∫ 1

0
P(x− sy,t)ds

)
g(y)dy
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=
∫

RN

(∫ 1

0
P(x− sy,t)ds

)
g(y)dy

=
c2

t
1
2 (+1)

∫
RN

dy
∫ 1

0
g(y)

〈
y,

x− sy
2t

〉
e−

|x−sy|2
4t ds

=
c2

t
1
2 (+2)

∫
RN

dy
∫ 1

0
g(y)

〈
y,

x− sy

2t
1
2

〉
e−

|x−sy|2
4t ds. (2.13)

Further, using the bound on function

f

(
x− sy

t
1
2

)
:=

x− sy

t
1
2

e−
|x−sy|2

4t

yields

∣∣u(x,t)−MP(x,t)
∣∣� C

1

t
1
2 (+2)

∫
RN

|g(y)y|dy

= C
1

t
1
2 (+2)

N (g),

where C > 0 is a constant. Now, since P(x,t) is of the order 1

t
1
2 (+1)

in sup norm, thus

we have

t
1
2 (+1)∣∣u(x,t)−MP(x,t)

∣∣� Ct−
1
2 N (g),

for some constant C = C(N). This yields (2.11). Next, in order to get (2.12), we con-
sider (2.13)

u(x, t)−MP(x,t) =
c2

t
1
2 (+1)

∫
RN

dy
∫ 1

0
g(y)

〈
y,

x− sy
2t

〉
e−

|x−sy|2
4t ds.

For fixed t > 0, integrating with respect to variable x, we get

‖u(x, t)−MP(x, t)‖L1(RN ) � c2

t
1
2 (+1)

∫
RN

dx
∫

RN
dy
∫ 1

0
|g(y)y| |x− sy|

2t
e−

|x−sy|2
4t ds.

(2.14)

Further, using the change of variable

 =
x− sy

t
1
2

,

yields

‖u(x, t)−MP(x, t)‖L1(RN ) � c2t
− 1

2 (+2−N)
∫

RN
dy
∫ 1

0
|g(y)y|

(∫
RN

t−
N
2
| |
2t

1
2

e−
| |2
4 d

)
ds.

The last integral is a constant independent of u, we get

‖u(x,t)−MP(x,t)‖L1(RN ) � C1N (g)t−
1
2 (+2−N),

for some positive constant C1. �
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REMARK 4. For the long time asymptotics for (2.7), we refer to Theorem 1.2 [3].
We mention that in particular, in our case (x,t) appearing in that result is given by
P(x,t), see (2.10).

3. Fundamental solutions in Heisenberg group

We review the fundamental solution to some important operators in Heisenberg
group �N . We first recall the briefs about the Heisenberg group �N . The points in
�

N are denoted by

 := (z,t) = (x1, . . . ,xN ,y1, . . . ,yN ,t)

and the group �N is defined as the triplet
(
RN+1,o,{}

)
, where the group law o is

defined as follows:

 o ′ =
(
x+ x′,y+ y′,t + t ′+2〈y,x′〉−2〈x,y′〉)

=
(

x1 + x′1, . . . ,xN + x′N,y1 + y′1, . . . ,yN + y′N ,t + t ′+2
N


i=1

(
yix

′
i − xiy

′
i

))
.

Here, 〈., .〉 denotes the standard inner product in RN . (R2N+1,o) is a Lie group with
identity element the origin 0 and inverse −1 = − . The dilation group {}>0 is
given by

( ) : R
2N+1 −→ R

2N+1

such that

 → ( ) :=
(
x,y, 2t

)
.

�
N is also known as Heisenberg-Weyl group in R2N+1 . The Jacobian basis of the

Heisenberg Lie algebra of �N is given by

Xi = xi +2yit ,Xi+N = yi −2xit , 1 � i � N, T = t .

Given a domain ⊂�N , for u∈C1(,R), the subgradient or the Heisenberg gradient

�Nu is defined as follows:


�Nu( ) :=

(
X1u( ), . . . ,XNu( ),XN+1u( ), . . . ,X2Nu( )

)
.

Also,

D2
�N ,Su :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1X1u · · · XNX1u XN+1X1u · · · X2NX1u
...

. . .
...

...
. . .

...
X1XNu . . . XNXNu XN+1XNu . . . X2NXNu

X1XN+1u . . . XNXN+1u XN+1XN+1u . . . X2NXN+1u
...

. . .
...

...
. . .

...
X1X2Nu . . . XNX2Nu XN+1X2Nu . . . X2NX2Nu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Sym

,
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where

ASym =
1
2

[
A+AT], for any matrix A,

i.e., symmetric part of the matrix A. Now, since

[Xi,Xi+N ] = XiXi+N −Xi+NXi

= (xi +2yit)(yi −2xit)− (yi −2xit)(xi +2yit)
= −4t ,

so it follows that

rank
(
Lie{X1,X2, . . . ,XN ,XN+1,XN+2, . . . ,X2N ,T}(0,0)

)
= 2N +1,

which is the Euclidean dimension of �N . We denote by Q , the homogeneous dimen-
sion of �N , which is Q = 2N +2. The norm on �N is defined by

| |
�N :=

[( N


i=1

(
x2
i + y2

i

)2)+ t2
] 1

4

.

The corresponding distance on �N is defined as follows:

d
�N ( , ̂ ) := |̂−1o |

�N ,

where ̂−1 is the inverse of ̂ w. r. to o, i.e., ̂−1 = −̂ . The sub-Laplacian or
the Heisenberg Laplacian (also known as Laplacian-Kohn operator), 

�N is the self-
adjoint operator defined as


�N :=

2N


i=1

X2
i

=
N


i=1

 2

x2
i

+
 2

y2
i

+4yi
 2

xi t
−4xi

 2

yi t
+4

(
x2
i + y2

i

)  2

 t2
.

It is useful to observe that


�N = div

(
Tu

)
,

where

 =
[
IN 0 2y
0 IN −2x

]

and T is its transpose. Note that

A = T =

⎡
⎣IN 0 2y

0 IN −2x
2y −2x 4

(|x|2 + |y|2)
⎤
⎦
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is a positive semi-definite matrix with det(A) = 0, ∀ ∈�N .
Let 1 < p < . The sub-elliptic analogue of p-Laplacian (1.3) is given by

−p,�N =
2N


i=1

X∗
j

(∣∣Xu
∣∣p−2

Xju
)
, (3.1)

where X∗
j is the adjoint of Xj. The fundamental solution of (3.1) is given as follows:

p,�N :=

⎧⎨
⎩Cp

(|.|
�N

) (p−Q)
p−1 if p �= Q

Cp log(|.|
�N ) if p = Q,

(3.2)

with singularity at the identity element 0 ∈�N . Here, Cp denotes a constant given by

Cp :=

⎧⎨
⎩

p−1
p−Q(Qp)

− 1
p−1 if p �= Q

(Qp)
− 1

p−1 if p = Q.

For the details, we refer to Theorem 2.1 [16].
Next, we consider the Pucci-Heisenberg operators, M±

 ,
(
D2
�N u

)
defined as

M−
 ,
(
D2
�Nu

)
= − 

ei>0

ei− 
ei<0

ei,

M +
 ,
(
D2
�Nu

)
= − 

ei<0

ei− 
ei>0

ei, (3.3)

where {ei}2N
i=1 are the eigenvalues of D2

�N u. It is immediate to see that for  = = 1,
above operators reduce to the Heisenberg Laplacian. The fundamental solutions of

M +
 ,
(
D2
�Nu

)
in R

2N+1 \ {0} (3.4)

are given by

1( ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1| |2−
�N +C2 if  < 2,

C1 log | |
�N +C2 if  = 2,

−C1| |2−
�N +C2 if  < 2,

and

2( ) := C1| |2−
�N +C2, (3.5)

with constants C1 � 0, C2 ∈ R, where

 =



(Q−1)+1,
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 =



(Q−1)+1.

Also, the fundamental solutions of

M−
 ,
(
D2
�Nu

)
in R

2N+1 \ {0} (3.6)

are given by

1( ) = −2( )
2( ) = −1( ). (3.7)

For the details, we refer to Theorem 3.3 [22]. Moreover,  =  yields  =  = Q and
1 ≡2 give the fundamental solution for the Heisenberg Laplacian. One may see the
book [33] for the details.

4. Fundamental solutions in Grushin-type spaces

In this section, we give the fundamental solution to the p -Laplace operator in a
class of Grushin-type spaces for 1 < p <. These are sub-Riemannian spaces without
an algebraic group law. First, we recall the construction of such spaces. Consider the
Euclidean space RN . Let x = (x1,x2, . . . ,xN) ∈ RN and Xi be the vector fields given by

Xi := Pi(x1,x2, . . . ,xi−1)

xi

(4.1)

for i = 1,2, . . . ,N. Here, Pi(x1,x2, . . . ,xi−1) is a polynomial. We enforce P1 = 1, which
immediately gives

X1 =

x1

.

It can be seen that for i < j, Pj are differentiable and the Lie bracket is given by

Xi j := [Xi,Xj] = Pi(x1,x2, . . . ,xi−1)
Pj(x1,x2, . . . ,xi−1)

xi


x j

.

We endow RN with an inner product with singularity at the vanishing points of the poly-
nomial so that {Xi}N

i=1 forms an orthonormal basis. This produces a sub-Riemannian
manifold gN , which is the tangent space to a generalized Grushin-type space GN .
Points in GN are denoted by p = (x1,x2, . . . ,xN). GN is a metric space with its metric
given by the Carnot-Carathéodory distance, which is defined as follows:

dC(p,q) := inf


∫ 1

0
‖ ′(t)‖dt, (4.2)

where  denotes the set of all curves  such that (0) = p, (1) = q and

 ′(t) ∈ span{{Xi((t))}N
i=1}.
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For fixed M ∈ N, a ∈ R and 0 �= c ∈ R, consider the following vector fields:⎧⎨
⎩

X1 = 
x1

,

Xi = c(x1−a)M 
x1

for 2 � i � N.
(4.3)

Given a smooth function f on GN , the horizontal gradient of f is given as follows:

G :== (X1 f (p),X2 f (p), . . . ,XN f (p)).

Now, we state the result concerning fundamental solution of the p -Laplacian for the
vector fields defined by (4.3) and 1 < p < . The result is as follows:

THEOREM 3. (see [11, Theorem 3.1]) Fix some point p0 = (a1,b2,b3, . . . ,bN) ∈
GN . Let 1 < p < . Consider the following terms:

Q = (M +1)(N−1)+1,

 =
Q− p

(2M +2)(1− p)
,

 =
Q− p
1− p

,

h(x1,x2, . . . ,xN) = c2(x1−a)2M+2 +(M +1)2
N


i=2

(xi −bi)2,

f (x1,x2, . . . ,xN) = [h(x1,x2, . . . ,xN)] ,

(x1,x2, . . . ,xN) = [h(x1,x2, . . . ,xN)]
1

2M+2 ,

p =
∫

B1

‖G‖pdLN ,

C1 = −1(Qp)
1

1−p ,

C2 = (Qp)
1

1−p .

Then

(x1,x2, . . . ,xN) =

⎧⎨
⎩

C1 f (x1,x2, . . . ,xN) if p �= Q,

C2 log(x1,x2, . . . ,xN) if p = Q,
(4.4)

is the fundamental solution of the p-Laplacian for the vector fields given by (4.3). In
particular, we have

p(x1,x2, . . . ,xN) = p0

in the sense of distributions.
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5. Summary

We finally summarize that in this paper, we have made an attempt to present fun-
damental solutions to some well-known differential operators. One may also see the
citations of the works referred to in this article for long-time asymptotic behaviour of
solutions to heat equations including the operators stated in sections 1 and 2. We em-
phasize that these operators have a wide range of theoretical and practical applications.
We only scratch the surface of the topic here.

We start with the Laplace operator, which occurs in a wide range of physical con-
texts, for instance, Fick’s law of diffusion, Fourier’s law of heat conduction and Ohm’s
law of electrical conduction, see Chapter 12 [32] for the details. We also refer to a
recent note by Dipierro and Valdinoci [24] for an exhaustive list of scenarios, where
elliptic equations, in particular, Laplace equation occur naturally. It is well known that
p -Laplace equation is the model equation for nonlinear potential theory. One of the
well exposed fields, where the p -Laplace operator occurs is image enhancement. The
variational approach to image restoration problem consists of minimizing the energy
functional associated with p -Laplacian, see [17] for the details. Infinity Laplacian
has important applications in image processing, shape metamorphism and differential
games. Pucci’s extremal operators occur in the study of stochastic control problems,
where the diffusion coefficient is a control variable. We refer to the book [10] for the
details. Partial trace operators, P±

k appear in the context of mean curvature flow anal-
ysis in arbitrary codimensions through a level set approach by Ambrosio and Soner [1].
Pseudo-differential operators such as fractional Laplacian occur naturally in the study
of fluid dynamics, quantum mechanics, population dynamics quasi-geostrophic equa-
tion and many more. One may see [14, 19, 37] for these aspects. In particular, [37]
briefly lists the areas where these operators appear. Next, we mention that Frankl [34]
explored the Tricomi problem concerning (1.29) initiated by [53] is related to the study
of gas flows at nearly sonic speeds. More precisely, Tricomi equation characterizes the
transition from subsonic flow (elliptic region) to supersonic flow (hyperbolic region).
Grushin operator [40] can be naturally thought of as the Tricomi operator for transonic
flow subjected to subsonic regions. Also, PDEs in non-Euclidean contexts, such as
the Heisenberg group, naturally emerge in quantum mechanics [56], non-Markovian
coupling of Brownian motions [51] and many others.

Acknowledgements. Authors thank the referee for constructive comments, which
helped us to improve the quality of this paper.
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[19] A. CÓRDOBA, D. CÓRDOBA, A maximum principle applied to quasi-geostrophic equations, Commu-
nications in Mathematical Physics, 249, 3 (2004), 511–528.

[20] M. G. CRANDALL, L. C. EVANS, R. F. GARIEPY, Optimal Lipschitz extensions and the infinity
Laplacian, Calculus of Variations and Partial Differential Equations, 13, 2 (2001), 123–139.
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[22] A. CUTRÍ, N. TCHOU, Barrier functions for Pucci-Heisenberg operators and applications, Interna-
tional Journal of Dynamical Systems and Differential Equations, 1, 2 (2008), 117–131.

[23] S. DELACHE, J. LERAY, Calcul de la solution élémentaire de l’opérateur d’Euler-Poisson-Darboux
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